前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇反向传播神经网络基本原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1 引言
随着经济的发展,空调系统得到了越来越广泛的应用,空调设备已成为重要的生活必备品之一。这就要求空调系统可靠性高且功能齐全,而且在故障诊断维修服务方面达到一定的水平。国内目前的大部分空调系统中无故障诊断系统,当空调系统出现故障后,维保人员往往不能及时、准确地了解系统出现故障的原因及相关信息,空调系统无法得到及时修复,这种情况急需得到改善。
2 关于故障诊断技术
故障诊断FD(fault diagnosis)是一种了解和掌握设备在使用过程中的技术,确定其整体或局部是否正常,早期发现故障及其原因并能预报故障发展趋势的技术。在诊断过程中,必须利用被诊断对象表现出来的各种有用信息,经过适当地处理和分析,做出正确的诊断结论。在制冷暖通空调领域,1987年在彦启森教授的建议下,才开始了故障诊断专家系统在制冷暖通空调领域的研究应用[1]。
人工神经网络(Artificial Neural Network.简称ANN)正是在人类对其大脑神经网络认识理解的基础上人工构造的能够实现某种功能的神经网络。它是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。它实际上是由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
典型的神经网络结构如图1所示。
在众多的人工神经网络模型中,最常用的是BP(Back Propagation)模型,即利用误差反向传播算法求解的多层前向神经网络模型[2]。BP网络在故障诊断、模式识别、图像识别、管理系统等方面都得到了广泛的应用。本文讨论利用神经网络中的BP模型进行空调系统的故障诊断。
首先需要进行知识的获取。由专家提供关于各种空调系统故障现象(征兆集)及相应的故障原因(故障集)实例作为学习样本。将数据分为两部分,一部分用于训练网络,另一部分用于测试。将训练网络的数据按一定顺序编码,分别赋给网络输入、输出节点,通过神经网络学习算法对样本进行学习,经过网络内部自适应算法不断修正权值,直到达到所要求的学习精度为止。此时在大量神经元之间联结权值上就分布着专家知识和经验。训练完毕后,再将测试网络的数据从初始状态出发,向前推理,将显示出的故障结果与实际的测试数据结果相比较,如果误差很小,说明网络的权值建立正确;如果误差较大,说明网络的权值建立有误,需要重新进行网络的训练。
将训练样本训练完毕后,即可进行空调系统的故障诊断。只要实际输入模式接近于某一个训练时的学习样本的输入模式,则可产生出接近学习样本的输出结果,也就是所谓的自联想功能。同时,由于网络计算上的大量并行性,当机器运行状况改变,出现网络学习未考虑的情况时,系统亦能给出正确分类结果。同时将新数据并入网络,实现系统的自适应。一般来说,学习的故障实例样本越多,诊断结果的准确率越高。
4 BP学习算法
BP算法因其简单、易行、计算量小、并行性强等优点,是目前神经网络训练采用最多也是最成熟的训练算法之一。BP算法的实质是求解误差函数的最小值问题,由于它采用非线性规划中的梯度下降法(Gradient Descent),按误差函数的负梯度方向修正权值 [3]。其主要思路是如果求出训练网络的指标函数误差:
一般的BP算法称为标准误差逆传播算法,也就是对应每一次输入都校正一次权值。这种算法不是全局误差意义上的梯度下降计算。对各个神经元的输出求偏导数,那么就可以算出误差对所有连接权值的偏导数,从而可以利用梯度下降法来修改各个连接权值。真正的全局误差意义上的梯度下降算法是在全部训练模式都学习完后才校正连接权和阈值。其计算流程如图2所示:
5 故障诊断实例 5.1 空调系统故障诊断的BP网络建立
空调系统故障模式及故障机制分析[4]如表1所示
表1 空调系统故障模式及故障机制分析 表示
符号
表示
符号
房间温度均偏高
1.冷冻机产冷量不足
2.喷水堵塞
3.通过空气处理设备的风量过大,热交换不良
4.回风量大于送风量
5.送风量不足(可能空气过滤气堵塞)
6.表冷器结霜,造成堵塞
相对湿度均偏低
7.室外空气未经加湿处理
系统实测风量大于设计风量
8.系统的实际阻力小于设计阻力
9.设计时选用风机容量偏大
房间气流速度超过允许流速
10.送风口速度过大
(天津理工大学管理学院,天津 300384)
(School of Management,Tianjin University of Technology,Tianjin 300384,China)
摘要: 本文采用了一种将证据理论与BP神经网络相结合的信息融合算法,该方法集中了两种算法的优势使得计算结果更加准确,为众多商业银行带来切实的利益。
Abstract: This paper uses the information fusion algorithm by the combination of evidence theory and BP neural network, this approach focuses the advantages of the two algorithms to make the results more accurate and bring tangible benefits for many commercial banks.
