首页 > 文章中心 > 有机合成的常用方法

有机合成的常用方法

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇有机合成的常用方法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

有机合成的常用方法

有机合成的常用方法范文第1篇

化学作为自然科学的一个重要领域,在丰富人类知识宝库和满足人们衣食往行等各方面需求中,发挥着积极的和不可替代的重要作用。然而无可讳言的是,由于在化学过程中以适当地使用对人类健康和对环境有害的原料和溶剂以及污染性废物的大量排放,一些化学过程也给人类的健康和生活环境带来了严重的不利影响。为此,人们相继提出了绿色化学理念,其目的是在继续发挥化学的积极作用的同时而将其危害人类健康和人类生存环境的负面影响减少到最小。有机合成作为化学合成的重要组成部分,在绿色化学中居于举足轻重的地位;在绿色化学及其理念指导下,最终要实现绿色合成。绿色合成的目标应当是实现符合绿色化学要求的理想合成。

实现理想合成,有三个定量指标:原子经济性、环境因子和环境商。

1.原子经济性

原子经济性概念认为高效的有机合成应最大限度地利用原料分子的每个原子,使之结合到目标分子中,以实现最低排放甚至零排放。原子经济性可用原子利用率来衡量:

原子利用率=(预期产物的分子量/全部生成物的分子量总和)×100%

原子经济性的特点是最大限度地利用原料和最大限度地减少废物的排放。

2.环境因子(E)

环境因子和环境商都是由荷兰有机化学家sheldon提出来的。E—因子是以化工产品生产过程中产生的废物量的多少来衡量合成反应对环境造成的影响。

E-因子=废弃物的质量(kg)/预期产物的质量(kg)

这里的废弃物是指预期产物之外的所有副产物,包括反应后处理过程产生的无机盐等。显然,要减少废弃物使E—因子较小,其有效途径之一就是改变经典有机合成中以中和反应进行后处理的常规方法。

3.环境商(EQ)

环境商(EQ)是以化工产品生产过程中产生的废物量的多少、物理、化学性质及其在环境中的毒性行为等综合评价指标来衡量合成反应对环境造成的影响。

EQ=E×Q

式中E为E—因子,Q为根据废物在环境中的行为所给出的对环境不友好度。EQ值的相对大小可以作为化学合成和化工生产中选择合成路线、生产过程和生产工艺的重要因素。

为此,Wender教授认为:一种理想合成是指用简单的、安全的、环境友好的、资源有效的操作,快速、定量地把价廉、易得的起始原料转化为天然或设计的目标分子。这正是绿色合成的目标。

目前,绿色合成研究的方向是清洁合成、提高反应的原子利用率、取代化学计量反应试剂(如在催化氧化过程中只以空气中的氧气作为氧源)、新的溶剂和反应介质、危险性试剂替代品(如使用固态酸以取代传统的腐蚀性酸)、充分的反应过程、新型的分离技术、改变反应原料、新的安全化学品和材料、减少和最小化反应废弃物的产生等。

二、有机合成实现绿色合成的途径

绿色合成的目标已为有机合成实现绿色合成指明了方向。近年来,实现绿色合成的研究工作在不断进行,几种可行的途径已隐约可见。

1.使用环境友好催化剂,提高原子利用率

有机合成中,减少废物的关键是提高原子利用率,所以在选择合成途径时,除了考虑理论产率外,还应考虑和比较不同途径的原子利用率。如环氧乙烷的合成:

两步完成,原子利用率为25%。

催化方法:

一步完成,原子利用率为100%。

又如二联苯的合成,常规方法是以PdCl2为催化剂,以含苯基的有机汞化合物为原料在吡啶中进行,但操作过程较为复杂,原子利用率低。若以具有高反应活性的GaP纳米晶为催化剂,就可以直接以苯为原料,一步合成得到二联苯。

再如对硝基苯甲酸乙酯的合成,常规方法是以浓硫酸为催化剂来合成的。这种方法,虽然催化剂(浓硫酸)价廉、活性高,但反应复杂,副产物多,且浓硫酸腐蚀设备、污染环境。如果以价廉易得、性质稳定安全的苯磺酸为催化剂来合成就可以克服这些缺点,且产率可达98.6%。

