前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇教育领域的人工智能范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
如果按照这个速度,用不了几年,每个业余围棋爱好者都能坐在家里的沙发上,泡上一杯茶,打开电脑,运行围棋人工智能程序,向“围棋上帝”学上一盘。以前,一个业余围棋爱好者一辈子都难得与职业高手下上一盘棋,将来这个梦想天天都可以实现。
人机大战第二季结束后,Google研发团队宣布,AlphaGo将退出围棋舞台,接下来它将挑战医疗、能源、材料等全新领域。谁又知道,人工智能在这些领域将取得哪些革命性的突破呢?
回到教育,虽然没有AlphaGo的轰动性效应,但从历史上看,教育一直是人工智能的重要应用领域。同样,人工智能在教育领域的前进步伐也从来没有停止过。智能导师、教育机器人、学习同伴、智能测评,这些最新的人工智能教育产品时刻提醒着我们,教育的人工智能时代已经不再遥远了。
如果从技术角度来说,我们丝毫不担心人工智能时代的到来,因为人工智能的脚步是不可阻挡的。但我们同样需要对人工智能保持一份警醒,毕竟,教育是一个远比围棋复杂的领域。AlphaGo在围棋上取得质的飞跃不过几年时间,而教育的“AlphaGo时刻”何时出现,谁也不敢断言。更为关键的是,围棋不过是棋盘上的输赢,教育却是人生的成长。胜负是一时的,而成长是不可逆的。
关键词:人工智能;教学改革;教学方法
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。
关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育
中图分类号:G64文献标识码:A
文章编号:1009-3044(2020)25-0153-03
1引言
智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。
2人工智能时代对人才的需求
站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。
随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。
从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。
3应用型人才培养模式分析
《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。
通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。
3.1职能
智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。
3.2知识结构
智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。
(1)智能感知与模式识别
属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。
(2)智能系统设计与制造
属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。
(3)智能信息处理
属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。
3.3能力结构
智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。
CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。
自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。
3.4行业(产业)导向
从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:
(1)智能感知与模式识别领域
主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。
(2)智能系统设计与制造领域
主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。
(3)智能信息处理领域
主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。
涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。
产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。
4KCBE模式人才培养的主要措施和途径
智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。
