首页 > 文章中心 > 生物质燃料的前景

生物质燃料的前景

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物质燃料的前景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物质燃料的前景

生物质燃料的前景范文第1篇

关键词: 燃料乙醇 新能源 经济效益

目前,全球气候逐渐变暖,煤、石油、天然气等化石能源日渐消耗,从而引发了世界对可再生并对环境污染少的新型能源的深刻思考。诸如中国、巴西、美国、加拿大等国正在积极开发和利用生物燃料乙醇。但如果一直采用大量粮食生产燃料乙醇,必然会造成人类缺粮、缺地等生活隐患,所以走“非粮”路线必然是正确道路。再者地球纤维素的贮量丰富,其能量来自太阳,取之不尽,用之不竭。

一、国内外燃料乙醇的发展现状

目前,随着石油价格的飞涨,环境污染与能源短缺问题日渐突出,化石能源日益枯竭,燃料乙醇便应运而生,并逐渐形成了一个产业,一些农产品丰富的国家正大力发展燃料乙醇的供应市场。巴西早在1981年就颁布法令规定全国销售的汽油必须添加燃料乙醇,成为世界上唯一不用纯汽油作为汽车燃料的国家。经过几十年的发展,巴西用占全国面积1.5%的国土面积,解决了全国超过一半的非柴油车用燃料的供应。美国自1992年起就开始推广燃料乙醇汽油,目前已经成为燃料乙醇年产量最大的国家,年产近4000万吨。加拿大从1981年起在汽油中添加乙醇,到2003年,加联邦政府宣布实施加拿大燃料乙醇的生产和利用,并拨巨款直接用于魁省等4个省的燃料乙醇商业化项目。欧盟每年约生产176万吨酒精。1997年只有5.6%用于燃料。1994年欧盟通过决议,给生物燃料生产工厂予以免税。并在2010年使燃料乙醇的比例达到12%。因此一些后续的国家如荷兰、瑞典和西班牙也出台了生物燃料计划。泰国是亚洲第一个由政府开展全国生物燃料项目的国家。在短短的几年时间内,泰国成功地开展了燃料乙醇项目。这些项目提供了利用过剩的食用农产品的途径,对提高泰国农村几百万农民的生活水平起到了积极作用。印度是仅次于中国的亚洲第二大乙醇生产国,设计的年生产能力约为200万吨,并准备效法巴西推出“乙醇汽油计划”。

我国是继巴西、美国之后全球第三大生物燃料乙醇生产国和消费国。受化石能源枯竭和环境保护双重压力的影响,中国生物质能源产业的发展再一次被提到战略性新兴产业的位置上来,尤其是在我国已经形成了初步规模的燃料乙醇产业,更是受到格外关注。我国燃料乙醇市场格局是2002年形成的,2006年以后的几年时间里,燃料乙醇已经在国内更多地区推广。到2010年底,燃料乙醇消费量占全国汽油消费量的比例,已经由过去不足20%上升到50%以上。同时我国也将采取各种措施来增加燃料乙醇的产量。可见,燃料乙醇行业发展前景光明,具有相当的投资潜力。

二、燃料乙醇的概述

1.燃料乙醇的含义

乙醇俗称酒精,它以玉米、小麦、薯类、甜高粱等为原料,经发酵、蒸馏而制成。将乙醇进一步脱水再加上适量汽油后形成变性燃料乙醇。燃料乙醇中的无水乙醇体积浓度一般都达到99.5%以上,它是燃烧清洁的高辛烷值燃料,是可再生能源。主要是以雅津甜高粱加工而成。

燃料乙醇再添加变性后,与无铅汽油按一定比例混配成的乙醇汽油,是一种新型绿色环保型燃料。当乙醇混配比例在25%以内时,燃料可保持其原有动力性。它可以有效改善油品的性能和质量,降低一氧化碳、碳氢化合物等主要污染物的排放。它不影响汽车的行驶性能,还可以减少有害气体的排放量。更重要的是,乙醇是太阳能的一种表现形式,在整个自然界大系统中,乙醇的生产和消费过程可形成无污染的闭路循环。

2.燃料乙醇的使用方法

乙醇既是一种化工基本原料,又是一种新能源。尽管目前已经有着广泛的用途,但仍是传统观念的市场范围。其现在的使用方法主要有两种:一种以乙醇为汽油的“含氧添加剂”,这也是美国使用燃料乙醇的基本方法;二是用乙醇代替汽油,这是巴西较普遍采用的方法。未来乙醇作为基础产业的市场方向将主要体现在三个方面:一是车用燃料,主要是乙醇汽油和乙醇柴油。这就是我们传统所说的燃料乙醇市场,也是近期的(10年内)容量相对于以后较小的市场(在我国约1000万吨/年)。二是作为燃料电池的燃料。在低温燃料电池诸如手机、笔记本电脑,以及新一代燃料电池汽车等可移动电源领域具有非常广阔的应用前景,这是乙醇的中期市场(10―20年内)。乙醇目前已被确定为安全、方便、较为实用理想的燃料电池燃料。乙醇将拥有新型电池燃料30―40%的市场。市场容量至少是近期市场的5倍以上(主要是纤维原料乙醇);三是乙醇将成为支撑现在以乙烯为原料的石化工业的基础原料。在未来二十年左右的时间内,由于石油资源的日趋紧张,再加上纤维质原料乙醇生产的大规模工业化,成本相对于石油原料已具可竞争性,乙醇将顺理成章地进入石化基础原料领域(如乙烯原料市场),很可能将最终取而代之。如果要做一个形象而夸张的比喻的话,二十世纪后半叶国际石油大亨的形象将在二十一世纪中叶为“酒精考验”的乙醇大亨所替代。