关键词 : 物流金融;信用风险;BP网络;证据理论
Key words: logistic finance;credit risk;BP network;evidence theory
中图分类号:F252 文献标识码:A
文章编号:1006-4311(2015)06-0016-02
0 引言
中小企业作为中国经济快速发展的生力军,贷款难一直是制约其快速进步的最主要的因素。近年来物流业大发展也使得以运输、仓储为主的传统经营不再能满足其对利益的追逐。另外,物流金融作为商业银行的重要创新,成为其在激烈的同行业竞争中取胜的必然选择。综上,物流金融势必成为中小企业、物流企业、商业银行多方关注,谋求共赢的一种发展趋势。
最早的物流金融概念是由浙江大学的邹小芃和唐元琦于2004年提出。他们认为物流金融就是面向物流运营的全过程,应用各种金融产品,实施物流、资金流、信息流的有效整合,有效地组织和调剂供应链运作过程中的货币资金的运动[1]。作为一种委托关系,信用是其健康运作的基础,信用风险则成为商业银行所面临的首要风险。由于物流金融业务的特殊性,其表现出与传统信贷相比更为复杂的信用风险,传统意义的信用风险评价指标体系和评价模型将会失灵,建立一整套科学进步、基于物流金融融资模式的信用风险评价体系就显得尤为重要。
本文通过将信用风险的输入数据按物流金融业务特征进行重新开发分类,建立BP网络组。根据网络组的输出,得出对于各类信用度的基本概率分配函数,最后利用DS证据理论融合。将其应用于商业银行对物流金融的信用评估中,从而实现风险的最终决策,提高了风险度量的准确度,使得商业银行在新兴的物流金融业务下的操作风险有效监控得到提升。
1 商业银行物流金融信用风险体系指标
根据物流金融的运作特点,可将其风险来源归纳为来自融资企业、抵押物以及第三方物流企业三大方面。借鉴Altman,Haldeman和Narayanan(1977)提出的第二代“ZETA计分模型”中企业信用评价指标体系[3],将来自融资企业的风险细化为中小企业营运能力w1、盈利能力w2、偿债能力w3、及信用记录w4四大方面的十个具体指标,分别为w11持续经营、w12资产回报率、w13存货周转率、w21连续盈利、w22税后利润率、w23销售利润率、w31稳定存货、w32资产负债率、w33速冻比率、w41履约率。我国现阶段的物流金融业务主要集中于基于权利质押以及基于存货质押两种,因此质押物本身的质量也直接关系其风险大小。指标包括:所有权w51、市场性质w61、保险率w71三方面。作为重要参与方的物流企业为实现其对质押物的有效监管,企业规模w81及企业信誉w91也即成为影响物流金融风险的重要指标。
2 基于BP神经网络和证据理论的评价方法
2.1 BP 神经网络的基本原理
BP神经网络,是由Rumelhart 和 McCelland 等人(1986)提出的。其基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层通过隐含层传向输出层。若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段,并将误差分摊给各层的所有单元。正向传播与误差反向传播周而复始,一直到网络输出的误差减少到可接受的程度,或预先设定的次数为止。
2.2 证据理论的基本原理
2.3 信用风险评估算法
为了保证神经网络的收敛和稳定性,本论文中将15个指标分为四组,建立4个神经网络NN1,NN2,NN3和NN4。神经网络的输出设计为(0.1,0.1,0.9)T、(0.1,0.9,0.1)T、(0.9,0.1,0.1)T,表示的信用风险级别分别为高风险、中度风险、低风险,记为A1,A2,A3。将输出归一化,得到向量(a′i1,a′i2,a′i3)T,记作V′i。令mi(Ai)=a′il,i∈{1,2,3,4},l∈{1,2,3},表示由NNi 得到的对信用风险级别Ai的基本信任度,即针对事件Ai的证据。之后,再将4个证据利用DS证据理论融合。就可以对信用风险进行评估,最初最终决策。