可见,在有机合成中,选择合适的、环境友好的催化剂,则可以开发新的合成路线,缩短反应步骤,提高原子利用率。

2.使用环境友好介质,改善合成条件

传统的有机合成中,有机溶剂是最常用的反应介质,但是有机溶剂的毒性和难以回收又使之成为对环境有害的因素。理想的有机合成,可以水为介质进行;可用超临界液体为介质进行;可在无溶剂存在下进行;可以离子液体为介质进行等。

①在有机合成中,用来代替有机溶剂是一条可行的途径。这是因为水是地球上广泛存在的一种天然资源,它价廉、无毒、不危害环境。尽管大多数有机化合物在水中溶解性很差,且易分解,但研究表明有些合成反应不仅可以在水相中进行,而且还具有很高的选择性。最为典型的例子是环戊二烯与甲基乙烯酮发生的D-A环加成反应,在水中进行较之在异辛烷中进行速率快700倍。

②超临界流体是当物质处于其临界温度和临界压力以上所形成的一种特殊状态的流体,是一种介于气态与液态之间的流体状态。这种流体具有液体一样的密度、溶解能力和传热系数,具有气体一样的低粘度和高扩散系数,同时只需改变压力或温度即可控制其溶解能力并影响它为介质的合成速率。在有机合成中,CO2由于其临界温度和临界压力较低、且具有能溶解脂溶性反应物和产物、无毒、阻燃、价廉易得、可循环使用等优点而迅速成为最常用的超临界流体。

③固态化学反应的研究,使有些反应可在无溶剂存在的环境下进行,且比在溶液环境中的反应能耗低、效果更好、选择性更高,又不用考虑废物处理问题,有利于环境保护。例如,手性1,γ联二萘酚的合成,常规方法是由β萘酚与FeCl3在液相氧化偶联制得,但会产生醌类副产物。而以FeCl3—6H2O为氧化剂反应就可以在固相进行,且可得到产率为95%的联二萘酚。

④离子液体,简单地说就是安全离子组成的液体。目前研究最多的是在室温左右呈液态的含有机正离子的一类物质。例如,含N-烷基咪唑正离子的离子液体等。它们不仅可以作为有机合成的优良溶剂,且具有难挥发等优点,对环境十分友好。

3.采用洁净的有机电合成

电化学过程是洁净技术的重要组成。由于电解一般无需使用危险或者有毒试剂,且通常在常温、常压下进行,所以在绿色合成中独具魅力。例如,实现自由基环化反应,常规的方法是使用过量的三丁基锡烷,过程中存在的问题是原子利用率低、使用和产生着有毒的锡试剂。然而,利用天然、无毒、手性的维生素B12为催化剂进行催化反应,可在温和、中性条件下完成。

4.运用高效的多步合成技术

在药物、农用化学品等精细化学品的合成中,往往涉及分离中间体的多步骤反应。为实现绿色合成,近年来,研究发展的串联反应是非常有效的。串联反应包括有一瓶多步串联和一瓶多组分串联。前者是仿照生物体内的多步链锁式反应,使反应在同一反应器内从原料到产物的多个步骤连续进行,无需分离出中间体,又不产生相应的废弃物,和环境保持友好;后者是涉及至少3种不同原料的反应于同一反应器中进行,而每步反应都是下步反应所必需的,而且原料分子的主体部分都融进到最终产物中,这是一类高效的合成方法。

5.发展和应用安全的化学品

发展和应用对人和环境无毒、无危险性的试剂和溶剂,以及其他实用化学用品,是实现绿色合成最直接的一环。可以采取适当的手段使某一分子的毒性降低而不影响其功能。例如,腈类化合物的毒性,认为是由于腈类分解而生成氰离子产生的。若将腈的α位进行取代,使其难生成自由基而不产生氰离子,则可使毒性降低,而反应功能不受影响。又如,人们开发的新型化工原料碳酸二甲酯,以其较高的反应活性和低微的毒性,代替了剧毒的光气和硫酸二甲酯,从而被誉为21世纪的“绿色化工原料”。