3.燃料乙醇的特点

(1)可作为新的燃料替代品。

乙醇作为新的燃料替代品,可直接作为液体燃料,也可用于生产生物质燃料乙醇的主要原料来源或者同汽油混合使用,减少对不可再生能源――石油的依赖,保障国家能源的安全。

(2)辛烷值高,抗爆性能好。

作为汽油添加剂,可提高汽油的辛烷值。通常车用汽油的辛烷值一般要求为90、93或97,乙醇的辛烷值可达到111,所以向汽油中加入燃料乙醇可大大提高汽油的辛烷值,且乙醇对烷烃类汽油组分(烷基化油、轻石脑油)辛烷值调合效应好于烯烃类汽油组分(催化裂化汽油)和芳烃类汽油组分(催化重整汽油),添加乙醇还可以较为有效地提高汽油的抗爆性。

(3)减少矿物燃料的应用,以及对大气的污染。

乙醇的氧含量高达34.7%,乙醇可以按较甲基叔丁基醚(MTBE)更少的添加量加入汽油中。汽油中添加7.7%乙醇,氧含量达到2.7%;如添加10%乙醇,氧含量可以达到3.5%。所以加入乙醇可帮助汽油完全燃烧,以减少对大气的污染。使用燃料乙醇取代四乙基铅作为汽油添加剂,可消除空气中铅的污染;取代MTBE,可避免对地下水和空气的污染。另外,除了提高汽油的辛烷值和含氧量,使用乙醇汽油可以有效降低汽车尾气对环境的污染,降低碳氢化合物和氮的氧化物的排放量。

(4)可再生能源。

若采用雅津甜高粱、小麦、玉米、稻谷壳、薯类、甘蔗、糖蜜等生物质发酵生产乙醇,其燃烧所排放的CO2和作为原料的生物源生长所消耗的CO2,在数量上基本持平。这对减少大气污染及抑制温室效应意义重大。

三、燃料乙醇的生产工艺

目前,燃料乙醇的生产方法有合成法和生物法两种。由于近年来原油资源短缺及乙烯价格上升,所以合成法逐渐被生物法所取代。

生物法生产燃料乙醇大部分是以甘蔗、玉米、薯类和植物秸秆等农产品或农林废弃物为原料经酶解糖化发酵制造的,其生产工艺有酶解法、酸水解法及一步酶法等。其生产工艺与食用乙醇的生产工艺基本相同,有所不同的是需要增加浓缩脱水后处理工艺,使乙醇的含量达到99.5%以上。脱水后制成的燃料乙醇再加入少量的变性剂就成为变性燃料乙醇,与汽油按一定比例调和就成为车用乙醇汽油。合成法是用纤维素、半纤维素、木素及其它生物体有机物,经过热解合成气(H2,CO),化学或酶催化或微生物发酵而合成乙醇。

在某些方面,化学法好比西药,强烈、见效快,生物法好比中药,温和、见效慢。两种方法“各有千秋”,其制约因素是成本和高效、廉价催化剂、酶和合适微生物的开发等关键技术。生物法具有选择性、活性好、反应条件温和等优点,但原料利用率低、反应时间长、产物浓度低及酶、微生物活性易受影响且纤维素降解和单糖转化所需酶、微生物适用于不同反应条件,不能很好耦合。而化学法具有原料利用率高、反应时间短、催化剂构成简单、没有严格反应条件限制等优点,但为高温、高压过程,对设备要求高。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

四、燃料乙醇的经济效益

生物质直接燃烧热效率很低,只有10%左右,而将它们转化成气体或液体燃料(甲烷、氢气、乙醇、丁醇、柴油等)热效率可达30%以上,缓解了人类面临的资源、能源、环境等一系列问题。其次,乙醇燃烧值仅为汽油2/3,但分子中含氧,用作汽油添加剂抗暴性能好、低排放,可提高其辛烷值2―3倍,还能使汽车动力性能增加等。

据推算,平均每3.3吨玉米可生产1吨燃料乙醇,而且生产只是利用玉米种的淀粉,玉米种的其他部分仍可综合利用。如生产优质的药用添加剂、食品添加剂、专用饲料和农业复合肥等产品,由此可见燃料乙醇的生产成本比较低。巴西以甘蔗为原料生产燃料乙醇,成本价为每升0.2美元。美国以玉米为原料生产燃料乙醇,成本价为每升0.33美元。而且如谷物茎秆、稻草和木屑等废料也可用来生产燃料乙醇,这样就大大降低了燃料乙醇的生产成本。