3 应用实例
本次数据采集共发出问卷200份,收回135份,有效问卷92份。将前91组数据分别训练神经网络。再将余下1个样本输入训练好的神经网络,归一化处理输出结果即得该证据对该命题的基本概率分配,而后利用DS证据理论将其融合得到最终优化结果。
由表2可知,中度风险类型O2的概率随着融合次数增多逐渐趋向于1,而其余两种风险类型则趋近于0,与表1中结果相比大大地提高了结果的准确性。
4 结论
本文所提出的基于神经网络和DS证据理论的物流金融信用风险评价模型,其优势表现为:此两种算法的结合,不仅克服了单一神经网络达到高精度需要迭代次数过多而造成实时性差的缺点,而且通过大量标准样本对神经网络的训练,使得DS证据理论对系统的决策更加准确。
参考文献:
[1]邹小芃,唐元琦.物流金融浅析[J].浙江金融,2004(5):80-83.
[关键词]人力资源管理;人力资源需求预测;BP神经网络
[中图分类号]F270.7[文献标识码]A[文章编号]2095-3283(2013)01-00-02
一、 应用BP神经网络的必要性
随着经济全球化和信息技术的加快发展,我国企业面临着更为严峻的竞争压力。为了适应现代市场需求,企业必须优化配置人力资源,并科学制定人力资源规划。其中,科学的人力资源需求预测是人力资源开发和规划的基础,对人力资源管理活动将产生持续和重要的影响。
企业人力资源需求预测分析方法多种多样。在进行人力资源需求预测时,企业要考虑的因素复杂多变,如企业的目标和经营战略、生产状况的变化、工作设计或组织结构的变化等,而且各种影响因素与预测结果之间的相关性难以用定量的方法表示出来,是非线性相互制约的映射关系。将BP神经网络方法应用于人力资源需求预测领域,弥补和改进了人力资源需求预测分析方法,能较好地实现各指标与需求结果之间非线性关系的映射,对企业人力资源决策具有一定的参考和指导作用。
二、BP神经网络的基本原理
人工神经网络,简称神经网络,是一种包括许多简单的非线性计算单元或联结点的非线性动力系统,是用大量简单的处理单元广泛连接组成的复杂网络。Back-Propagation Network,简称为BP网络,即基于误差反向传播算法的多层前馈网络,是目前应用最成功和广泛的人工神经网络。它由输入层、隐含层和输出层组成。隐含层可以是一层或多层。BP神经网络自身具有的非线性映射、自学习、自适应能力、容易实现并行计算等优点,弥补和改进了供应商选择和评价方法,能较好地实现各指标与评价结果之间非线性关系的映射。
基于BP神经网络,构建供应商的选择评价模型,其基本思想为:假设输入变量为X=(X1,X2,···,Xi)',隐含层输出变量为Y=(Y1,Y2,···,Yj)',输出层变量为Z=(Z1,Z2,···,Zl)',期望输出的目标变量为T=(T1,T2,···,Tl)',Wij、Wjl分别为输入层到隐含层、隐含层到输出层的连接权值(如图1所示)。对于i个输入学习样本X1,X2,···,Xi,已知与其对应的输出样本为Z1,Z2,···,Zl。通过BP算法的学习,沿着负梯度方向不断调整和修正网络连接权值Wij和Wjl,使网络的实际输出Z逐渐逼近目标矢量T,也就是使网络输出层的误差平方和达到最小。
图1三层BP网络结构图三、BP神经网络在企业人力资源需求预测中的应用
根据上述BP神经网络主要思想,以A公司为例,分析如何运用MATLAB工具箱实现基于BP神经网络的企业人力资源需求预测。