(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系
在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。
(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系
按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。
一、人工智能
人工智能(Artificial Intelligence,缩写为AI),是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它试图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。养老服务业人工智能的应用主要体现在家居扫地机器人、语音沟通服务、家庭体检、药物使用建议、家居厨师、家居智能陪伴服务。
二、养老服务人才培养“人工智能化”
人工智能上升为国家高级战略后,国家发展服务性制造和生产性制造,同时尽可能的通过服务业的再造和完善,改进我国经济产业结构,发挥技术、人才、产业的对接联动效应。人、机器、智能机器将共生共存,成为养老服务工具的新常态。未来的养老服务人才不是笨干、累干、苦干,而是实干+巧干,实现脑力劳动的智能机械化,尽可能地减少人力的倦怠感,提高服务效率、质量和速度。智能化,体现在养老服务人才应具备传播人工智能基础知识,客观了解人工智能,有效实现人与机器、智能机器的有效配对组合应用,充分发挥智能机器的保健医生、保姆、玩伴、老伴、子女多重功能,倡议自养老。
三、人工智能养老服务人才培养模式
(一)广播电视大学远程教育模式――音像媒体
配备养生、人工智能国内一流专家,发挥国家音像媒体的作用,将人工智能家居应用的途径、方式、手段通过网络微视频的形式进行普及。发挥社区教育指导中心、社区大学和社区教育学院、社区学校、社区学习站四级社区教育办学网络体系的作用,建立社会养老大学,使老年人自己会应用人工智能,减低对子女的时间依赖。
(二)公众号社会宣传普及模式――微媒体
国家、企业、社区应建立专题公众号进行微媒体培训。从国家层面,要建立人工智能养老服务应用技术发展历程方面的公众号;从企业层面,要建立人工智能机器人养老服务应用说明类的公众号;从社区层面,要基于一些鳏寡孤独建立社群委托服务型人工智能服务策略的公众号。
(三)职业技术学院培训模式――专题高端培训
目前,人工智能服务还不能完全普及,故而职业技术学院的后备人才首先要建立自我提升的潜意识,此外,职业技术学院自身要引进国内外的人工智能专家,进行家庭陪护、游戏娱乐、医疗、做饭、洗衣、洗漱、保健、锻炼等多重人工智能方面的高端培训。
(四)民政部门、老龄委联合推广模式――社会传媒
作为养老服务的主管部门,民政部门和老龄委要利用广播、电视、报纸、杂志等对人工智能的发展趋势、前景、作用、功能、效益、方式进行宣传。民政部门要侧重于养老服务的社区组织协调,老龄委要侧重于制度、规定、采购人工智能机器方面的政策优惠的制定。
(五)社会民间家政服务组织培养模式――养老院、福利院自组织模式
民间社会力量建立有养老院、福利院,这就对相关服务人员的素养提出了时代性的要求。其一,人的社会角色多,时间、精力、体力有限;其二,人工智能是趋势,必须适应并学会使用;其三,要加强前瞻性人才培养,解决劳动倦怠问题,即民间组织自己解决自己的问题,通过人工智能,减少雇员,降低劳动力雇佣成本。
四、人工智能养老服务人才培养对策
(一)广播电视大学养老服务人才培养对策
依托远程教育系统,发挥网络平台的作用,将人工智能的技能培训与社区教育、社会养老大学的建设并举;发挥广播电视大学的社会服务功能,与人工智能机器生产企业搭建战略伙伴关系;积极推进产培用一体化建设,形成网络平台特色模块;推出广播电视大学养老服务精品课教程,以优质教育品牌打开培训窗口。
(二)人工智能机器制造企业养老服务人才培养对策
基于居家养老的社会需求利益取向,把脉居家老人和其子女的时间要求,积极开发、完善人工智能机器的特殊功能,加大资金投入力度,特别加强对情感交互、图像识别、语音功能的完善;重点做好人工智能机器使用说明,要具有便捷实用性的操作指南,方便人们学习。
(三)职业技术学院养老服务人才培养对策
职业技术学院作为专职教育机构,首先,要提前与职业高中接轨,进行专职意向高中生的录取,为养老服务人才培养获取意向生。其次,要突出人才培养的实践应用性,购置高端智能机器,让学生能够迅速掌握技能,并且能够进行社会的二次培训,对购置的智能机器进行租赁和应用培训。
(四)民政部门、老龄委养老服务人才培养对策
民政部门和老龄委要培养高级管理人才,建立养老服务人才智库,积极推进国家、企业、社会的养老服务人才人工智能化联动培养;加大对家庭贫困并且有意向致力于养老服务的青年才俊的培养支持力度;对人工智能养老服务高端研发海归人才给予政策优待;建立城市养老服务专家群组,定期召开学术研讨会议,增进智慧交流。
(五)社区养老服务人才培养对策