除此之外,燃料乙醇还有一些明显的关联经济效应。一方面,燃料乙醇有巨大的环保效应,这可以大大降低城市处理空气污染的费用。另一方面,对于石化行业发展来说,燃料乙醇具有巨大的需求又是十分有利的。燃料乙醇的辛烷值是非常高的,可以提高油品质量和辛烷值。

五、燃料乙醇的发展前景和展望

燃料乙醇的生产正在由传统的粮食酿造向生物加工过渡,所以它的发展前景是十分广阔的。美国能源部资助用生物质废料生产燃料乙醇的技术开发,美国每年生产约2.8×108T的生物质废料。如谷物茎秆、稻草和木屑等,开发将生物质废料转化为乙醇是生物质制乙醇工业持续发展的关键,美国Novozymes公司和NREL合作研发了将生物质(如玉米秸秆)中的纤维素转化成葡萄糖,再发酵成燃料乙醇,这大大降低了燃料乙醇的生产成本。加拿大IOGEN公司与加拿大石油公司合作投产了世界上最大的,也是迄今唯一的用纤维素废料生产乙醇的装置,每年可将12000―15000T小麦等其他谷物茎秆转化为3×106―4×106T燃料乙醇。这也将燃料乙醇的生产成本价降到了1.1美元/加仑,预计未来可减少到90美分/加仑。

我国由天冠集团和山东大学联合攻关的纤维素酶科项目中试发酵试验表明,酶活力及生产成本达到国内领先水平。该项目利用酶解法生产纤维素乙醇,具有反应条件温和、环境污染小、装置简单等优点。采用当今流行的液体深层通风发酵培养,通过诱发育种和基因工程等方法,从提高酶活性降低生产成本着手,利用经济实用的秸秆类物质作原料,使酶的发酵水平显著提高,可望经过后续处理进行规模化生产。

燃料乙醇作为一种新型清洁燃料,是目前世界上可再生能源的发展重点,符合中国能源替代战略和可再生能源发展方向,技术上成熟安全可靠,在中国完全适用,具有较好的经济效益和社会效益,成为普通汽油与柴油的替代品。燃料乙醇作为推动农业产业化的战略产业,必须依靠科技进步。在吸收国外成果和经济的基础上,加强燃料乙醇生产新技术研究、开发和副产物深度加工研究工作。

近年来,石油等矿物质日渐枯竭,油价进一步上涨,使燃料乙醇发展更重要,而且使燃料乙醇的价格有一定的上升空间。随着石油等矿物质的枯竭与油价的大幅上升,以乙醇等能代替矿物质能源的新型能源供应多元化战略已成为国家能源政治的一个方向。

参考文献:

[1]刘全根.炼油设计.乙醇汽油的应用,2002.2.

[2]任波.乙醇汽油转折[J].财经,2007,178:100-102.

[3]雷国光.用纤维质原料生产燃料乙醇是我国再生能源发展的方向[J].四川食品与发酵,2007,43,(135):39-42.

[4]路宽行.乙醇燃料:打开新能源之门?[J].经济导报,2007,3013:30-31.

[5]贡长生,张龙.环境化学,2008,(1):222-228.

[6]郎晓娟,郑风田,崔海兴.中国燃料乙醇政策演变,2009.3.

[7]李志军.中国生物工程杂志.生物燃料乙醇发展现状、问题与政策建议,2008.7.

[8]张智先.粮食论坛.国内燃料乙醇加工业现状及发展趋势,2010,(11).

[9]秦凤华.燃料乙醇蒸蒸日上[J].中国投资,2007:38-41.

生物质燃料的前景范文第2篇

[关键词] 生物质 颗粒燃料 清洁燃烧

正文

1、概述

生物质颗粒燃料是在一定温度和压力作用下,利用木质素充当粘合剂,将松散的秸秆、树枝和木屑等农林生物质压缩成棒状、 块状或颗粒状等成型燃料。中质烟煤相当;基本实现 CO2零排放,NOx和 SO2的排放量远小于煤,颗粒物排放量降低;燃烧特性明显得到改善,利用效率显著提高。 因此,生物质固体成型燃料技术是实现生物质高效、 清洁利用的有效途径之一。 生物质固体成型燃料主要分为颗粒、块状和棒状 3 种形式,其中颗粒燃料具有流动性强、燃烧效率高等优点,因此得到人们的广泛关注。

随着我国的再生能源快速发展,生物质成型燃料技术及其清洁燃烧设备的研究开发提高了秸秆运输和贮存能力,燃烧特性明显得到了改善,可为农村居民提供炊事、取暖用能,具有原料来源广泛、价格低、操作简单等特点,是生物质能开发利用技术的主要发展方向之一。