1.样本数据处理
选取年份、产值、资产总计、利润4个指标作为输入向量,从业人员作为目标向量(见表1)。在对BP网络进行训练前,应该对数据进行归一化处理,使那些比较大的输入仍落在传递函数梯度大的地方。本例采用MATLAB工具箱中的premnmx()函数把数据归一到[-1,1]之间,如表2所示。
对于BP网络,有一个非常重要的定理。即对于任何在闭区间内的一个连续函数都可以用单隐层的BP网络逼近,因而一个三层BP网络就可以完成任意的n维到m维的映射。本例采用单隐层的BP网络进行从业人员预测。由于输入样本为4维的输入向量,因此,输入层一共有4个神经元,网络只有1个输出数据,则输出层只有1个神经元。隐含层神经元个数根据最佳隐含层神经元数经验公式取15个。因此,网络应该为4×15×1的结构。隐含层神经元的传递函数为S型正切函数tansig(),输出层神经元的传递函数为线性激活函数purelin()。
3.BP网络训练及仿真
建立网络后,对表2中的数据进行训练,训练参数的设定如表3所示,其他参数取默认值。
训练次数12100012目标误差120.00112学习速率120.01训练结果如图1所示,可见经过52次训练后,网络的目标误差达到要求。
图1训练结果网络训练结束后,运用MATLAB工具箱中的sim()函数,将经过归一化后的数据表2进行仿真模拟,获得网络的输出,然后将运算结果通过postmnmx()函数进行反归一化处理,得到BP网络预测值,最后检查BP网络预测值和实际从业人员数之间的误差是否符合要求,如表4所示。
4.预测结果评价
图2反映了该BP网络较好地逼近了输入矢量,即年份、产值(万元)、资产总计(万元)和利润(万元)与目标矢量,即从业人员(人)之间的线性关系。用BP神经网络对现有人力资源状况进行分析拟合,是人力资源需求预测的较理想方法。与传统的人力资源需求预测方法相比,将BP神经网络用于人力资源需求预测,克服了输入矢量和目标矢量非线性、不符合统计规律的问题。BP神经网络模型良好的容错和自学习能力,调用MATLAB工具箱函数,使预测过程更易实现,可以更好地对人力资源进行规划,提高人力资源预测精度。
图2BP神经网络的函数逼近结果将BP神经网络应用于企业人力资源需求预测,能较好地建立起各影响因素与预测结果之间的非线性关系,是企业预测人力资源需求的一种较理想的方法。但BP神经网络也存在着一些不足和问题。主要表现在学习速率太小可能会造成训练时间过长;BP算法可以使权值收敛到某个值,但并不能保证其为误差平面的全局最小值;网络隐含层的层数和单元数的选择一般是根据经验或者通过反复实验确定,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。因此,BP神经网络在企业人力资源需求预测领域的应用仍需根据企业自身实际情况做进一步的改进和完善。
[参考文献]
[1]飞思科技产品研发中心神经网络理论与MATLAB7实现[M]北京:电子工业出版社,2005.
[2](美)海金(Simon Haykin)神经网络原理(原书第2版)[M]叶世伟,史忠植译北京:机械工业出版社,2004.
[3]丛爽面向MATLAB工具箱的神经网络理论与应用[M]中国科学技术大学出版社,1998.
[4]刘跃基于BP神经网络的人力资源估价研究[J]统计与信息论坛,2007(1):96-99.
[5]艳明四种人力资源的定量预测方法及评述[J]统计与决策,2008(7):30-32.
[6]国家统计局固定资产投资统计司,中国行业企业信息中心中国大型房地产与建筑业企业年鉴[M]北京:中国大地出版社,2003-2008.
[7]王文富企业人力资源预测与规划研究[D]天津大学,2004.
