首页 > 文章中心 > 简述智能制造的时代背景

简述智能制造的时代背景

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇简述智能制造的时代背景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

简述智能制造的时代背景

简述智能制造的时代背景范文第1篇

关键词:数字化变电站继电保护;配置;优化

中图分类号:F407文献标识码: A

一、数字化变电站继电保护的概述

1、数字化变电站继电保护的构成

1.1 智能化的一次设备

一次设备被检测的信号和被控制的操作驱动回路经过重新设计、采样微处理器和光电技术设计,使原来要通过二次采样电缆输入的电压电流信号,通过电子式互感器取代传统互感器的方式,原来开关位置、闭锁信号和保护、测控的跳合闸命令等原来用二次电缆传输的信号量,都通过集成智能化一次设备实现。简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程器件代替,常规的强电模拟信号和控制电缆被光电式数字量和光纤网络代替。

1.2 网络化的二次设备

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块【1】。

1.3自动化的运行管理系统

变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能及时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。

2、数字化变电站继电保护优化配置的必要性

数字化变电站继电保护,为加快变电站继电保护一体化建设,需要提升运维人员的技能水平,组织当值运维人员开展了变电运维一体化技能培训。数字化变电站继电保护,需要对光纤通道异常及处理方法进行讲解,利用掌握好继电保护知识,把设备的保护原理摸清吃透,才能在平时的运维工作中得心应手。数字化变电站继电保护,实现变电站继电保护建设速度和质量的双重提升,需要提高运维人员的技能水平,以此推进变电站继电保护一体化体系。数字化变电站继电保护过程中,故障录波装置及保护信息子站两类继电保护辅助设备由于使用频率较低,需要得到运维检修人员的重视,部分设备出现采样数据偏差、通道中断等缺陷都未能及时处理,导致线路发生故障时,无法采集到相关数据,影响故障的分析判断。

3、数字化与传统保护装置的区别

对于传统的保护装置硬件来说,一方面其微处理器是数字电路构成的基础,一旦出现一些小的故障,就会对整个数字电路产生不利的影响。另一方面,传统保护装置核心单元的四周有着不同的接口,需要按照接口的不同接进相应的线路,不仅在一定程度上干扰了装置的运行,而且提高了保护的成本。但对于数字化保护装置,随着社会的发展中,数字化的保护装置得到了很大的改进,无论是软件方面还是在硬件方面,都有了很大的提高。原来的那些细小的问题得到了很好的解决,同时,充分满足了客观上收益高成本低的要求。在数字化保护装置中,使用电子式互感器来进行数据的采集,这是与传统保护装置的硬件结构方面最大的不同。数字化继电保护装置主要包含:开入单元、出口单元、中央处理单元、光接收单元、通信接口等单元。数字化与传统保护装置的区别,使得继电保护在目前的运行过程中有了明显的改善,从而在杜绝表面工作以后,很多的工作都有了实质性的进展。

二、数字化变电站继电保护优化配置

1、数字化集成保护优化配置

在科学技术不断发展的时代背景下,数字化变电站继电保护优化技术也不断更新,而系统性保护优化配置在IEC61850、数字化一次设备以及网络二次设备广泛应用的基础上,使之能够符合变电站信息共享以及互相操作的目的,从而能够全面保护变电站;而系统性保护优化配置也是在这个基础上形成的一种保护优化配置方案,系统性保护优化配置方案一般采用双重化优化配置的方法,这两个系统可以一起运转,相辅相成,其也可以单独运行。这两者配置没有任何区别,所采用的工作原理也近乎相同,其操作简单、分析全面,同时也是全面保护配置方案的基础依据【2】。虽然数字化保护优化配置有许多优点,能够准确迅速地分析问题以及达到信息共享,但是其中也存在很多缺点。经过多次的技术改进,系统性保护优化配置已经完成了多个方案进行共同使用的目的,与常规性保护优化配置方案比较,系统性保护优化装置的网络结构较为简单、易操作,装置设备也较为简单,但其对操作技能有更高的要求,所以,在实际操作中应该选取高技能、高水平的专业操作人员。

2、进一步加强常规性保护

常规保护就和使用常规互感器时的情况一样,主要是根据要求选择配置,需要注意的是保留保护的逻辑图和类型,例如开关、主变、线路等保护。其次,需要将本来的插件改为光纤通信接口,其中CPU的处理方式要相应改变为通信接口、工/0改为GOOSE接口进行。只需要根据压板投退保留一些开入,利用智能操作箱对剩下的部分进行转移或者取消,这些事情都可以立即进行而没有必须要花费时间放在模拟实验上了。

3、主变保护配置方案

现阶段,随着经济水平的不断发展,人们给供电工作提出了更为严格的要求,因此,对于数字化变电站继电保护工作而言,如何落实其优化配置工作便显得愈发重要了。对配置方案予以优化设计的过程中,往往重视并做好各个环节工作,落实主变保护配置方案的优化设计便是其中极为关键的一环,应给予严谨对待。

对于主变保护配置而言,其通常采用双重化保护方案,其主要包括两个方面,一个是电量保护,另一个是非电量保护。在电量保护配置方面,既有软压板的设置,又有硬压板的设置,前者的功能在于保障投退动作的有效执行。

4、110kV特殊值和35kV、10kV馈线保护装置

110kV属于一个较为特殊的电压值,国内相当数量的变电站均将其当做额定电压,因此,在优化配置方案的工作中,尤其要重视这一问题,并在各个工作环节均将其作为重点考量因素。结合对象以实现配置的合理选择和应用,与应用常规互感器的情况较为相似,应重视并做好保护类型以及逻辑图的有效保留工作,主要包括主变保护、线路保护以及开关保护等。在数据采集方面,借助光线通信接口以实现对传统的交流量输入插件的有机替代【3】。如此一来,便可更加凸显数字化所具有的优势,一方面能够满足继电保护优化配置的相关要求,另一方面能够满足110kV电压的相关要求。对110kV线路段予以保护时,还应坚持具体问题具体分析的原则,结合当地经济发展水平以及技术条件等诸多方面的影响设计针对性的保护配置方案。

以数字化变电站为目标对象,开展继电保护工作时,馈线属于极为关键的环节,应给予足够的重视,因此,在设计方案的过程中,尤其要重视并做好馈线问题的处理。以35kV和10kV馈线问题为例,二者既有相似之处,也有一定的差异,有必要分清异同,再予以区别对待。一般而言,为满足不同线路的各自需求,将会引入和应用MU合并单元,往往5回35kV出线同电容器便对应着一个合并单元,同时经由一台交换机以实现保护装置的接入。而10kV与35kV存在差异,其与电容器之间不允许应用合并单元,换而言之,仅允许应用具有独立性质的合并单元。母线电压应采取分段且并列的运行方式,同时分段动作的实现主要借助智能电压切换单元予以达成,从而最终满足运行状态下的数字化切换功能。

结束语

总之,数字化变电站继电保护配置对于变电站的发展有着至关重要的作用,因此,在具体的工作中,要不断优化数字化变电站继电保护的配置,促进其进一步发展。

参考文献:

[1]刘凯里. 数字化变电站继电保护优化配置研究[D].华南理工大学,2013.