综上所述,绿色合成作为新的科学前沿已逐步形成,但真正发展还需要从观念上、理论上、合成技术上等,对传统的、常规的有机合成进行不断的改革和创新。

参考文献

1 崔得良,郝霄鹏,于晓强,等.利用纳米晶的催化性质合成二联苯.中国科学,2001,(5):451~455

2 周虹屏,于金文,杨开炳,等.苯磺酸催化合成对硝基苯甲酸乙酯.化学世界,2001,(9):484~485

3 Sheldon R A,Chem.Ind.,1992,(23):903~906

有机合成的常用方法范文第2篇

有机化学实验中最重要的部分就是有机合成实验,它在有机合成相关理论的基础上,通过实验教学,训练学生的实验操作技能,并掌握有机化合物合成的步骤和技巧,强化理论知识.然而,在有机合成实验中存在着诸多问题:常规型实验需要大量溶剂导致开支大;合成产物量多给环保带来负担;实验内容不成体系导致制备产物种类多,不便处理;实验设备传统老化,使得合成时间长,不利于培养学生对实验的熟练程度.绿色化学遵循“减量化”、“循环使用”、“回收再利用”、“再生重复使用”、“拒绝危险化学品”的5R原则,以“原子经济性”为核心内容,是改变有机合成实验教学现状的不二理念选择.因此,如何更有效地减少有机化学实验过程中对实验环境所产生的污染,培养学生的绿色化意识是有机化学实验教学改革的重点,实现有机化学实验绿色化教学、培养“绿色化学”人才势在必行.

一、实验规模绿色化

常规的有机合成实验量是经过长期实践确定的工业化生产最基础的实验量,但是过多的实验药品量在加大教学经费的同时,也加重了对环境的污染.高中化学中有机合成实验教学主要是为了验证某一个理论或事实,培养学生的观察、思考和动手能力,因此,采用微量型的有机合成实验是符合绿色化学思想的.微量化学实验缩小了实验的规模,它使用的实验仪器一般都偏小,如5 mL的圆底烧瓶、微型装置、微型仪器,实验试剂用量范围控制在100~200 mg,这种缩小实验仪器、减少实验试剂的做法不仅节约了实验时间,还减少了污染程度.例如,在合成对硝基苯甲酸时,常规实验中把6.8 g的硝基苯甲放入250 mL的三口烧瓶中进行氧化反应,合成物为4~7 g,如果采用微量合成,把硝基苯甲的用量减少到2 g,再将其放入100 mL的三口烧瓶中氧化反应得出反应物为1~2 g,是不妨碍实验结果的.

二、合成方法绿色化

现代有机合成正朝着高选择性、原子经济性和环境保护型三大趋势发展,,重点在于开发绿色合成路线及新的合成工艺,寻找高选择性、高效的催化剂,简化反应步骤,开发和应用环境友好介质.合成方法对于实现现代有机合成来说非常重要,在教学过程中教师在选择合成方法时要注重体现绿色化学的理念.例如,在制备乙酸乙酯时,为了防止浓硫酸造成不必要的实验事故,减少空气污染,我们可以选择固体路易斯酸来取代它.现在的有机合成实验中几乎都会装一个回流的装置,这种做法虽然会降低合成物的产量,但是它会恰到好处的吸收合成反应中产生的一些有害物质,是值得提倡的行为.