关键词:神经网络;全要素生产率;预测;生产物流
中图分类号:F513.2 文献标识码:A
未来经济发展状况一直是人们探讨的问题。经济预测是在一定的经济理论指导下,以经济发展的历史和现状为出发点,以调研资料和统计数据为依据,在对经济发展过程进行定性分析和定量分析的基础上,对经济发展的未来情况所作出的推测。由于经济现象纷繁复杂,能获取的统计资料有限,现有的经济预测理论与方法还不能对此给予完全合理的解释和有效的预测,经济预测的实效往往不佳,为此本文引入神经网络方法对中国制造业生产率进行短期预测,获取促进制造业生产率发展的具体途径,同时,也为经济领域同类短期预测准确性的解决提供一种可行的思路和方法。
一、BP神经网络的基本原理
BP(Back Propagation)网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小[1,2]。BP神经网络模型拓扑结构包括输入层(input layer)、隐层(hidden layer)和输出层(output layer)(如图1所示)。
二、BP神经网络训练程序的编制
借助于MATLAB神经网络工具箱[3]来实现多层前馈BP网络的转换,免去了许多编写计算机程序的烦恼。神经网络的实际输出值与输入值以及各权值和阈值有关,为了使实际输出值与网络期望输出值相吻合,可用含有一定数量学习样本的样本集和相应期望输出值的集合来训练网络。
1.训练参数的设定
训练参数的设定:一般先对如下参数进行赋值:
最大训练步数:net.trainParam.epochs=1000
最小梯度差:net.trainParam.min-grad=-3
精度目标值:net.trainParam.goal=1e-4
显示间隔:net.trainParam.show=20
动量系数:net.trainParam.mc=0.9
学习率:net.trainParam.lr=0.5
2.设计网络函数
设计网络函数newff:用于创建前馈式BP网络,调用语法为:
net=newff(PR,[S1 S2…SN1],{TF1 TF2…TFN1},BTF,BLF,PF)
PR―R×2矩阵,由训练样本R个输入的最大最小值构成
Si―第i层节点数,输入层节点数为3个,依次为制造业工业增加值、制造业全社会固定资产投资和工资;输出层节点数为2个,依次为当年和下一年的全要素生产率;这里主要问题是隐层的确定,从两个方面入手:
本文提出了一种基于接收信号强度并结合BP神经网络算法的一种新型定位方法。该方法首先建立一个定位环境模型,用有限数量的参考节点先组建一个无线传感器网络。然后采集样本数据,读取RSSI和实测盲节点的位置坐标,把这些数据用作训练和测试BP神经网络模型。最后把得到的BP神经网络模型应用于具体问题并检测应用效果。经实践检验,该定位方法在短距离定位中比较可行,具有较好的定位性能。
【关键词】无线传感器网络 BP算法 神经网络 定位
随着通信技术、嵌入式计算技术和传感器技术的飞速发展和日益成熟,人们研制出了各种具有感知能力、计算能力和通信能力的微型传感器。许多的微型传感器构成了无线传感器网络引起了人们的极大关注。无线传感网可以使人们在任何时间、地点和任何环境条件下获取大量详实可靠的物理世界的信息,将被广泛地用于国防军事、国家安全、环境监测、交通管理、医疗卫生、制造业、反恐抗灾等领域。
传感器节点的定位技术是无线传感网络的支撑技术。目前,广泛使用的ZigBee无线传感器网络的原理是测量节点间的距离实现网络传输,无线传感器网络定位技术通常采用的方法是在保证信号接收强度(RSSI)的基础上进行测量。这种测量方法采取的主要方式是设置已知的参考节点,通过待定位节点接收到的RSSI值对该节点到各个参考节点的距离进行计算,再利用计算结果、采用不同的算法对目标点的坐标进行推导。本文对一种新型的定位方法进行了分析,此种方法得到未知节点坐标的途径是利用待定位节点与多个固定参考节点间的RSSI值对BP神经网络模型进行训练得到的。
