前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇能源及动力工程专业范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:独立学院;应用型本科;双基制;能力
一、绪论
人才培养层次的正确定位关系到学校的发展方向、发展目标及发展格局,是学校开展各项工作的基本依据。在构建人才培养模式时,独立学院必须以正确的办学指导思想、正确的定位为前提,要通过科学的分析社会需求,正确估价自身的办学实力,主动适应外界环境来实现自身的正确定位,优化教学资源分配,制订正确的发展目标及合理的人才培养模式,通过校企联合,可以共享高校和企业的资源,解决毕业生难以适应社会、毕业生就业去向等问题。校企联合实质就是产学合作,工学结合。产学合作、工学结合教育是一种由学校、社会用人单位、学生三方合作共同参与的适应现代社会需求的高等教育模式,是培养具有创新能力和实践动手能力,面向生产、建设、管理、服务第一线的高级应用技术型人才的有效途径。通过产学合作、工学结合的应用技术型人才实践动手能力培养的改革与实践,形成独立学院本科应用型人才的培养特色。所谓“双基制”就是把学校和企业都作为培养基地,每个基地有明确的教学任务,但两个基地的培养内容与过程交叉融合,逐步形成和完善校企双向推动,双向管理,产学研密切合作的管理运行机制,实现学校、企业、学生、社会“四赢”的深层次合作。
二、产学研相结合,以能力培养为重心的教学体系构建
要培养出工程应用型的高素质人才,设计出切合实际,便于操作的培养方案就成为实现培养目标、企业规格的关键。而构建逻辑性强,相对完整的培养体系则是人才培养方案设计工作的重中之重。学院与企业联合成立教学指导委员会,共同设计培养方案。机械类应用型人才培养方案中由三个相互联系的体系构成,如图所示。
(1)理论教学体系,包括公共基础、人文社科基础、专业基础和专业方向等课程;(2)实践教学体系,包括课程实验、课程设计、综合实践、实习和毕业设计等;(3)能力教学体系,包括课外科技创新活动,各种竞赛活动,技能考证,各种协会活动、公益活动和社团活动等。
三、校企深度合作,培养学生实践能力
在实践教学过程中,学院邀请企业或行业的高层管理人员、技术人员作为指导教师,这些人员和学院专业教师充分交流,根据企业或行业对机械工程及自动化专业应用型本科人才能力的要求,将实验、实训、生产现场实践、课程设计、毕业实习、毕业设计等环节统筹安排。学院和企业整合实践场地和实验实训设备,按照应用型本科实践能力要求,打破实验室以课程设置实验的传统方式和辅助理论的验证性实验为主的教学模式,机械工程及自动化专业中以模具设计与制造、数控技术应用能力培养为主线,覆盖模具设计、数控加工等生产流程,组建实验实训中心、模具CAD/CAM实验室、现代制造技术实验室、数字化中心等实验室(中心),按照机械专业工程训练的认知规律,学生通过实验、实训、金工实习,在了解机械制造工艺过程和掌握一定的机械工程基础知识后,再通过模具设计、模具制造、数控加工等全方位、全过程的综合性训练,提高学生的实践能力。目前学院已与广西柳工集团、柳州腾龙汽配公司、深圳德立天公司、东莞龙兴公司等大中型企业建立紧密合作的校外合作教学科研实习基地,在机械工程及自动化专业社会需求、专业结构和专业建设等方面通过校企深度合作,为实现“双基制”应用型人才培养打下了坚实的基础。
四、结束语
根据企业和行业对机械工程与自动化专业学生能力的具体要求,立足于学校和企业两个培养基地,企业或行业高层管理人员和技术人员、学院专业教师身份的积极参与,把单纯的“授业型”继承性教育转向全方位的“育才型”创造性教育,实行校企深度合作,学院、企业和学生三方参与,培养学生的全面素质、工程意识、综合能力和就业竞争力。
参考文献:
[1]史玉环,高等学校创新人才培养与路径选择[J].山东师范大学,2008.(4).
