首页 > 文章中心 > 生物质燃料的优点

生物质燃料的优点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物质燃料的优点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物质燃料的优点

生物质燃料的优点范文第1篇

一、起火快。

该炉具用硬杂木或秸秆成型燃料为原料,充分燃烧后15分钟即可将所带暖气片全部变热,且温度高;而普通暖气炉的起火时间较慢,将暖气片烧热至少需要30分钟左右。

二、热效率高。

该炉具是采用二次进风促进原料充分燃烧的原理,将燃烧物进行全面燃烧,而且燃烧的热能90%以上的用于炉膛内壁的温度提高,因而热效率高。

三、节煤。

该炉具是以生物质原料为主,以煤为辅,在烧暖气或做饭时,用生物质原料(果树枝和秸秆成型原料),晚上封火时用烟煤,陈村郭光杰家用此炉冬天取暖,取暖面积45m2,白天用树枝和成型燃料作原料,晚上用烟煤封炉子,每天用成型原料10公斤,烟碳2.5公斤,每年按3个月取暖时间计,共用成型燃料1000公斤,烟煤250公斤。

四、节约开支。

该炉具的使用极大地减少了农民冬天取暖的用煤开支,农民平常取暖炉的燃料用钢碳、烟煤和蜂窝煤,以蜂窝煤为例,取暖面积为60~70m2,日平均用量为27块,每块蜂窝煤按0.6元计,日费用为16.2元,供暖时间按100天计,共需1620元,而陈村郭青礼用的生物质炉,取暖面积为65m2,以烟煤为主要原料,日用量为15公斤,供暖时间同样为100天,需1.5吨烟煤,每吨烟煤为600元,共计费用为900元,比普通炉少720元;用成型燃料或果树枝为主原料的生物质炉其费用更低,每天以成型原料为主,烟煤为辅的生物质炉,每天用成型燃料15公斤,煤2.5公斤,成型燃料每公斤0.4元,使用100天共用成型燃料1500公斤,计600元,用煤250公斤,计150元,共计费用750元,远远低于普通炉具的燃料费,而且使用此炉具起火快,温度高,平均室内温度达到15~18℃。

五、转废为宝。

生物质炉的主要原料是果树枝、棉花柴压缩成的生物质原料,将废弃的秸秆枝条转化为可燃烧的生物原料,是可再生能源极佳的转化利用方式,使用生物质炉后一是降低了污染,净化了环境,二是废弃物转为可燃烧的能源,得到再次使用。

因此,在农村用能方面应大力推广生物质炉,以解决广大农民越冬取暖的问题,随着人民生活水平的不断提高,干净、卫生、易操作、费用不高的取暖炉具越来越受到农民朋友的欢迎,是农村能源清洁化的一个重大改革,应在树枝或秸秆资源丰富的地区大力推广此项炉具,同时,在推广应用方面应注意:

1、此炉具必须安装在厨房或单独房间内,以免发生意外或对环境造成污染。因为这种炉具的密封性不好,易走气跑烟。

生物质燃料的优点范文第2篇

[关键词] 汽车新能源产业技术体系变革发展战略电动汽车

一、引言

汽车作为现代重化工业技术体系的代表产品,不仅是不可再生石油资源的主要消耗者,而且也是造成城市空气污染的主要祸首。汽车所排放的尾气中含有大量NOX(氮氧化物)、CO(一氧化碳)、PM(颗粒物)和HC(碳氢化合物)等有害物质,对城市大气环境造成了严重的污染和破坏。解决汽车的环境污染和石油的短缺问题需要寻找可替代石油燃料的洁净能源或改变传统的内燃机技术。然而,由于方法众多,每一种方法都存在各自的优缺点,众说纷纭,争执不下。究竟哪一种新能源适合我国汽车未来能源的发展方向呢?

我们认为,内燃机技术以及汽车产业在产业技术体系中占有核心地位,从整个产业技术体系的发展战略角度出发,分析现有的汽车各种替代能源的优缺点,分阶段实施汽车新能源的发展战略,对于我国实现产业技术的跨越发展具有十分重要的现实意义。

二、汽车代用能源的分类及特点

目前,可代替传统汽油和柴油的汽车代用能源有许多种,可将其归纳为三类:第一类是不可再生能源,包括液化石油气、天然气、煤基液体燃料、甲醇;第二类是可再生能源,包括乙醇、生物柴油、太阳能;第三类是性质不确定能源,其性质的归属取决于生产该能源的原料,包括燃料电池、电能和氢能。