1 无线信号传输模型
根据无线通信的基本原理,无线信号在自由空间中传播时信号随传播距离的增加而有规律的变弱。但是在一些复杂的环境里与自由空间相比,无线信号的传播规律性比较差。即便是传播距离相等,所测得的信号强度的差别也比较大。传统的定位技术受接受信号强度的影响,利用无线信号传播模型,利用拟合技术或凭经验得到模型中的未知参数A和N,接着在传播模型中代入信号强度值,计算出对应的距离,最后利用位置距离算法实现定位。此种方法的缺点是经验性强,普遍适用性差,不能得到较高的精度。而且在复杂多变的空间环境中,接收信号强度(RSSI)与传播距离(d)的关系就更加复杂多变。
2 用BP神经网络拟合RSSI-d非线性函数关系
Kolmogorov定理对此的证明显示,一个三层BP网络可以实现所有连续函数,所以RSSI与距离d之间建立的非线性函数关系完全可以用BP神经网络来拟合。误差反向传递神经网络是BP神经网络的别称。该网络具有前反馈性,利用的学习方式是均方差。BP网络同时具备输入层和输出层,另外还有一层或多层隐藏神经元结构。该种网络的采用全局逼近方法的学习算法,所以该网络的泛化和容错能力都比较强。
3 BP神经网络与无线传感网定位方法
3.1 神经网络模型建立
本文采用RSSI方法测量盲节点与各参考节点之间的距离,参考节点固定,盲节点通常是移动的,盲节点每隔一定时间发送一次广播信息,参考节点将监听到广播信息后,将测得的各RSSI值发送至中心盲节点,盲节点收集好信息后再发送给协调器及上位机。
3.2 样本数据库建立
通过对训练样本的学习,BP网络才能获得节点位置预测的能力。一般来说,训练样本数量越多,BP神经网络预测能力越强,所以为了提高定位的精准度,应适当多采样来训练样本,同时采用平均值法使样本数据更有效。
3.3 BP神经网络参数确定
本文采用3层的BP神经网络来实现,只包含一个隐含层。基本BP算法采用梯度下降法使得误差均方趋向最小,直到达到误差要求。经比较发现,traincgf算法收敛速度快,并且可沿共轭方向达到全局最小点,适合应用于节点位置估测;隐含层节点数对BP神经网络的预测精度有较大影响,隐含层节点数过多会增加训练网络的时间,网络容易过拟合。本文取经验值3为隐含层节点数,经仿真验证,可达到很好的效果。
4 仿真结果分析
不同测距误差下BP定位算法与最小二乘估计法的比较:BP定位算法与最小二乘法定位效果表中,进行一千次实验后得到的BP定位算法,利用参考节点与盲节点之间的坐标得到最小二乘法的数据。定位结果到未知节点真实值之间的距离成为定位误差,通过比较BP定位算法得到的平均误差与较之最小二乘估计法得到的误差,前者的误差较小。图1中显示,随着误差的增大,与最小二乘估计法相比BP定位算法得到的误差增大速度慢。可以说,当测距误差较大时,BP定位算法有较大的优势,由此可以说明BP定位算法的定位性能比最小二乘估计法好。
5 结语
定位技术是无线传感器网络的关键技术,对提高生产效率、人员安全检查具有重要意义。将智能算法与实际测量相结合,提高了定位精度。具体应用时,可以将C语言编程实现BP神经网络,将编程实现的BP神经网络封装成单个函数的形式,此函数的输入即为RSSI值,输出即为对应的距离d。
参考文献
[1]王小平,罗军,沈昌祥.无线传感器网络定位理论和算法[J].计算机研究与发展,2011(03):353-363.
[2]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005(05):857-868.
[3]吴黎爱.基于不同网络模型的无线传感器网络定位算法研究[D].南昌航空大学,2012.
[4]任梅.基于无线传感器网络定位技术的研究[D].西安电子科技大学,2013.
[5]张颖.无线定位优化算法的研究[D].西安邮电学院,2011.
作者简介
衣治安,硕士学位,现为东北石油大学计算机与信息技术学院副院长,主研领域为计算机网络。
马莉,硕士研究生。