三、合成原料绿色化

目前的有机合成实验中用到的原料大多都是从石油中提炼的有毒化工原料,例如,有机合成时常常用到的甲酸会灼伤人体,刺激皮肤和粘膜;甲醇遇见明火容易引起爆炸,吸至体内易氧化成甲酸不利于人体健康;乙酸具有中等程度的腐蚀性和毒性;乙醇无色透明,杀菌效果强,容易误食.合成原料一般包含三方面,即溶剂、催化剂和原料.首先,我们要选择绿色的溶剂,虽然在有机合成实验中都不会选择水作为反应介质,其实水溶剂不仅有特殊的疏水效应,能够有效地进行重要的有机转化,而且它是低价、无毒无害的存在.有些化学家发现在水相加成反应中,选取水溶剂的反应比在有机溶剂中的反应产量高.其次,绿色催化剂的作用也不可忽视.缩酮目前的合成大都采用HCl催化,若用SnCl4/NaHSO4催化,则可以减少酸催化剂带来的污染,并且还提高了产率.最后,选择绿色的合成原料,阻止污染源,防止污染的发生.如果实验定的原料含有毒性、易挥发性,教师应当想法设法用绿色原料进行替换,如果替换不了,就减少用量并警示学生.

四、合成路线绿色化

高中化学有机合成实验内容基本都是相对独立的,为了覆盖所有有机合成实验的操作内容,实验过程往往造成资源浪费.把看似独立的实验内容组合起来设计出全新的实验步骤,一方面促使学生认真对待实验的每一步,细心操作,把有机合成知识融会贯通,另一方面减少了合成原料的使用,综合利用了实验产物,体现了绿色化学的原则.例如,我们可以用环己醇做原料设计一次组合式有机化学实验方案,首先用催化剂FeCl3・6H2O催化环己醇脱水制备环己烯,再把合成物环己烯作为原料经过H2O的氧化和Na2WO4/H3PO4的催化制备出己二酸,这样的做法深刻体现了绿色化学的思想,节约了成本,减轻环境污染,为学生树立绿色化学的观念做了一个良好的示范作用.

五、处理“三废”绿色化

有机合成的常用方法范文第3篇

【关键词】药物合成;微生物催化;应用;发展

前言

微生物催化主要被用来生产一些手性或者光活性的小分子,这些小分子或是药物中间体或者是药物产品。随着科学技术的发展,生物提取、分离鉴定等手段越来越进步,使得生物催化也被用到治疗性蛋白、抗体等大分子的生产当中。目前,生物转化在药物前体化合物转化、生物催化不对称合成以及光活性化合物拆分中得到广泛地应用。本文详细研究了生物催化在药物合成中的运用与发展,先将研究结果综述如下:

一、微生物催化概述

微生物催化也被叫做生物转化,指的是运用生物合成法来合成一些有机化合物、重要中间体。董晓阳,王子昱,王永超,戴振亚,尤启冬[1]的研究认为,现代生物催化最有代表性的研究始于二十世纪五十年代,之后随着生物技术进一步发展,导致部分传统化学转化技术逐步被催化生物转化反应所取代,使得生物催化在合成有机物的过程中越来越受人们关注,且得到广泛应用。生物催化具有化学转化方法无法比拟的优势,例如:生物催化的反应条件比化学方法更加温和;生物催化的产物较为单一,立体、化学的选择性和区域的选择性都比较高,并且能够完成部分化学方法难以进行的反应。近年来,生物催化已经涉及了环氧化、酯转移、羟基化、脱水、氢化以及脱氢等反应。

二、药物合成当中微生物催化的应用

(一)不对称合成中应用生物催化法的优越性

第一,在底物某一基团的转化中,专一性极强,简单来说就是对无效转化的基团实施保护。第二,通过转化某一微生物来进行菌种选育及优化转化条件,可显著提高该微生物转化率。第三,生物催化反应的条件极为温,不会对环境造成较大的污染,尤其是近几年来DNA的重组技术与新转化系统的广泛应用,使得更多应用化学转化法难以合成的化合物,逐步被生物催化法来带代替。

(二)手性药物开发应用生物催化法需进行的工作

1.采用生物催化方法制备药物的重要中间体。选取生物催化法来制备,对于映体纯化合物的吸引力非常大,但是若试图借助这种方法完成一些复杂的有机合成,往往困难较大,甚至为不可能,所以可以应用催化方法来制备这类有机合成物的某一中间体。