1.不可再生能源

(1)液化石油气(LPG)。LPG分为石油炼制过程中的副产品和油田伴生气两种。

LPG的优点:①能效高。与汽油相比,LPG辛烷值较高;②减少污染。LPG可降低CO2排放25%、CH80%、SO270.5%、SO99.99%、Pb100%、CO89.72%、颗粒物41.67%、噪音40%;不需改变内燃机;石油废弃物利用,有一定的经济价值。

LPG的缺点:能量密度低;车用LPG的质量要求较高,需要提纯处理;存在一定的爆燃危险性,安全性较差;仍然以石油资源为依托,属于不可再生资源。

(2)天然气(NG)。汽车使用的天然气按储存方式主要分:压缩天然气(CNG )、液化天然气(LNG)和吸附天然气(ANG)三种。

①压缩天然气(CNG)。CNG是将常态下的天然气以20MPa以上压力压缩在高压罐内供汽车使用。

CNG的优点:污染排放低。天然气汽车尾气中NOX及CO2排放量很低,且无PM固体微粒排放;工艺简单。供汽车使用的CNG是用压缩机将天然气压缩储存,燃烧时通过减压装置减压释放,工艺比较简单;天然气储量相对丰富。我国目前天然气资源量约为54万亿立方米,探明的天然气地质储量为3.9万亿立方米,资源探明率为7.2%。并且,天然气的勘探潜力很大,储量较石油丰富。

CNG的缺点:存储体积较大,能量密度低;汽车充气时间较长,一次行驶里程短;储气钢瓶因压力大,有一定的危险性;车用充气源受天然气管网限制;属不可再生资源。

②液化天然气(LNG)。LNG是将天然气在-161℃的低温下液化,并进行净化处理而成。

LNG的优点:更洁净环保。LNG燃尽后无灰渣和焦油,主要排放物是二氧化碳和水蒸气,NO2、CO2等有害物质的含量极少;能量密度大。LNG液化后的体积仅是原气态体积的1/625,能量密度高于CNG三倍多;安全性能好。LNG无需高压,不易自燃自爆,安全性能好;车用充气源不受天然气管网限制;具有循环利用能源效应。LNG在汽化至常态过程中将释放出大量的冷能,可回收用于汽车空调或汽车冷藏。

LNG的缺点:生产与运输成本较高。LNG是在低温下液化、缩小体后装入特殊运输设备运送到目的地,并再次气化后方可使用。因此,LNG在中短途运输方面成本过高。属不可再生资源。

③吸附天然气(ANG)。吸附储气的原理是在储气容器中以特殊方法装填超级活性炭作为吸附剂。利用吸附剂表面分子与气体之间的作用力吸附气体分子。

ANG的优点:储存压力低。ANG的压力一般只有4~6MPa,有利于安全;不必使用笨重的钢瓶,减少储气设备重量。

ANG缺点:能量密度低;ANG技术难度较大,目前还处于研究阶段。

(3)煤基液体燃料。煤基液体燃料是将煤炭通过直接或间接方法液化成液体燃料油,俗称“煤变油”。

煤基液体燃料的优点:我国富煤少油,利用煤变油技术可缓解石油紧张。

煤基液体燃料的缺点:煤变成液态燃料单位成本高;煤转化成液态燃料的生产过程中要消耗大量的能源;煤变油技术仅是将一种不可再生能源转化为另一种形式,不符合能源发展方向;煤变成液体燃料只是将煤炭转变为汽油、柴油,依然不能降低环境污染。

(4)甲醇。甲醇是一种含氧化合物,溶解性强,可与汽油、柴油溶解混合为新型燃料。甲醇可从煤、天然气和油页岩中制取。

甲醇的优点:甲醇作为燃料具有辛烷值高、汽化潜热大、热值较低等特点;作为车用燃料,甲醇的CO、HC和NOx排放较汽油和柴油低,几乎无碳烟排放;溶解性好,可与汽油、柴油混合使用。

甲醇的缺点:对环境即有正面影响也有负面影响。甲醇汽油可以减少尾气中CO、CH、NOx排放,但尾气中总醛排放增加;甲醇具有毒性。人摄入5~10毫升就会发生急性中毒,30毫升即可致死;甲醇对金属有腐蚀作用,对橡胶皮革有溶胀作用;制取甲醇要消耗不可再生资源。