自2006年1月1日我国颁布实施了再生能源法。使我国生物质能源发展走上了快速规范化的道路。生物质能在我国主要是以农作物秸秆为主体的资源。秸秆长期被作为农村传统的用能,随着我国农村经济的发展,农民,特别是新一代的农民难以接受传统的、直烧秸秆生活用能的落后方式。但又苦于缺乏先进廉价的使用。也只能花高价用液化气、电、型煤等现代能源。由于现代能源的紧张和价格的日趋上涨,长期花高价用现代能源,农民又难以承受。特别是城镇及城市接壤区域居民采暖,800-900元每吨的煤,一个冬天要用上1-2吨满足采暖需要,农民甘愿受冻也不愿花如此大的费用,而城镇及城市接壤区域居民采暖受到环境要求的严格限制。目前,居民冬季用煤采暖的已越来越少。从这一点看,在现代社会有相当多的农民没有得到,也很难得到良好的能源服务,他们的现代生活水平还较低。国家早就重视如此重要的民生问题,从20世纪90年代初中国农业部和科技部就开始投资进行农作物秸秆资源化利用的研究、开发、试点示范和技术推广工作。近几年,中国农作物秸秆的清洁、方便能源利用的技术研究和开发工作已取得了一些成果,有些技术已趋于成熟,并得到一定程度的推广。现在,中国主要的农作物秸秆能源利用技术有秸秆气化集中供气技术、秸秆压块成型及炭化技术、利用秸秆制取沼气技术和秸秆直接燃烧技术。由于中国农村经济的发展,农民及城镇居民生活水平的提高,居民对清洁能源的需求,加上这些秸秆能源利用技术的不断发展和逐步完善,秸秆能源利用将逐渐由传统的、低效不卫生的直接燃烧方式向优质化和高效化方向发展。

国外关于生物质成型燃料与燃烧技术设备的应用以趋于成熟化和普遍化,我国生物质成型燃料的发展还刚开始,与之相适应的燃烧技术设备处于一种滞后状态。目前一些成型燃料的应用,主要是在现有燃烧设备的基础上,直接应用或改造应用,既使河南省科学院研制具有较高水平的家用颗粒燃料炉灶,也存在着技术不到位的情况,难以产业化发展,没有做到商品化应用。

有些单位在取得了生物质颗粒燃料炊暖炉灶的基础上,立足于建立一个秸秆成型颗粒燃料与高效清洁燃烧设备系统技术产品的有机统一,协调发展的机制。在进行“生物质冷成型燃料加工设备系统”和生物质颗粒燃料炊暖炉灶的研制过程中,重点解决了目前百姓采暖困难问题,创造了“生物质颗粒燃料供热锅炉”的成果。采用了生物质颗粒燃料炊暖炉灶的核心技术,实现了生物质高效、清洁燃烧、节能排放的目标。应用广泛,可满足城镇及城市接壤区域居民采暖需求。

2、物质颗粒燃料成型和清洁燃烧技术及设备

2.1传统成型方法。

它与现有的饲料制粒方式相同,即原料从环模内部加入,经由压辊碾压挤出环模而成粒状。

包括原料烘干、压制、冷却、包装等。该工艺流程需要消耗大量能量,首先在颗粒压制成型过程中,压强达到50~100MPa,原料在高压下发生变形、升温,温度可达100℃~120℃,电动机的驱动需要消耗大量的电能;其次,原料的湿度要求在12%左右,湿度太高和太低都不能很好成粒,为了达到这个湿度,很多原料要烘干以后才能用于制粒;第三,压制出来的热颗粒(颗粒温度可达95℃~110℃)要冷却才能进行包装。后2项工艺消耗的能量在制粒全过程中占25%~35%,加之成型过程中对机器的磨损比较大,所以传统颗粒成型机的产品制造成本较高。

2.2冷成型技术。

新型冷成型技术通过颗粒成型机直接压制,把秸秆、木料残渣等转化成大小一致的生物颗粒,其燃烧效率超过80%以上(超过普通煤燃烧约60%的效率);燃烧效率高,产生的二氧化硫、氨氮化合物和灰尘少等优点。

2.3清洁燃烧设备

目前燃烧设备的理论研究和应用研究还较少,国内也引进一些以生物质颗粒为燃料的燃烧器, 但这些燃烧器的燃料适应范围很窄,只适用于木质颗粒,改燃秸秆类颗粒时易出现结渣、碱金属及氯腐蚀、设备内飞灰严重等问题,而且这些燃烧器结构复杂、能耗高、价格昂贵,不适合我国国情,因此没有得到大面积推广。

哈尔滨工业大学较早地进行了生物质燃料的流化床燃烧技术研究,并先后与无锡锅

炉厂、杭州锅炉厂合作开发了不同规模、不同炉型的生物质燃烧锅炉。 此外,河南农业大学研制出双层炉排生物质成型燃料锅炉,浙江大学研制出燃用生物质秸秆颗粒燃料的双胆反烧锅炉等。

3、发展前景分析

我国生物质能资源非常丰富,农作物秸秆资源量超过7.2亿吨,其中6.04亿吨可作能源使用。国家通过引进、消化、吸收国外先进技术,嫁接商品化、集约化、规模化的管理经验,结合中国国情,在农村推广实施秸秆综合利用技术,在节省不可再生资源、缓解电力供应紧张等方面都具有特别重要的意义。秸秆综合利用不但减少了秸秆焚烧对环境造成的危害、减少了温室气体和有害气体排放,而且对带动新农村建设无疑将起到重要的促进作用。从秸秆资源总量看,广大农村、乡镇的各种秸秆产量大、范围广。生物质固体燃料是继煤炭、石油、天然气之后的第四大能源,是可取代矿产能源的可再生资源,是未来一个重点发展方向。

参考文献

[1]刘延春,张英楠,刘明,等.生物质固化成型技术研究进展[J].世界林业研究,2008,21(4):41-47.