[2]教育部.关于进一步深化本科教学改革全面提高教学质量的若干意见[Z].(教高[2007]2号)
[3]顾月华,李政道.关于杰出科学人才培养的思想研究[J].江苏高教,2010,(6).
[4]万坚.“化学生物学”复合型人才培养模式与课程体系改革的研究与实践[J].大学教学研究,2009,(11).
[5]桑玉军,应用型本科院校关于“大工程”理念的创新与实践[J].高等教育研究,2009,(3).
能源与动力工程专业前身为热能与动力工程专业,服务于能源动力产业。
本专业涉及的学科及产业方向以热能转换与利用系统为主的热能动力工程及控制方向、以内燃机及其驱动系统为主的热力发动机方向、以电能转换为机械功为主的流体机械与制冷低温工程方向、以及新能源应用技术方向等。
本专业着重培养培养基础扎实、知识面宽、实践能力强、综合素质高、具有创新精神,面向能源、动力工程等领域,能够在常规能源转换与利用、动力装置、制冷与空调、新能源开发等领域从事系统设计、应用开发、运行管理等技术工作的应用型
(来源:文章屋网 )
关键词:热能与动力工程 锅炉 应用与创新
中图分类号:TK22 文献标识码:A 文章编号:1674-098X(2015)10(c)-0079-02
目前,我国锅炉种类比较多,且在锅炉的生产制造和能源分配上也存在着相当多的问题[1]。因此我们目前的任务是深入探讨并研究热能与动力工程,制定锅炉设计的合理方案,从而使锅炉的利用率得到更好提高,进一步促进锅炉业的发展,这样才能实现未来热能与动力工程技术在锅炉专业中的创新[2]。下面该文从热能与动力工程在锅炉中的应用角度展开论述,同时深入分析并探讨了其在科技创新方面的有关问题及今后的发展趋势。
1 简介热能与动力工程在锅炉中的应用
1.1 热能与动力工程在工程中的概述
简单来说,热能与动力工程我们从字面上就可以看出主要研究的是热能与动力两者之间的能量关系,即热能有时转化为动能,动能有时再转化为热能,但在一些情况下,也可通过蒸汽等技术将热能转化为电能,进而促进电力行业发展。作为一门综合性学科,热能与动力工程涵盖了热力发动机、流体工程及流体机械等内容,另外,与热能工程相关的因素也相对较多,主要包括热能工程、热力发动机、流体工程及流体机械、动力机械与热能工程、能源工程、制冷与低温技术、冷冻冷藏工程、水利电力工程及工程物理等方面,而能够综合体现热能与动力工程相关研究内容的是锅炉业,在锅炉制造设计的方案中,很多方面均与热能和动力工程的研究内容相关,而且还具有一定程度的系统综合性[3]。虽然热能与动力工程是锅炉中的重点研究对象,但对其他多种相关领域的研究也不能忽视,如工程物理、能源工程、机械工程等,而在所有的研究内容中,热能与机械能之间的能源转化占有相当大的比重。纵观我国热能与动力学的发展过程及其未来发展方向,可以得出其具有多面性的特点,而主要发展方向是电厂热能工程。
近年来,随着科技水平的不断发展提高,极大的带动了热能与动力工程的发展进步,使其逐渐趋于自动化,然而我国在物理工程方面的人才相对比较匮乏,无法满足现在的市场需求,因此未来还需特别重视对该类人才的培养,除此之外,还需要进一步提高锅炉热能转换及空调制冷等方面的能源利用率,从而保证热能动力工程的顺利发展,只有解决了能源使用问题,才能够使热能与动力工程在生产中的重要作用得到充分发挥,进而保障我国经济的顺利发展,因此,对热能与动力工程进行深入研究具有相当重要的意义。
1.2 锅炉构造及动力的应用原理分析