2.可再生能源

(1)乙醇。乙醇是玉米、小麦、薯类、高粱、甘蔗、甜菜等经发酵、蒸馏、脱水后再在其中加入变性剂而成。车用乙醇汽油是将燃料乙醇和组分汽油按一定比例混配而成。

乙醇的优点:减少污染。使用乙醇汽油的汽车尾气中CO降低30%,NOX减少10%,苯系物质、氮氧化物、酮类等污染物浓度明显降低;属可再生能源。

乙醇的缺点:乙醇需要与汽油混合使用,不能成为汽油的完全替代品;燃烧乙醇会产生悬浮颗粒,不是完全的绿色燃料;消耗大量土地资源。

(2)生物柴油。生物柴油是采用动物或植物油脂与甲醇(或乙醇)经酯交换反应而得到的脂肪酸甲(乙)酯,是一种可以替代石油柴油的可再生清洁燃料。

生物柴油的优点:环保特性优良。根据美国科学家的研究结果,使用生物柴油可降低90%的空气毒性,二氧化碳排放要比柴油减少60%;车辆成本低。使用生物柴油的汽车与普通柴油车相同,车辆无须任何修改;安全性好。生物柴油的闪火点较高,毒性较低;是一种环境友好的可再生燃料。

生物柴油的缺点:燃烧效果差。生物柴油的粘度约为#2石化柴油的12倍,影响喷射时程,导致喷射效果不佳。由于生物柴油的低挥发性,造成燃烧不完全,影响汽车燃烧效率;制取生物柴油的成本较高;消耗大量耕地资源。

(3)太阳能。太阳能资源丰富,随处可得,无需运输,对环境无任何污染,是未来汽车能源的发展方向。

目前,制约太阳能汽车发展的主要障碍:一是汽车的动力常受时间、地点、季节、气候影响;二是太阳能的采集与转换效率难以满足汽车高速行驶所需要的足够动力;三是太阳能电池板造价昂贵。

3.性质不确定能源

(1)燃料电池。燃料电池是直接将储存在燃料和氧化剂中的化学能转化为电能的一种装置。燃料电池常用的燃料有氢、天然气、甲醇等,常用的氧化剂有氧气、空气。

燃料电池的优点:洁净、污染低。纯氢和氧结合的燃料电池,可实现零放排。以甲醇、天然气为燃料的燃料电池汽车造成的大气污染仅为内燃机汽车的5%;燃料电池能量转换效率较高;噪音低。燃料电池属于静态能量转换装置,除了空气压缩机和冷却系统以外无其他运动部件,噪音小;燃料多样化。燃料电池所使用的燃料可以是氢、甲醇、天然气,也可以是丙烷、汽油、柴油、煤以及可再生能源;利用生物制氢、水制氢的燃料电池可实现能源再生化。

燃料电池的缺点:成本高。质子交换膜电池中的膜材料和催化剂均十分昂贵;燃料的质量不过关。质子交换膜燃料电池必须使用没污染的氢燃料,而目前纯净氢的制取技术还存在困难。

(2)电能。以电能为动力的汽车分为三种:纯电动汽车(BEV)、燃料电池电动汽车(FCV)和混合动力电动汽车(HEV)。纯电动汽车是指以车载蓄电池为电源,用电动机驱动的车(本文中的电动汽车指的是纯电动汽车)。

电能是一种洁净能源,电动汽车完全可以实现零排放、无污染,但是,目前的电能还不属于可再生能源,主要是因为电能还有相当一部分是通过煤炭、石油等化石类能源转换而来。

电动汽车的优点:洁净无污染。目前,只有电动汽车完全符合零排放,而且电动汽车噪音很低;电能是取之不尽、用之不竭的能源。如果用再生能源(太阳能、水能、风能、生物质能、潮汐)发电,电能可永续使用;电能的利用技术成熟。人类利用电能已有很长一段历史,遍布全国的电网可为电动汽车的充电带来极大的方便;电动汽车结构简单,维修方便。

电动汽车的不足:电池性能还无法满足电动汽车产业化的要求。目前,电动汽车的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、镍氢蓄电池、锂离子电池等。铅酸蓄电池比能量低,质量和体积太大,一次充电行驶里程较短,且寿命短,污染严重;镍镉蓄电池中的重金属镉对环境有污染;镍氢蓄电池有高温使用电荷量急剧下降的缺点;锂离子的问题是安全性和稳定性,此外,大功率锂电池存在技术难度;价格昂贵。蓄电池的价格是目前制约电动汽车产业化的障碍;电池充电时间长,蓄电能力有限;动力性差;电能还没有解决完全可再生和无污染问题。电能的生产还大量依赖煤炭、石油等不可再生资源,此外,汽车废弃蓄电池还有污染问题。