[2]赵迎芳,梁晓辉,徐桂转,等.生物质成型燃料热水锅炉的设计与试验研究[J].河南农业大学学报,2008,42(1):108-111.

生物质燃料的前景范文第3篇

【关键词】生物质;综合利用;稻壳

生物质是指有机物中除化石原料外的所有来源于动、植物能再生的物质,是一种理想的可再生的绿色资源,由于它的广泛性、可再生性、清洁性而受到人们的关注。燃烧后产生的CO2能被植物循环利用,CO2的净排放量为零,是典型的绿色可再生资源。

生物质种类繁多,主要包括农业废弃物、林业废弃物、动物油脂、制糖业和造纸业蔗渣等工业废弃物。稻壳是一种农业秸秆,大量的稻壳在农村或在粮米加工厂堆积如山,成了难以处理的废弃物。因此,下面对生物质的研究也是针对农作物废弃物稻壳为对象的。

稻壳是稻谷加工的主要副产品之一。我国每年拥有稻壳量在3.6亿吨以上,是一种量大价廉的再生资源。稻壳所含木质素和硅质较高,所以它不易吸水,直接施放到田间作肥料不易腐烂。正是因为稻壳本身具有这一特性,所以限制了对它的开发利用。

本文主要从稻壳的各个组成部分分析其用途,使其变废为宝,造福于社会。

1 稻壳的物理和化学性质

稻壳表面粗糙、有细小毛刺、呈空心梭形状,长度一般在5 mm左右, 宽约2.5mm~5mm,,厚不到0.5mm。

稻壳富含半纤维素、纤维素、木质素、二氧化硅,其中脂肪、蛋白质等含量极低。

2 稻壳的应用

稻壳的气化与应用

(1)发酵成沼气:稻壳在农村的产量非常大,人们将稻壳堆放成山,大量的稻壳聚集在一起,经过日晒、雨淋后,堆砌的稻壳内部温度上升,微生物迅速生长,在无氧的环境下进行发酵,而发酵的主要气体就是甲烷,即沼气。而沼气的用途很多,如发电、供热等。据资料报道,目前我国广东省能源研究所在海南开发建成了1.2MW植物生物质能气化示范发电站,该电站是我国乃至整个亚洲最大的植物生物质能气化发电系统,其综合技术参数及整个系统的运转水平均达到了国际先进水平。从经济意义分析,该示范电站的建成,每年可增加产值(人民币)约500万元,具有明显的经济效益。

(2)稻壳直接燃烧发电:进入稻壳煤气发生炉的空气预热后与氧化层稻壳接触燃烧,产生大量的热能和CO2,CO2气体在还原层与赤红的稻壳反应生成CO,同时CO与水蒸气反应分解出H2,在还原层中形成煤气。这种利用稻壳产生的煤气经过净化后进入燃气内燃机燃烧,产生的巨大热能动力带动发电机进行发电。虽然以农业废弃物做燃料的发电厂,其投资比一般发电厂高,但发电成本低廉、燃料获取容易,有助于解决发展中国家电力紧张的情况。例如广东省建成了生物质能气化发电站;山东省推行“惠农九九气化炉”,利用稻壳转化为为天然气来为人们提供服务。

3 稻壳直接作为燃料

当今,能源的来源主要是矿物燃料,而矿物燃料资源是有限的。21世纪,生物质作为一种清洁燃料及可再生能源己受到各国的高度重视。稻壳燃烧热值为12600~16800KJ/kg,每3kg的稻壳所产生的热量相当于1kg的燃料油或1.5kg的煤所产生的热量,我们可以利用稻壳燃烧所产生的热能来发电、供热。稻壳的堆积密度小,一般为100~140 kg/m3,如果通过压缩成型制成燃料棒(块),则能降低运输及贮存成本,方便使用,且大大地提高其燃烧效率。

4 饲料工业

稻壳所含营养物质很少,易受农药残毒污染,不宜直接作为饲料。但如果经过加工处理,使纤维软化或酵解,就可制成粗饲料。甚至还要进行进一步加工处理,将其膨化处理。作为饲料效果较理想。

即使是粉碎后的稻壳粉直接喂饲畜禽,也不易消化吸收,但膨化后的稻壳按10%的比例添加到配合饲料中,畜禽消化率明显提高,总消化率可达17%~20%,综合指标提高1倍以上。据日本饲料专家介绍,膨化后的稻壳按10%的比例添加到配合饲料中,奶牛产奶量可提高11%;猪日增重提高14%;鸡产蛋率提高4.6%。

5 在建材方面的应用

5.1 制水泥

稻壳煅烧后灰分中的二氧化硅与石灰化学反应便可生成黑色稻壳灰水泥。如印度采用稻壳灰制作高标号水泥;韩国利用稻壳燃烧时形成活性高的黑色炭粉后,与石灰化学反应,便可生成黑色稻壳灰水泥,具有防潮、不结块的特性。