锅炉的燃气控制、锅炉的外壳及锅炉的生产配套部分共同构成了锅炉,而燃气锅炉外壳还包括底壳和面壳两方面,每个部分都发挥着不同的作用,其中底壳主要负责锅炉燃烧,也是锅炉燃烧的关键环节,因底壳上有电控盒和热交换器等部件,锅炉通过底壳与其他部分更好的进行连接,从而形成一个完整的结构。而面壳的作用主要是防止灰尘等杂物进入锅炉,更好的保护锅炉,进而使其使用寿命得到延长[4]。除此之外,锅炉的核心部件电气控制也在锅炉的运行中发挥着关键作用,其主要任务是保障锅炉各项工作和锅炉燃烧的正常运转。近年来,随着科技水平的不断进步,使锅炉行业得到较快发展,目前锅炉业均已实现自动化控制,这样就能很好的控制锅炉的热平衡及锅炉的燃烧,从而使锅炉的燃烧效率得到提高,保证热能的利用率,从而有效地减少能源浪费。
1.3 热能与动力工程在锅炉中的应用
能量转换调节在锅炉燃烧控制中是相当必要的,随着时代的不断发展,锅炉的类型也发生了相当大的变化,并且实现了智能填料,不仅节省了劳动力,还使锅炉燃烧得到更好的控制。锅炉在人类工业发展进程中发挥了重要作用,从某种角度讲,工业炉的前身就是锅炉,是工业革命进程中不可或缺的重要力量。锅炉主要是通过燃烧能源产生大量热能,从而实现能源的有效转化,不仅为进一步发展工业文明提供保障,也为提高人类生产力作好基础铺垫。
2 热能与动力工程在锅炉生产中存在的问题分析
在锅炉生产中,锅炉的风机是不可或缺的关键组成部分,其主要承担着将电能向动能转变的作用,在实际生产过程中,保证将气体顺利地输送到锅炉内部。因此,我们不仅要调机的运行状态,还要将热能与动力工程技术正确合理的应用到锅炉的制造改进中,不过,需要特别注意的是锅炉内部叶轮机械的结构相当复杂,外界一些不确定因素很容易影响测量的相关温度变化值,造成了测量中的不可靠性。针对这种情况,目前我国还未研究出有效的解决对策,但是从多种方向将热能与动力工程已开发的相关软件有效测定风机叶片燃烧的速度,并且还可对所测数值进行相关模拟,从而获得较为准确的软件模拟结果,为风机叶片的使用寿命作出准确评估,从而使锅炉燃烧得到更好的控制,降低其生产运行中的使用风险。
3 热能与动力工程在锅炉运行中的科技创新
3.1 锅炉燃烧控制技术的创新
如何有效地调节能量转换是锅炉燃烧控制中的重要部分。早期工业生产中,我国的锅炉填充燃料绝大多数是采取人工添加的方式,从而保障锅炉相关工作的正常稳定运转。不过,随着科学技术的发展,绝大部分企业已从人工填料方式向步进式的自动化转变,而连续控制系统是主要的锅炉燃烧方式,其主要由各种气体的分析装置及燃烧的控制器等部分构成,通过热电偶的有效检测来设定合理数值,再利用计算机准确计算出所测数值偏差,从而保证输出结果的准确性,与此同时,还能够有效且合理的对锅炉燃烧进行控制。
3.2 锅炉风机的仿真类翼型叶片
由于锅炉内部的风机结构复杂、运行精密,因此给实际测量带来一定的困难。目前我国尚未有科学且完整的体系来完善锅炉的叶轮制造及运行发展。如果想要获取准确有效的数值,就应通过实验模拟的方法对机械内部的气体流动进行有效评估,模拟空气以不同方式出入风机时的相关流动分离。最后,再利用计算机对这些数值进行模拟设定,采用模拟实验方法的主要目的是分析在不同速度情况下所得到的矢量图,将多组数据进行比较后,确定出锅炉风机翼型边界层分离及攻角之间的关系,从而进行深一步的研究。
综上所述,随着经济的发展,热能与动力工程在实际生产生活及锅炉发展中均越来越发挥着重要作用,是保证我国经济发展的基础,也是工业水平提高的一个重要标志。因此,不管现在还是未来,对热能与动力学的研究都是不可缺少的,从而使其在锅炉的正常稳定运转及能源生产中更好的发挥作用,为我国经济的可持续发展及能源利用率提供坚实的保障。
参考文献
[1] 武伟佳.浅析热能与动力工程的应用[J].科技创新与应用,2014(25):148.