2.龚浩,杨义文,匡春香[2]的研究认为,虽然应用化学法也可以在实验室的条件下获取所需手性药物,但是这种方法需要较高的成本,而对技术要求也相对较高,使得这种药物制备难以达到产业化发展。所以采取微生物催化法则弥补了化学方法的这一不足之处,具有独特优越性,实现绿色合成的制药理念;此外,采用催化方法还能对一些消旋化合物进行生物拆分、转化而获取构型单一的药物分子等。

(三)生物催化、新药组合

从某一角度来看,生物催化方法比化学方法更简单,有效,天然产物具有多样性、结构复杂性等特点,也是大自然中生物体内的酶作用的结果,这些酶负责生物体内一系列重要的生命活动,在其体外依旧具有相同催化的能力。所以只要体外催化环境和体内相仿则可能,将一些复杂、用传统合成法很难实现的化学反应得以实现。有研究表明,结合化学合成酶与生物催化剂能够大幅度增加衍生物多样性,还能发现新的活性物质等。通过生物催化剂扩大了组合化学合成的各种可能性;而借助生物催化可以发现先导化合物存在的优越性,主要为:反应范围较广;对区域、立体进行定向选择;无需基团的保护及脱保护就能实现所需反应;处于温和、均一条件下能够容易实现进一步反应与自动化重现性;在温和反应条件之下可确保一些复杂易变型分子结构稳定性;高催化活性能够有效减少催化剂用量;固定化酶可使催化剂得到反复、循环 使用以及生物催化剂能在环境当中被完全降解。

三、在药物合成当中应用微生物催化法的前景

1.提升了酶的选择性技术。近几年来,在众多水解酶当中,例如在脂肪酶、醋酶中已经研发除了多种有效的、提升反应选择性的方法,通过提升酶的立体选择性怎能拓展水解酶应用的范围,所以也就可以有效避免错误寻找或者试验研究新型的、具有某一特定性质的酶。

2.微生物催化法使得外消旋体拆分发到较高的理论收率值。要想从非手性原料中,以100%的收率来获取手性产物,其最简单、有效的办法就是,对内消旋物或者手性底物的对映选择性实施转移反应,这种方法早已经在合成立体选择性中应用较长的时间了。例如:猪肝脂酶催化前手性、内消旋的二醋类水解。但是潘海学,袁华,蹇晓红,唐功利[3]的研究中提到,大多数酶催化反应均会关系到外消旋体动力学拆分,且每种立体的异构体产量最大不会超过50%。

3.原位外消旋化。在此方法中拆分是在底物可以自发外消旋化的情况下进行,但是产物却不能外消旋化。

4.去外消旋化。当底物不能自发性地进行外消旋化,则可以借助某一多酶系统使得其中外消旋底物和某一前手性衍生物来达成平衡,促进转化,但是所选的前手性衍生物在同一反应过程中也会遭受立体选择性酶的攻击,这个过程就被叫做去外消旋化。

5.原位转化。当原位外消旋化与去外消旋化两种方法均不可取的时候,可通过化学或者物理方法将动力拆分的产物进行分离,但是操作较繁琐,且具有较大缺陷,但是若所需异构体分子有多个手性中心则可能在进行产物分离之前,将其转化成为所需的对映体[4]。

四、结束语

综上,在药物合成过程当中,微生物催化方法得到广泛地应用,并且占据有极为重要的位置。经过多年来的研究,光学活性药物的合成制备已经成为微生物催化方法发展的一大趋势,也是生物技术的进一步发展,使得人们对其产生了更高的期望与探究兴趣。可以说微生物催化方法对经典的合成技术带来了强有力的威胁与挑战,并且将其逐步替代,甚至在未来激烈的竞争当中还有可能共同结合、共同发展。

参考文献:

[1]董晓阳,王子昱,王永超,戴振亚,尤启冬.不对称小分子催化合成的最新进展及其在药物合成中的应用[J].中国药科大学学报,2013,11(03):193-201.

[2]龚浩,杨义文,匡春香.基于C―H键官能团化的药物合成[J].化学进展, 2014,26(04): 592-608.