5.2 制砖

稻壳内含20%左右优良的无定型硅石,是制砖的好原料。日本将稻壳类与水泥、树脂混合均匀后、再经过快速模压制成砖块,具有防火、防水及隔热性能,其质量轻,且不易破碎的特性。

5.3 制防水材料

印度是多雨水的国家,一科研所把稻壳灰配入沥青铺于屋顶防渗漏获得成功,新材料可耐80℃高温,防水性能优异,有效使用寿命20年以上,现已批量生产。印度某科研所把稻壳灰配入沥青铺于屋顶防渗漏获得成功。

6 在农业中的应用

6.1 无土育苗

浸透的稻壳可做苗床使用。在苗床播种后用粉碎的稻壳覆盖,即可实现无土育苗,且无需封闭灭草。即使用筛过土覆盖,也可达到节土育苗的效果。

6.2 土壤改良剂

稻壳灰是稻壳经过炭化以后的产物,利用膨化后的稻壳灰容易吸水的特点,掺入少量尿素或碳氨;再加入石灰水作催化剂,使其自然发酵30天左右;待颜色变黑后,施撒到地里作为固体有机肥料使用,具有化肥不可比拟的改良土壤、肥田增产的功效。稻壳灰是一种很好的土壤改良剂,可保持土壤的疏松性和透气性。

7 结论

综上所述,稻壳的综合利用的前景广阔,在能源、工业、建材、农业等方面经济效益十分显著。利用廉价的稻壳为原料,经过一系列的加工和特殊的工艺处理,可制备多种附加产品。稻壳的综合利用可以回收资源和能源,创造经济效益,符合国家节能减排和可持续发展的基本国策。

生物质资源种类繁多,范围较广,本文选择我国丰富的农业秸秆稻壳为例,对其利用现状进行简要介绍,从一个侧面论证了生物质资源的优势与光明前景,随着科学技术的不断发展与提高,相信生物质资源将会发挥更加重要的作用,对工业、农业、能源安全等众多方面产生重要的影响。

参考文献:

[1]吕鹏梅,常杰,熊祖鸿等.生物质在流化床中的空气-水蒸气气化研究[J].燃料化学学报,2003(4).

[2]王智微,唐松涛,苏学等.流化床中生物质热解气化的模型研究[J].燃料化学学报,2002(4).

生物质燃料的前景范文第4篇

寻找新型能源形式是永恒话题

光合作用,为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。据估计,地球上的绿色植物每年大约制造五千亿吨有机物,远远超过了地球上每年工业产品的总产量。所以,人们把地球上的绿色植物比作庞大的“绿色工厂”。不仅如此,煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的。因此,光合作用对于人类乃至整个生物界都具有非常重要的意义。

然而,诺贝尔化学奖得主哈特穆特·米歇尔却指出,植物光合作用仅有不到1%的太阳能会储存在生物质当中。如果我们完全依赖植物光合作用来生产能源作物,地球上的森林很快就会消失。

米歇尔提出:千万不要依赖光合作用作为能源生产的唯一途径。这揭示了未来能源发展的趋势:寻找新型能源形式将是社会实现可持续发展过程中的永恒话题。

新型能源- - - 浮游植物、转基因藻类

浮游生物,即在海洋、湖泊及河川等水域中,那些自身完全没有移动能力,或者有也非常弱,因而不能逆水流而动,而是浮在水面生活一类生物的总称。

浮游植物每年通过光合作用可制造高达360亿吨的氧气,占地球大气氧含量的70%以上,在进行光合作用的同时产生大量的能量储存在其体内。浮游植物中的藻类,其数量又占浮游植物数量的60%以上,其生产力占全球总生产力的45%以上,占地球上自养生物年蓄积碳元素量的40%。

无论是从储存能量,还是产生氧气、清除二氧化碳的能力来看,藻类等浮游植物可算是一大型光转化与储存工厂。

在大湖泊和海洋中,光合作用几乎都在真光层内进行。据科学家计算,整个海洋具有光合作用的浮游生物,每年通过光合成的总碳素量估计可达200亿甚至250亿吨。如果利用基因工程技术对能够进行光合作用的浮游生物,包括微生物,进行适当的基因工程改造,就能够使得这些生物的有机物合成效率进一步提高,并且能够选择性地为人类合成我们所需要的有机物。

要想实现充分利用浮游生物开发新能源的目的,需要建造新型的浮游生物养殖场,建造全方位透明的饲养池以增加单位面积的光照强度和光合作用的效率。

藻类生物具有光合效率高、生长周期短、速度快、数量庞大等特点,并有其自身独特的结构特点- - -结构中有一多半是油脂。以这一系列特点为基础,针对其潜在的利用价值,美国制定了1978-1996年间完成国家可再生能源实验室《水生物种计划- - -藻类生物柴油》计划以及2007年微型曼哈顿计划- - -藻类生物原油研究;与此同时于2009了《藻类生物燃料技术路线图》。

微藻制油的原理是利用微藻的光合作用,将化工生产过程中产生的二氧化碳转化为微藻自身的物质从而固定碳元素,再通过诱导反应使微藻自身的碳物质转化为油脂,然后利用物理或化学方法把微藻细胞内的油脂转化到细胞外,再进行提炼加工,从而产出生物柴油。