[2] 田青.热能与动力工程在锅炉领域的应用探究[J].科技创新与应用,2014(19):21.
1.1构建符合新能源(太阳能)行业应用型人才培养的课程体系我校能源与动力工程专业设有制冷与空调技术、制冷测试技术与自动化、太阳能利用三个专业方向。理论课程体系采用模块化设置,分为公共基础课模块、专业基础课模块、专业课模块和专业选修课模块。前三个模块构成了能源与动力工程专业的基础知识体系,为学生继续深造和进行能源动力方面的研究应用奠定了理论基础。专业选修课模块根据2014年3月德州及其周边地区对新能源类特别是太阳能应用方向的人才需求设置了相关课程[2]。结合行业企业用人对毕业生实践能力的要求,实践环节穿插于整个教学过程,着重培养学生实践动手能力。前三年,学生的实践环节主要有包括认识实习、金工实习、制图测绘在内的基本技能训练,以及把课堂教学和工程实践相结合的课内实验、课程设计等专项技能训练。学生在掌握了扎实宽厚的能源与动力工程专业基础知识后,第四年有计划地到校外实习基地进行为期一年的实习,包括专业方向实习和毕业设计、毕业实习,以提高学生综合运用所学知识分析和解决工程实际问题的能力。2012年,能源与动力工程专业获批国家级“专业综合改革试点”项目,聘请中科院物理所孟庆波为教授,聘山东大学可再生能源研究中心主任韩吉田教授、天津大学“中低温热能高效利用”教育部重点实验室负责人赵军教授、国家太阳能热利用研发中心主任赵玉磊为专业建设专家委员会成员,完成了德州学院能源与动力工程专业专业规范的撰写、培养方案的修订、基础课和专业基础课课程规范的撰写工作。同时,德州学院机电工程学院与中国太阳能产业联盟联合成立能源与动力工程(太阳能热利用方向)专业卓越工程师试点班,2012年9月首届招生50人,2013级招生正在进行中。鉴于太阳能专业高校教材紧缺的现状,机电工程学院编写了7本太阳能系列高校教材,其中孙如军教授编写的《太阳能热水系统施工管理》(清华大学出版社)已于2012年11月出版,其余几本已经完稿,等待出版。
1.2培养适应新能源(太阳能)行业应用型人才培养的师资队伍能源与动力工程专业现有专职教师19人,其中教授3人,副教授12人,具有博士学位教师2人,均拥有丰富的教学经验和实践经验,是一支年龄、职称、学历结构合理、发展趋势良好的师资队伍。近三年来,专业教师共近120篇,其中在核心期刊发表20余篇,在外文期刊15篇,被SCI收录9篇;承担或参与国家、省科技厅、市科技局项目20余项,院级科研课题30余项,承担国家教研立项课题5项,出版专著2部,参编教材28部,获得实用新型专利20余项。
1.3能源类创新性、应用型人才培养成效显著学生实践创新能力强。近几年在大学生科技文化创新大赛中,能源与动力工程专业学生在全国大学生节能减排课外科技作品竞赛、全国大学生数学建模竞赛、全国三维数字化创新设计大赛、全国大学生电子设计竞赛、全国大学生电子商务“创新、创意及创业”挑战赛、全国大学生计算机仿真竞赛、大学生物联网创新创业大赛、山东省机电产品创新设计竞赛等各类国家级和省级比赛中都获得了优异成绩,获得国家级奖励20余项,省部级以上奖励200余项,教师指导学生在公开发行的杂志上发表学术论文10余篇,获得实用型新专利20余项,获奖层次和数量均居全国同类院校和省属高校前列。特别值得一提的是在教育部主办的全国大学生节能减排社会实践与科技竞赛中,参赛作品《太阳能电动车》、《太阳能服饰》、《绿色压力环保鞋》、《自切换高效太阳能干燥装置》连续四届分获国家级一等奖,尤其是在2011年8月的竞赛中,学生的参赛作品《害虫自杀式太阳能灭虫器》,在全国182所参赛高校中,荣获国家特等奖,现场总决赛全国成绩排名第一,同时我校荣获优秀组织奖。学生就业率高。能源与动力工程专业2006年开始招收本科生以来,一次性就业率在95%以上,主要就业行业为省内制冷、空调、汽车、太阳能等行业,许多同学现已成为企业设计主管或现场主管。到目前为止,与皇明太阳能集团联合培养的太阳能专业的学生中已有160名进入了相应的岗位,得到了企业的一致好评。