有机合成的常用方法范文第4篇

【论文摘要】:近年来,人们对于羧酸酯类的合成的研究开发和应用发展很快,研究和开发出高效、环保的催化剂,是羧酸酯类的合成的研究发展方向。

羧酸酯是一类重要的化工原料,低级的酯一般都有水果香味,可作香料(如醋酸异戊酯有香蕉味,戊酸乙酯有苹果香味等)。液态的酯能溶解很多有机物,故常用作溶剂(如醋酸乙酯等)。有些酯还可用作塑料、橡胶的增塑剂。以乙酸辛酯(Octylacetate)为例:乙酸辛酯具有桔子、茉莉和桃子似香气,天然品存在于苦橙、绿茶等中,是我国GB2760-86规定允许使用的食用香料,同时被FEMA(美国食用香料与提取物制造协会)认定对人体是安全的,FDA(美国食品及药物管理局)也批准其用于食品。乙酸辛酯主要用以配制桃子、草莓、树莓、樱桃、苹果、柠檬和柑橘类香精,也可用于日化香精配方中。

1.羧酸酯类香料的市场前景

随着生活水平的提高,消费者对食品、饮料的口味、口感要求越来越高,这就需要大量使用香精、香料来迎合消费者,促进了食品企业对香精香料的应用。食用香精在食品配料中所占的比例虽然很小,但却对食品风味起着举足轻重的作用。国际知名咨询公司Freedonia于去年5月底的研究成果表明:预计从2006~2008年,发展中国家对香精和香料的需求,将以年均4.4%的速度快速增长,到2008年该市场的份额将达到186亿美元。而亚太地区(不包括日本)对香料和香精的需求特别强劲,未来几年有望以年均7.3%的增速快速增长。发展中国家人均收入增加,对消费品质量要求有很大提高。随着全球消费者越发注重健康,市场对营养和健康食品的需求也日益增加。因此,由于预计低糖低脂食品和饮料市场将迎来强劲增长,全球消费者对食用香精和香料的需求也必将不断增加。香料配料市场需求量的继续增长,还主要源于化妆品生产,在发达国家和地区,消费者的护肤化妆品消费呈上升趋势。羧酸酯类香料作为优良的可食用香料品种其需求也必将不断激增。

羧酸酯类香料的主要生产和消费国有美国、西欧、日本、墨西哥和中国等,国内食品、饮料生产企业中目前应用最多的添加剂就是香精香料,随着消费者对于味觉享受越来越高,这种趋势会对香料需求产生积极影响。香料产品是香料工业的上游产品,是后续香精产品的原料,香料和香精产品是其他有关产品的配套性产品,它们被广泛地用于日化、食品、医药、饲料等工业产品的生产。据了解,饮料行业是香料最主要的应用领域,该领域2005年的香料消费份额达31.1%。就各地区而言,美国、日本和西欧地区目前统领香料消费市场。香料市场未来的发展大部分可能会出现在亚太地区,尤其是中国和印度这些发展中国家。这将进一步刺激香精香料市场的快速发展。我国目前在世界香料市场中所占份额仅5%左右,日本所占份额达到12%,而美国则达到20%。

2.羧酸酯类合成的传统工艺

传统上羧酸酯类的合成都是用浓硫酸作催化剂,由相应醇与酸酯化而得。但由于浓硫酸作催化剂合成酯化反应具有以下缺点:(1)在酯化反应条件下,浓硫酸的氧化性和强脱水性易导致一系列副反应,给产品的精制和原料的回收带来困难,且酯的质量差。(2)反应产物的后处理要经过碱中,水洗等工序,比较复杂困难,同时产生大量废液,污染环境。(3)浓硫酸严重腐蚀设备,加快了设备更新,增加生产成本。为克服这些缺点,倡导绿色化学,人们选择环境友好型催化剂催化酯化反应,近年来,已发现氨基磺酸、结晶固体酸、杂多酸、无机盐等均可作为酯化反应的催化剂。

3.羧酸酯类合成的发展

近年来,人们对于羧酸酯类的合成的研究开发和应用发展很快,研究和开发出高效、环保的催化剂,是羧酸酯类的合成的研究发展方向:

无机盐催化剂:无机盐大多性质稳定,来源广泛,对设备几乎没有腐蚀,反应条件温和,不会对环境造成太大污染,但是由于无机盐容易潮解,影响其催化的效果。常用的催化剂有三氯化铝、三氯化铁、硫酸钛、十二水合硫酸铁铵、五水合氯化锡、一水合硫酸氢钠和硫酸锌。

磺酸类催化剂:磺酸类催化剂来源广泛、性能稳定、安全、使用方便、对酯化反应有较高的活性、产品收率较高、产物处理方便、催化剂可以重复使用等特点,适合于工业化生产的需要。

杂多酸催化剂:杂多酸是一种含氧桥的多核化合物,其特点是催化活性高。选择性好,反应时间短,反应温度低。不易造成环境污染,对设备几乎没有腐蚀。再生速度快。

阳离子交换树脂催化剂:其主要特点是价廉易得,不腐蚀设备,不污染环境,不会引起副反应,不溶于反应体系,能够重复使用,易于分离、回收和再生,操作简单,产品收率较高,具有工业推广价值。

固体超强酸催化剂:固体超强酸在有机合成中的优点是活性高,重复使用性好,不腐蚀设备,制备方法简便,处理条件易行,便于工业化。这对于节约能源,提高经济效益是很有意义的。

负载型催化剂:其优点是催化活性高,重复使用性好,不腐蚀设备,制备方法简便,处理条件易行,便于工业化,这对于节约能源,提高经济效益是很有意义的。

钛酸四丁酯催化剂:不仅具有催化活性高,重复使用性好,不腐蚀设备等基本优势,而且同制备方法简便,酯收率高,价廉易得,反应时间短,反应温度低,处理条件易行,便于工业化,这对于节约能源,提高经济效益是很有意义的。

酶催化(脂肪酶催化、菌体催化等)工艺不仅催化化活性高、产品质量好,而且反应条件简单、温和,酶重复使用方便,酶活性保持时间长,在生物酶的固定及精细化学品的合成中有较大的使用价值。

4.讨论

目前,国内外羧酸酯类的合成的发展趋势越来越多的偏向于研究合成绿色、高效、环保等多功能的新型催化剂剂。一方面,合成环境友好的催化剂所采用的原料都比较易得,在开发过程中可以降低成本;另一方面,合成环境友好的催化剂所采用的都是低毒、高效、无污染的工艺,较大范围的降低了环境的负荷。发展我国羧酸酯类香料应当注意加大科技投入力度,大力开展技术创新,加强安全法规和环境保护,强化企业管理,提高经济效益。

参考文献

[1]中国医药公司上海化学试剂采购供应站.试剂手册[M].第2版.上海:上海科学技术出版社,1985.

[2]刘树文.合成香料技术手册[M].北京:中国轻工业出版社,2000.

[3]中华人民共和国卫生部,GB2760-1996,食品添加剂使用卫生标准[S].中华人民共和国国家标准,1996.

有机合成的常用方法范文第5篇

摘要:基于大多数染料都含偶氮基,所以对于纺织品偶氮测试样品的选取,要每个颜色都抽到,原则上每个颜色单测,但考虑到检测费用,有些客户可能要求混测(最多三个颜色混测),但如果混测,发现有超标分解产物,需进一步分颜色再次测试。对于印花产品,尽量所有颜色都抽到,即有循环的取循环,没有循环的花型,尽量每个颜色都抽到。如果花型多,测试过程可以选取代表性的颜色混测。

关键词:偶氮基 染料分类 常用染料 禁用

第一部分 染料

染料是能使纤维和其他材料着色的物质,可能是天然或者合成的,分无机染料和有机染料。

染料又分水溶性染料和非水溶性染料(又称涂料)纺织面料染色用大都是有机合成染料(因色光及产量比较稳定)。

染整行业分染料(水溶性的)和涂料(非水溶性的)。

染料分类

1 常用染料按结构分

①偶氮结构--N=N-- 含有此结构的染料即可称为偶氮染料

②蒽醌结构

③靛族结构类

④三芳甲烷结构

2 应用分类(常用染料)