值得注意的是,特殊品系微藻类的产油能力可达油脂作物的数倍。藻类生物燃料采用燃烧产热的方式利用生物质能源,将微藻类的生物质干燥后,像高等植物木材般燃烧产能,此举也大大提高了藻类生物的利用率。

藻类产油日益受到人们的高度重视,但这一新型能源的开发依然存在问题,如大部分藻类的产油量不超过自身重量的10%。为寻找产油量高的藻类,目前美国的多个科技公司和实验室正在加紧进行转基因超级藻类的研发。现有公司已经测出了藻类的基因序列,拟通过添加和操纵基因造出高油产量的藻类系列,以期藻类的产油量超过自重的40%。

转基因藻类目标是“驯化藻类,把它变成一种作物”,从而生产出藻类生物原油、藻类生物汽油、藻类天然气、藻类氢气等产品,增加自然界光合利用率,缓解能源紧缺问题。在石油价格大幅上升、粮食短缺问题日渐突出的今天,该产业有着广阔的发展前景。

新型能源- - - 微生物发酵

随着科学技术的进步,微生物在新能源开发应用领域有着光明的前景。

如微生物与生物柴油。微生物油脂是酵母、霉菌、细菌、藻类等微生物在一定条件下,以碳水化合物、碳氢化合物和普通油脂作为碳源,在菌体内产生的大量油脂,将之规模化生产即可得到生物柴油。此方法污染少、成本低、工艺较为简便,同时充分利用了玉米秸秆等废弃物制造绿色能源。通过技术手段突变从而产生高产油菌株,使得生物柴油的生产回报更加丰厚。

再比如,微生物制氢。氢能源具有清洁无污染、能量密度高等特点,被认为是未来经济发展的理想绿色能源之一。生物制氢因其具有低能耗、低成本、无污染和可再生性等优势,一直是国际研究的热点。光合细菌可以使有机物分解产生氢气,且产氢的能量转化率及氢气的纯度均较高。其中,研究较多的是深红红螺菌。它能够以有机废料为原料进行光合产氢。据报道,只要在合适的底物和环境条件下,光合细菌就能进行光照放氢的代谢反应,生产出绿色清洁的能源。

还比如,微生物与燃料酒精。在微生物作用下,将糖类、谷物淀粉和纤维素等物质通过乙醇发酵生产出燃料级乙醇,从而替代石油作为新型燃料,这是微生物在能源领域的又一应用。该技术具有低污染、低成本、燃烧完全等特点,是当前许多国家应对能源危机的举措之一。

微生物与沼气运用也是值得关注的技术。沼气发酵又称为厌氧消化或厌氧发酵,是指有机物质如人畜家禽粪便、秸秆、杂草等,在一定的水分、温度和厌氧条件下,通过各类微生物的分解代谢,最终形成甲烷和二氧化碳等可燃性混合气体- - -沼气的过程。该技术的研发与应用,不仅有助于减少目前对矿物燃料的依赖,而且在工业、农业、环境改善等诸多方面都有积极作用。

重要的是,微生物能源是利用纯天然微生物自身发酵产生的能源,其自身燃烧产生的气体对地球环境的影响将比传统能源少很多,且赖于其巨大的数量及快速的繁衍速度,人们不用担心它会迅速枯竭。这些特点预示着这一能源形式将在未来人类发展中具有广阔前景。

清洁能源- - - 生物能

清洁能源是指在生产和使用过程中不产生有害物质,或可再生、消耗后可得到恢复,或非再生(如风能、水能、天然气等)及经洁净技术处理过的能源(如洁净煤油等)。其中,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用。

生物能具有许多优点,如提供低硫燃料,在某些条件下提供廉价能源,将有机物转化成燃料从而减少对环境的公害,且与其他非传统性能源相比较,生物能技术上的难题较少。

生物质燃料的前景范文第5篇

速生竹柳造林的最佳土地条件是低洼湿滩地,这些土地不能种植庄稼,只能短期养殖,属于低效益的荒废湿滩地,我国大约有3000万公顷这样的荒滩湿地,这些低洼地大多数都位于江河湖泊的边缘地带,因此在这些地方种植速生竹柳具有变废为宝、生产能源等多种优势。

一、竹柳造林的直接经济效益:

第一,竹柳造林可以高效开发利用低洼湿滩地,从而产生非常可观的经济效益,据统计,1000亩的烂泥湖地竹柳造林6年的产值可达到6000万至1个亿。第二,竹柳连片造林短期不砍伐在800亩以上可以申请国际环保组织的减碳基金,因为大面积造林可以保护我们赖以生存的地球环境,同时又可减缓当前越来越严重的能源危机。第三,竹柳造林还起到涵养水源保护湿地的作用,同时又能够固岸护堤,起到经济效益和环保效益的双赢。第四,竹柳造林是生物法改造盐碱地较好的树种,在我国目前还存有大量的盐碱地需要改造。栽种速生竹柳可以把盐碱地改造成优良的再生国土资源。第五,竹柳造林是治理城市周边环境污染的有效方法。竹柳可以“吸毒解毒”净化水体,吸收水中污泥中的污染源磷素、硝态氮等、特别是有毒重金属污染元素。第六,竹柳是良好的园林行道树,因为它没有柳絮,同时可利用速生嫁接其它彩叶柳,如红杆火焰柳、金黄金丝垂柳、红叶柳等产生和好的园林效果。