1.4构建协同创新的新能源(太阳能)行业应用型人才培养校企合作模式2007年至今,德州学院机电工程学院先后在国家太阳能热利用工程技术研究中心、皇明太阳能集团有限公司等建立实习实践基地5个;2006年12月,机电工程学院与山东奇威特人工环境有限公司投入了30万元,校企合作共建了“太阳能中央空调实验室”。2007年3月与皇明太阳能股份有限公司合作共建,成立了“太阳能热利用工程技术实验中心”,面向全校相关专业师生、皇明太阳能股份有限公司及地方新能源企业开放。该专业分阶段安排学生到各公司进行见习和实习,并聘请高级工程师进行专业知识和专业技能的讲座和兼课,带来了大量的课程设计、毕业设计以及科研课题,并进行卓有成效的指导,开阔了学生视野,实现了理论到实践的结合,让学生了解和掌握本学科的发展动态和社会需求状况,为今后走向社会奠定了基础。自2007年与皇明联合办学以来,相继已经开设了五届“太阳能班”,实验室教学配置都相应固定且配备齐全。所用教材都是德州学院和皇明集团合作编写,共20余部。集团派相应的各部门高级技术人员到校指导教学工作,联合办学借助皇明集团国际领先的检测与研发设备,组织学生进行相关的研究与开发。借鉴与皇明太阳能集团联合培养人才的经验,2010年又先后与德州旭光太阳能集团、东营光伏太阳能有限公司等太阳能应用企业成立了相应的企业冠名班。2012年,德州学院与皇明太阳能股份有限公司联合建设“本科教学工程”大学生校外实践教育基地,已获教育部批准。在合作办学基础上,总结出了“三三六”校企合作人才培养模式,这一校企合作人才培养模式的办学经验,在2010年山东省校企合作培养人才工作电视会议上做了大会典型发言。由此构建的“强化专业技能、突出创新能力、提升人文素养”为主要内容的三位一体的校企合作人才培养体系,保证了学生综合素质的不断提高。2009年至2011年,德州学院连续三年被评为“山东省校企合作先进单位”,2011年德州学院列入首批“山东省企业专业技术人员继续教育基地”。
2建设规划
能源与动力工程专业人才培养以服务区域经济和社会发展为宗旨、以就业为导向,走产学研结合的发展道路,培养新能源行业创新性、应用型人才,建成在省内有一定影响力的能源与动力工程专业引领的能源类专业群和能源类卓越工程师培养基地,为德州及周边地区新能源行业发展起到引领和推进作用。
2.1打造能源与动力工程专业引领的“特色突出、优势显著”的能源类、机械类、自动化类专业群目前,我校已确定重点打造能源与动力工程专业(暨新能源、节能环保装备方向的机械设计制造及其自动化专业)引领的能源类、机械类、自动化类专业群,为德州市新能源产业共涉及的太阳能利用、风电装备、生物质能、热泵应用、新能源汽车和节能环保六大领域做好智力支撑。根据德州市及周边地区对新能源装备与环保机械领域人才的需求,对三个专业群教学计划及教学内容进行调整,能源类专业群主要侧重于新能源(太阳能利用、新能源汽车)技术的研究与应用,机械类专业群主要侧重于新能源装备与环保机械的设计制造,自动化类专业群主要侧重于新能源装备与环保机械的自动控制。在现有基础上,完善理论———实验———实践人才培养路径,培养满足社会需要的能源类、机械类、自动化类创新性、应用型人才。同时加强师资队伍建设,造就一支教学水平高,科研能力强、实践经验丰富的教学团队。同时对现有实验室进行升级改造,同时购进必需的教学、科研仪器设备,积极打造群内共享的公共实验教学大平台,建成山东省能源与动力工程实验教学示范中心。