(l)直接染料

这类染料因不需依赖其他试剂而可以直接染着于棉、麻等各种纤维素纤维上而得名。绝大部分属于偶氮结构,如直接红。

(2)活性染料

又称反应性染料。分染料母体和活性基团构成,染料母体主要有偶氮类、蒽醌类、酞菁类结构。在适当条件下,能够与纤维发生化学反应,形成共价键结合。它可以用于棉、麻、丝、毛、粘纤、锦纶、维纶等多种纺织品的染色,如活性红。

(3)还原染料

这类染料不溶于水,在强碱溶液中借助还原剂还原溶解进行染色,染后氧化重新转变成不溶性的染料而牢固地固着在纤维上。主要牛仔布染色。靛族结构。

(4)分散染料

这类染料在水中溶解度很低,颗粒很细,在染液中呈分散体,属于非离子型染料,主要用于涤纶的染色,绝大部分是偶氮类和蒽醌类,如分散红。

(5)酸性染料

这类染料具有水溶性,大都含有磺酸基、羧基等水溶性基因。可在酸性、弱酸性或中性介质中直接上染蛋白质纤维(羊毛,蚕丝)或尼龙,主要有偶氮,蒽醌,三芳甲烷等结构,如酸性红。

(6)酸性媒介及酸性含媒染料

这类染料包括两种。一种染料本身不含有用于媒染的金属离子,染色前或染色后将织物经媒染剂处理获得金属离子;另一种是在染料制造时,预先将染料与金属离子络合,形成含媒金属络合染料,这种染料在染色前或染色后不需进行媒染处理,这类染料的耐晒、耐洗牢度较酸性染料好,但色泽较为深暗,主要用于羊毛染色,如酸性络合红。

(7)碱性及阳离子染料

碱性及阳离子染料 碱性染料早期称盐基染料,是最早合成的一类染料,因其在水中溶解后带阳电荷,故又称阳离子染料。主要用于腈纶的染色。 主要结构为偶氮和蒽醌类,如碱性红。

(8)涂料

适合于所有纤维,而是通过树脂机械的附着纤维,深色织物会变硬,但套色很准确,大部分耐光牢度好,水洗牢度良好,尤其是中、浅色。主要结构偶氮,酞菁,三芳甲烷类。

除以上染料还有不溶性偶氮染料,硫化染料(污染重基本不用)酞菁染料等。

第二部分 禁用偶氮染料的检测

综上市场上常见纤维用染料或涂料大都含偶氮类结构。但并非所有偶氮染料都被禁止生产和应用。德国1994年法规禁用料约118支(其中含酸性,碱性,直接,分散等染料),直接占77支,约占65%(其中联苯结构36种)。

目前发现的禁用偶氮类染料和疑似禁用偶氮染料多达数百种。

偶氮染料的检测是国家纺织产品基本安全技术规范(GB 18401-2010)强制要求项目之一,其所用检测方法为GB/T17592(纺织品 禁用偶氮染料的测定)& GB/T23344(纺织品 4-氨基偶氮苯的测定)。

偶氮染料检测是通过化学试剂(还原剂)分解染料,看分解后的产物有没有以下为GB 18401-2010中所列24种致癌芳香胺(其中第22项:4-氨基偶氮苯可再分解为第1项苯胺和第7项:对苯二胺)。

测试流程如下(GB/T 17592-2011纺织品禁用偶氮染料的测定)。

取代表性样品放入柠檬酸缓冲液加入连二亚硫酸钠还原分解分离柱分离分解产物用HPLC/DAD(高效液相色谱仪)或GS-MS(气相色谱质谱仪)进行定量。

如果以上方法检测出苯胺和对苯二胺,则需要按GB/T23344(纺织品4-氨基偶氮苯的测定)使用弱的还原剂分解染料来确认4-氨基偶氮苯的存在。

参考文献:

[1]染料化学.陈荣圻

[2]GB 18401.国家纺织产品基本安全技术规范