二、竹柳造林与生物质能源:

当前,世界经济的快速发展引发了世界范围内的能源危机,克服能源危机的出路何在?大力发展可再生能源,逐步替代化石能源。据预测,到2020年,在全球可再生能源中生物质能的比重接近60%,而生物质颗粒燃料则占生物质能利用的60%。

所谓生物质能源也就是利用生物体,通过光合作用把吸收的太阳能转化为常规燃料能源。有机物中所有来源于动植物的能源物质均属于生物质能,是一种取之不尽、用之不竭,可再生能源。

林业能源林是优质生物质能源,柳树是林业能源林的主要树种,“高峰竹柳”则是多基因组合杂交的柳树新品种,具有速生、高产、抗逆等优点。作为能源树种每亩可密植1至2万株,每亩每年生物产量鲜重可达15至20吨,是普通柳树的十倍。在国外柳树生物质转化为能源的主要途径是发电,柳树生物质具有较高的燃烧值,发达国家用柳树生物质发电已经有20 年以上的历史。将柳树粉碎后制作成生物质能源颗粒和煤炭混合发电,可以大大提高热效率,降低污染50%以上。

生物质颗粒燃料是最具大规模产业化开发前景的新型生物质能源,用途主要包括三个方面:一是取暖和生活用能,生物质燃料利用率高,便于贮存,无污染。二是生物质工业锅炉:作为工业锅炉的主要燃料,替代燃煤,解决环境污染。三是发电,可作为火力发电的燃料。据统计,2008年全球生物质颗粒燃料销售量达1.8亿吨,市场规模超过500亿欧元。在全球经济放缓的背景下,生物质颗粒燃料产业以年均18%的速度高速成长,已经成为全球新能源市场中的“香饽饽”。

竹柳是生产生物质颗粒燃料最好的原料。生物质颗粒需求之大,竹柳作为原料种植前景更为广阔。

生物质颗粒燃料的发展在我国处于起步阶段,但透过国外的发展我们可以看到,“高峰竹柳”将在生物质能源中发挥重要作用。高发老人发起的1000万亩竹柳大造林,将可年产生物质颗粒3.25亿吨,相当年发电量为9000亿KWH以上。

三、高峰竹柳是最好的纸浆来源:

随着现代经济的快速发展,我国已成为世界上仅次于美国的第二大纸品消费国,各类纸和纸制品消费量占世界消费总量的14%;同时我国又是森林资源匮乏的国家。在各大纸浆生产国中,中国的净进口量最大,但仍有很大的市场缺口,大量造纸原料需要进口。

要解决纸浆用材需要日益增长与森林资源匮乏日显突出的矛盾,缓解国际进口纸浆价格暴涨的压力。建立纸浆原料林基地,逐步减少对国外进口资源的依赖,显得非常迫切。营造速生丰产纸浆林“高峰竹柳”是最好的树种之一。

中国制浆造纸研究院进行了“竹柳材性纤维质量及制浆性能的研究”,检测分析结果表明:高峰竹柳材质色浅且密度适中,木粉自然白度比杨树高,竹柳木材的纤维质量较好纤维长宽适中且柔软。符合制浆工业对木材要求。根据竹柳木材密度和材质白度分析,该原料适宜做高得率化学机械浆。竹柳可以作为纸浆材合理地种植并开发利用。

除此之外“高峰竹柳”还具有如下特性:一是高峰竹柳可以高密度栽植,如果作为纸浆林种植,每亩可栽种2000至5000株;二是二生长快,每亩种植667到335棵,肥水管理跟上,四至六年平均胸径可达20公分以上,高度达20米以上,单株竹柳的材积达0.4立方米,是速生杨的1倍。作为纸浆林种植,2至3年砍伐经济划算产量高;三是抗性强:竹柳最佳立地条件是低洼湿滩地,我国有3000多万公顷的低洼湿滩地荒废着,既不能种植又不能养殖。这些地方种植竹柳将会出现高效烂泥经济的奇迹。高峰竹柳研究院正在素有千湖之称的湖北进行“高峰竹柳”高效烂泥经济栽培模式的研究。这些地方也常常是季节性淹水的区域,但高峰竹柳经水淹2至3个月仍然正常生长。

总之大面积种植速生竹柳是一件利国利民的善举,其综合效应在诸多方面都得到了充分体现。竹柳的深加工产业将深远地影响着国民经济的发展,并与人民生活息息相关。

中国高峰竹柳产业集团有限公司

地址:北京市朝阳区亚运村凯旋城1号楼2栋1403室

电话:010-59273183 15855582853

香港公司地址 :香港九龙尖沙咀厚福街3号华博大厦18楼1806室

电话:0852-23682122 33673126

安徽阜阳公司地址:阜阳市经济开发区申寨社区政务大楼1-3楼

电话:0558-2220627 2226697

400-088-2853

15855582853 15955852853