2.2深化能源与动力工程专业人才培养模式改革能源与动力工程专业将围绕德州市及周边地区新能源产业,特别是太阳能利用和新能源汽车行业的发展建设,根据教育部“卓越工程师培养计划”,进一步完善“3+1”的人才培养模式,深化能源与动力工程专业人才培养模式改革。以满足专业人才培养目标为核心,修订教学计划,将创新精神、实践能力和创业能力纳入课程体系和教学内容,参照职业岗位任职要求,校企共同制订专业人才培养方案;将学校的教学活动和企业的生产过程紧密结合,灵活调整教学周期,学校和企业共同完成教学任务,突出人才培养的针对性、灵活性和开放性。
2.3打造一支满足新能源(太阳能)行业创新性、应用型人才培养的“双师型”师资队伍依据德州学院的柔性人才引进制度,引进教授、博士、企业技术骨干为学科带头人和骨干教师。聘任(聘用)一批具有行业影响力的专家学者作为专业带头人,一批新能源行业专业人才和能工巧匠作为兼职教师,建立兼职教师资源库,使专业建设紧跟产业发展,学生实践能力培养符合职业岗位要求。同时结合实际需要,兼职教师对学生的课程设计,毕业设计等实践环节进行指导。另一方面,加大在职教师培养培训力度。通过下企业、做访问学者、进修多种方式,在新能源行业造就出一批有一定影响力的专业人才,使专职教师下企业制度化,将教师参与企业技术应用、新产品开发、社会服务等作为专业技术职务和岗位聘用的重要内容。完善专业教师到对口企事业单位定期实习制度,提高专业教学水平和实践能力,提升双师素质。
2.4改革实践教学体系,加强实践基地建设在培养创新性、应用型人才,打造新能源行业卓越工程师的教学目标指导下,与校外实践基地的共同研讨,优化实验教学内容,构建“基础理论与实践技能平台设计应用能力平台综合实践能力和工程应用能力平台科技与创新能力平台”的“渐进式四平台”实验教学体系按照校企联合、共建共享、边建边用的原则,充分发挥校企合作的优势,依托皇明太阳能股份有限公司和山东奇威特人工环境有限公司等校外实验教学中心(研究所),以及东营光伏太阳能有限公司等5家实践教学科研基地,建成集研究创新、基础实训、生产实训、学工一体的综合性实训基地,创建山东省人才培养模式创新实验区、山东省实验实习示范中心、山东省工程技术研究中心,将学生的课堂教学、课程实习、专业实践及毕业设计、论文等环节与企业实际、教学研究与企业产品开发结合起来,以提高学生的培养质量和就业能力。
3结束语
关键词:实践教学;教学改革;能源与动力工程
作者简介:孟建(1979-),男,山东滕州人,山东理工大学交通与车辆工程学院,讲师;刘永启(1965-),男,山东枣庄人,山东理工大学交通与车辆工程学院,教授,博士生导师。(山东 淄博 255049)
基金项目:本文系山东理工大学教学研究项目(项目编号:4003-111182)的研究成果。
中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)31-0155-02
高等教育的目标是培养有独立工作能力的各类专业人才,[1]根据这一目标,制定了山东理工大学能源与动力工程专业的培养目标——培养能够独立从事内燃机行业及其相关行业的应用型工程技术人员,为了使学生毕业后能够迅速适应工作环境,必须提高学生的实践能力和创新能力。为实现这一目标,必须切实加强实践教学体系的建设,提高实践环节的教学质量。为此,本文结合能源与动力工程专业的特点,围绕实践教学体系、实验教学内容、生产实习环节、实验教学方法改革、学生参与科研和课外科技活动等方面,研究了能源与动力工程专业实践教学新方法,探索构建了面向21世纪的能源与动力工程专业实践教学体系,以适应未来人才培养质量规格的需要。
一、实践教学存在的问题
1.实验教学环节缺乏对学生工程实践能力的培养