社区要加强人工智能养老服务人才的典型宣传,利用宣传画的形式传播人工智能应用的优势;积极打造人工智能特色服务团队,开展社区公益性专题培训,并募集资金购置人工智能机器为特殊群体献爱心;努力构建人工智能养老社区,采用人工智能的形式鼓励老年人进行文体娱乐,增强体质。
总的来说,在计算机技术不断发展的现代社,人工智能技术的普及给养老服务带来了巨大的便捷。随之而来的人工智能化养老服务人才的培养成为了发挥人工智能养老服务效用的关键环节。要培养人工智能化养老服务人才,可以从远程教育、社会宣传普及、学院培训、政府推广等模式入手,实现人工智能化养老人才培养模式的多元化。同时,开展远程教育的过程中运用产品一体化模式,在满足老人需求的基础上提升人工智能设备的人性化操作,重点开展职业技术院校的人才培养方式,与民政部门开展紧密合作,积极培养人工智能化养老服务人才。社区方面强化人才的教育宣传工作,全力搭建人工智能养老社区。
关键词:人工智能教育;创新思维;实践能力;信息技术课
新课改要求教学应当促进学生全面发展,其中,对创新思维和实践能力的培养尤为重视。初中阶段如何科学、有效地培养学生的创新思维与实践能力是每一个教育者需要思考和研究的问题。
一、创新思维与实践能力的培养
1.创新思维与实践能力的重要性
每个人都拥有创造能力,这种能力是可以开发的,并对学生人生发展起重要作用,如何科学开发学生的创造能力,离不开对创新思维和实践能力的培养。教师应该有意识的发现和训练学生的创新思维,多锻炼学生的动手能力,提高他们的实践能力,为学生主动创造做准备。
2.培养创新思维与实践能力的途径
培养创新思维和实践能力的途径有很多,初中阶段学校的数学课、自然科学课、社会实践课、信息技术课等课程是培养学生创新思维和实践能力的有效途径。其中以人工智能教育为重点的信息技术课可以利用编程技术、信息化技术、大数据技术的学习,高效、系统地开发学生创新思维,科学地提升学生的实践能力。
二、人工智能教育与信息技术课的融合
当前,人工智能技术发展得如火如荼,语音识别、机器翻译、计算机交互、计算机视觉、机器阅读识别等技术的突破,向我们展示了人工智能的优越性和未来前景,很多地区和学校也已将人工智能教育,如编程、信息处理,作为必修内容纳入了学校的教学大纲之中。人工智能教育包含编程、大数据、机器人等多个技术领域的学习,中学阶段可以利用信息技术课将人工智能教育的相关内容融入教学中,例如:Python编程、APP制作、机器人教育。
在初中信息技术教学中,应当向学生传授编程的相关知识,让学生初步认识编程、了解编程常识,并引导学生利用计算机进行编写代码。利用现代教学思路和教学创新激发学生兴趣,提高学生信息技术课学习效率和实践能力。为学生打造智能化、个性化,富有创造性的学习体验。
三、人工智能教育的实践要求
在信息技术课程的教学过程中融入编程等人工智能知识,可以丰富教学内容,拓宽学生视野,增加学生知识储备,同时也能有效激发学生兴趣,满足学生好奇心,转化为实践、创新的动力。但是在实施人工智能教育的过程中,需要注意以下几个问题,以信息技术课中编程教学为例:
1. 要考虑学生的接受度,体现量力性教学原则,不超纲不越级。
2. 要注重环境的创设,打造轻松愉快的学习环境,充分调动学生热情,帮助激发学生创新思维和实践动机。
3. 要注重编程常识的普及和实践引导,给学生充足的思维空间和操作机会。
4. 要注重教学的系统性和连贯性,加强编程技术同信息技术知识、其他人工智能技术的关联,为学习的水平、顺向迁移打好基础。
只有明确教学目标,不断地优化教学过程,监控各个环节,加强与学生沟通,积极开发和训练学生的创新思维和实践能力,才能将人工智能教育的效果最大化,从而不断提高人工智能教育的教学质量。
四、人工智能教育存在的问题
自新课改提出了信息化教育后,我国不少地区已经开始探索人工智能教育问题,尤其在义务教育阶段,开展了各种形式的人工智能教育,但是由于各地区经济发展水平不同,教育基础、教学水平和资源条件不同,正面临着诸多问题。
目前在我国中学阶段,人工智能教育发展水平整体较低,存在着地区不均衡、教育资源不均衡、教学水平不均衡、学生学习程度不均衡等多方面问题,需要人力物力财力的持续投入,优化人工智能教育平台,完善人工智能教育基础设施,让人工智能教育更规范。同时,教育工作者也需要不断研究、调整教学模式,更好地激发学生创新思维,提高实践能力。
五、结语
本文通过中学生信息技术课和人工智能教育的结合,浅谈人工智能教育与培养学生创新思维、实践能力的关系。人工智能教育的实施有利于中学生开发创新思维,提升动手能力,可以和多学科联动教学,加强学科间的联系,促进学生全面发展。目前在我国中学阶段,人工智能教育发展水平整体较低,存在着地区不均衡、教育资源不均衡、教学水平不均衡、学生学习程度不均衡等多方面问题,仍需教育工作者不断研究改进,让人工智能教育更规范,更好地激发学生创新思维及实践能力。
参考文献
[1]李宏堡,袁明远,王海英.“人工智能+教育”的驱动力与新指南——UNESCO《教育中的人工智能》报告的解析与思考[J].远程教育杂志,2019,37(04):3-12.