过去,中国很多高校的实践教学环节与国外大学相比,都缺乏对学生工程实践能力的培养。国内高校实践教学环节旨在帮助学生加深对有关课程理论知识的理解和掌握,不重视实践教学对学生动手能力、工程实践能力和工程意识的培养。实践教学环节的要求不明确、不具体,缺乏综合性、多元化。而欧美大学机械动力类专业在实践教学环节的安排上重视对学生跨学科综合设计能力的培养,重视实践报告和实践成果的考核。[1]
相比较而言,山东理工大学能源与动力工程专业实践教学环节中学生被动接受多,自主学习和动手环节少;缺乏对学生创新能力的培养和跨学科的综合性实践环节。
2.实验教学模式陈旧
实验教学是实践教学环节中的重要一环。传统的实验教学模式中,实验指导教师实验开始前将实验原理、实验步骤、仪器使用及测试方法全部告诉学生,学生只需要按指定的过程一步步去操作,不用思考和创新。这种实验教学模式中的实验指导教师是实验教学过程的主体,学生只是被动接受,主动参与性差。这种实验教学模式很难较好地培养学生的实践动手能力和创新意识,很难适应新世纪对创新性人才培养的需要。
3.实验教学内容单一
实验教学内容以验证性实验为主,枯燥乏味、应用价值不高且许多内容已经过时,导致目前的实验教学内容很难激发学生的学习兴趣和创新意识,不能有效地培养学生的创新精神和工程实践能力。
4.校外实习形式单一
大多数的校外实习流于形式,基本上是由教师组织学生去企业进行走马观花式的参观。实践内容空泛,学生在实习中很难有机会深入细致地学习,更谈不上提高自己的实践动手能力,实习结束后对技术问题还是感到茫然,实习效果不好。
二、实践教学体系的改革
1.形成特色的实践教学体系
随着高等教育教学深化改革和发展的需要,根据市场对能源与动力工程专业本科学生的就业需求和职业要求,在长期的实验实践教学建设的基础上能源与动力工程专业对实践教学环节进行了完善和调整,建立了逐层递进式实践教学体系,如图1所示。在原有实践教学环节的基础上,增加了认识实习、大学生科技创新活动、内燃机电控系统设计、内燃机零部件制造工艺设计、内燃机企业生产流程及管理实习、内燃机工作过程模拟训练、内燃机性能测试实习等实践教学环节,使实践教学环节学分占总学分的比例从原来的17%提高到25%。
2.更新实验教学内容
实验教学内容是实践教学体系的重要组成部分,现有的实验课多依附于理论教学,实验课内容的设置只体现在让学生对理论知识的进一步理解,不重视实验课教学对学生动手能力和创新能力的培养。[2,3]因此,有必要对实验教学内容进行完善与更新。实验教学内容的选择,既要注重纵向知识的系统性,又要注重横向知识的渗透性,还要有利于培养学生的动手能力和创造性思维能力,最大限度地挖掘学生的知识潜力。
能源与动力工程专业从课程设置的实际情况出发,在不影响理论教学的前提下,适当增加部分课程实验教学的学时数,并对各实验课程的教学内容和教学形式进行适当的调整与改革,增加了部分课程实验教学的实验项目数。新的实验教学内容更加注重基础内容与学科前沿的结合,注重理论知识与科研、工程实践和生产实际的紧密联系。由于设计性、综合性实验更有助于激发学生的创新意识,有助于培养学生的创新能力,有助于学生掌握科学研究的思维方式、一般步骤和解决问题的方法。为此,能源与动力工程专业结合车辆工程实验室和热工基础实验室现有的实验仪器设备增加了部分课程实验教学的综合性、设计性实验项目,提高了综合性、设计性实验项目占总实验项目数的比例。如:“汽车单片机原理及应用”的实验学时由原来的4学时增加到20学时,实验项目由4个增加到9个,增加了5个设计性实验项目;“工程热力学”的实验学时由4学时增加到6学时,实验项目数由原来的4个增加到8个,其中4个为必做实验,4个为选作实验(选作其中的两个),验证性实验项目数由原来的2个减少到1个;“计算机辅助设计”的实验学时数由原来的8学时增加到12学时,增加了两个设计性实验项目;“内燃机构造”的实验学时数由原来的6学时增加到10学时,增加了3个综合性实验项目;“画法几何与工程制图”实验学时由8学时增加到16学时。
3.采用开放式实验教学模式
采用开放式实验教学模式替代传统的“被动式”、“抱着走”的实验教学模式,克服了过去教师讲实验,手把手教学生做实验,最后学生交实验报告的做法。开放式实验教学模式突出了学生在实验教学过程中的主体地位,弱化了教师在实验教学环节中的作用。教师根据实验设备的台套数,确定学生每组实验人数,一般为2~3人,学生根据实验任务书的要求完成实验预习,写出实验预习报告,达到要求后,网上预约实验时间。实验开始前,教师进行提问,在规定时间内学生要独立完成实验。实验过程中,指导教师应贯彻“少讲多练,引导为主”的原则,把主要精力放在巡视中,注意每个学生的实验情况,引导学生积极主动地进行实验。对于实验过程中出现的问题,指导教师首先启发、引导学生自行处理,而不是学生一提出问题就立即回答。开放式实验教学模式在巩固学生理论知识的同时,锻炼了学生的实际动手能力,调动了学生在实验教学过程中的主动性,加深了学生对实验内容的理解和体会。开放式实验教学模式提高了实验教学质量,培养了学生的实践动手能力和分析问题、解决实际问题的能力,实验教学效果显著,真正达到了提高学生工程应用能力的教学目的。
4.重视生产实习,培养学生创新能力
生产实习是重要的实践教学环节,是学生将课堂上所学的理论知识、专业知识和实际应用相结合的重要环节。[4]通过生产实习,学生可以接触到企业的生产实际,增强对能源与动力工程专业的了解和认识,建立更加清晰的专业意识。通过生产实习,学生可以应用所学知识来认识、观察、分析和思考实际问题,培养了学生的实践能力和创新能力。因此,必须重视生产实习,切实提高生产实习的教学质量,提高学生的工程实践能力,为学生毕业后的工作打下坚实基础。根据教学大纲的要求,结合实习单位的生产特点,指导教师制订出较为周密的生产实习计划及完善的实习指导说明书。合理安排实习内容,能源与动力工程专业生产实习以内燃机关键零件的机械加工工艺和内燃机的装配工艺为主。生产实习方式采用车间实习、参观实习、专题报告、共同讨论等多种形式。实习期间要加强管理,对学生严格要求,认真指导,每天实习前布置实习内容,要求学生认真做笔记、带着问题去实习,多看、多问、多记。改革实习成绩的评定方式,实习成绩从传统的单纯依据实习报告内容评定,扩展到依据实习纪律、实习报告内容、实习记录内容、分组讨论情况和实习答辩情况综合评定。
5.鼓励学生参与教师科研和科技创新活动
学生参与教师科研和科技创新活动能够调动学生的学习积极性,开拓学生的视野,提高学生综合应用所学知识的能力,锻炼学生的工程实践能力,培养学生的创新能力。目前,能源与动力工程专业有20多位同学参与到教师、研究生的科研活动中,承担改造、搭建试验平台和做实验等工作。鼓励学生参与大学生第二课堂创新活动,学生在教师的指导下申请大学生创新研究项目;鼓励学生参与山东省大学生机电产品创新设计竞赛、瑞萨超级MCU模型车大赛、飞思卡尔杯智能车设计大赛、“潍柴动力杯”山东省大学生汽车技术创新设计大赛等活动,并取得了很好的成绩。
三、结论
能源与动力工程专业通过开展实践教学改革,完善了专业的实践教学体系,开拓了学生的专业视野,培养了学生的工程实践能力和创新意识,提高了实践教学环节的教学效果,保障了专业的整体教学质量。
参考文献:
[1]龚建龙.热能与动力工程专业实践教学改革的探讨[J].实验技术与管理,2007,(9):111-113.
[2]刘咏梅,祝钧,戴敏.构建实践教学体系,强化创新实践能力培养[J].实验室研究与探索,2009,(2):12-14.