(3)氢能。氢是自然界存在最普遍的元素,在自然界中多以化合物形态出现,主要贮存于水,特别是海水中富含大量的氢,石油、天然气、煤炭、动植物体也含氢。氢的发热值是所有燃料中最高的,而且燃点高,燃烧速度快,是十分优质的二次能源。以氢气为能源驱动汽车,主要有三种方法:汽车携带贮氢罐,以氢气在发动机中直接燃烧产生动力;汽车电池放电电解出氢作燃料;以氢作燃料电池的燃料,用电力驱动汽车。

氢能的优点:氢是洁净能源。氢燃烧非常清洁,除生成水和少量氮化氢外不会产生其他对环境有害的污染物质;氢是高效燃料。每公斤氢燃烧产生的能量为33.6kW・h,是汽油的2.8倍;不需要对现有的技术装备作重大的改造。现在的内燃机稍加改装即可使用氢。

氢能的缺点:廉价的制氢方法是氢能利用的一大障碍。目前,氢的制取需要大量能量,而且制氢效率很低;氢的安全性能差。氢气是一种无色无臭的气体,而且着火界限宽、着火能低、燃烧速度快,容易引发火灾及爆炸。此外,氢特别容易泄漏,加油站、管道和纯化工厂很难完全消除泄漏隐患。

三、发展我国汽车新能源的思路

汽车产业在整个工业体系中占有核心地位,汽车新能源的发展战略不仅关系到汽车产业的可持续发展,而且对于整个工业的发展方向具有举足轻重的作用,因此,我们还需要从产业技术体系角度考虑汽车新能源的发展战略。

产业技术体系是指在工业生产部门各个产业领域所使用的各种产业技术,因其生产过程中的必然联系而构成的统一的有机整体。产业技术体系中的产业技术因其在生产部门生产过程中的影响范围和程度不同而分为源技术、主干技术、旁支技术三个层次。其中,源技术是最核心的、最具影响力的技术,它决定整个工业部门产业技术体系的性质和本质特征,决定了工业部门内部其他产业部门核心技术的产生、变革和地位。而主干技术是在源技术之下,直接与源技术配套的工业部门内部各产业技术,它们只是对一个或几个工业部门有重大作用。而旁支技术则是为主干技术服务的、处于次要地位的各产业技术。

人类历史上的历次产业技术革命都因产业技术体系中的源技术发生重大变革,推动产业技术体系中各层次的产业技术逐步改变,最终导致整个产业技术体系发生变革。第一次工业技术革命正是因蒸汽机的出现,导致人类生产的重心从农业转向工业;第二次工业技术革命由于内燃机和电力技术的发明,使人类生产走上了重化工业道路,也导致今天的资源危机和环境恶化;以微电子、新材料、新能源、生物工程、航天技术、海洋技术等为代表的第三次工业技术革命,并没有改变第二次工业技术革命所奠定的重化工业技术体系性质,却使消耗不可再生资源、污染环境的重化工业技术体系加速发展。今天,人类经济社会面临的生存危机,在本质上是产业技术体系性质造成的,是迄今为止历次产业技术革命都在产业技术开发与应用上忽视了人与自然的关系,从而导致产业技术体系各层次的产业技术都消耗不可再生资源、排放污染环境的废弃物造成的。

当前的产业技术体系还属于重化工业技术体系。重化工业技术体系中的源技术――电力技术和内燃机具有消耗不可再生资源、破坏环境的性质,带动了汽车、钢铁、能源、化工、机械加工等主干技术以及旁支技术也具有同样的性质。因此,要实现人与自然和谐相处,必须从根本上针对重化工业技术体系的源技术――电力技术和内燃机进行革命。

传统的内燃机是直接建立在石油、天然气等不可再生能源结构上的工业动力,是现代大工业各种产品生产的母机。汽车发动机是内燃机最突出的代表。汽车不仅是不可再生资源主要消耗者,也是城市环境恶化的主要元凶,此外,汽车产业更是在整个产业技术体系中关联最多的产业。因此,汽车洁净能源的开发应朝着改变传统的内燃机技术,使其由消耗不可再生资源、污染环境向使用可再生资源、对环境无害的方向发展,以推动整个产业技术体系向生态化变革,从而实现可持续发展的目标。因此,未来汽车的新能源应具备如下条件:

第一,新能源必须是可再生资源。不可再生资源终究会枯竭,用较丰富资源替代紧张资源只能作为短期权宜之计。

第二,新能源必须是洁净的。新能源不应对环境产生任何污染,应完全实现零排放。

第三,新能源有利于变革传统的内燃机技术。变革传统的消耗不可再生资源的内燃机技术不仅对于汽车产业发展有利,也会推动整个产业技术体系向可持续发展的方向努力。

四、我国汽车新能源的发展战略

综上所述,我们认为电能是汽车未来最佳的能源。但是,用电动机取代目前广为使用的传统内燃机不是一蹴而就的事情,因此,汽车新能源的发展战略还需要分阶段实施。

1.用电动机取代使用化石类能源的传统内燃机可作为远期终极目标

选择电能作为汽车未来能源的理由是:第一,电能是完全洁净的能源,电动汽车完全可以实现零排放;第二,电能完全有可能转变为可再生能源。尽管目前电能还不是可再生能源,但是随着太阳能发电、风能发电、生物质能发电、潮汐发电等的普及,电能会迅速转变成可再生能源;第三,有利于产业技术体系变革。传统内燃机被电动机取代,将导致化工、石油、煤炭等行业逐步萎缩,而太阳能发电、风力发电、生物质能发电以及潮汐发电等产业将得到大力发展。层层推进,可推动整体产业技术体系发生变革,有望改变重化工业技术体系消耗不可再生资源、污染环境的本质。

2.发展燃料电池汽车是中期目标

将燃料电池汽车作为中期发展目标的理由是:第一,燃料电池汽车技术已相当成熟,极有可能先于电动汽车进入市场。近几年,世界各大汽车公司都纷纷推出以氢或甲醇为燃料的燃料电池汽车;第二,燃料电池汽车有利于环境保护和节省能源。氢燃料电池可实现零排放,即使使用其他燃料(如甲醇)的燃料电池汽车也是常规汽车排放的30%。另外,燃料电池能效高有利于节省能源;第三,燃料电池完全可能实现由不可再生能源向可再生能源的转化。水解氢燃料电池可以实现资源的循环使用,因为氢与氧的燃烧产物就是水,水可以循环使用,取之不尽,用之不竭。另外,可利用太阳能、风能、潮汐能等可再生能源制氢,实现能源可再生化。目前,制约燃料电池成为可再生能源的是水解氢的制取技术,但是,甲醇等燃料电池技术的使用与推广,可为氢燃料电池的发展奠定良好的基础。第四,燃料电池汽车发动机是传统内燃机的变革,可为电动机最终取代传统内燃机提供经验。

尽管,目前的甲醇燃料电池、通过煤或天然气制取氢的燃料电池与我们所倡导的能源的可再生化发展方向违背。但是,只要太阳能、风能、潮汐能发电技术、水解氢技术一旦成熟,燃料电池实现可再生能源的目标就十分容易。因此,我们将燃料电池作为中期发展目标。

3.液化天然气汽车可作为短期发展目标

液化天然气(LNG)属不可再生资源,不符合能源的发展方向,也与我们的倡导的终极目标相悖。我们将其作为短期发展目标的理由是:第一,液化天然气有助于解决汽车尾气的严重污染问题。液化天然气与汽油、柴油相比,更洁净环保;第二,液化天然气有助于解决目前的石油紧张问题。我国的天然气储量较石油丰富,而且天然气的探明储量在不断增加。此外,使用液化天然气不受天然气管网限制,可充分利用世界天然气资源,这对于我国的能源安全有利;第三,液化天然气使用技术与现存的内燃机技术衔接较好。

但是,天然气资源是不可再生资源,长期过量开发与使用将会导致与石油资源一样的命运。因此,发展液化天然气汽车只可作为短期发展战略。

参考文献:

[1]赵学伟:关于我国发展燃气汽车的几点思考[J].国际石油经济,2005(7):46

[2]李丹:我国能源问题解析:煤炭、石油与天然气[J].中国科技财富,2005(8):42~46

[3]李昌珠蒋丽娟程树棋:生物柴油研究现状与商业化应用前景.中国生物质能技术研讨会论文集[C].南京:太阳能学会生物质能专业委员会,2002

[5]赵儒煜杨振凯:从破坏到共生――东北产业技术体系变革道路研究[M].长春:吉林大学出版社,2004年12月第一版.第80页

[6]黄海波:燃气汽车结构原理与维修[M].北京:机械工业出版社,2002年第1版,第30~39页

生物质燃料的优点范文第3篇

【关键词】二次能源;生物质能;开发战略

1 生物质能源的应用现状

目前,国内外对生物质能发展主要集中在寻找生物质资源、研发生物质转化技术、探讨生物质能的生态环境效益3个方面,生物能技术主要应用于生物乙醇燃料、生物质气体燃料、生物制氢、生物柴油四方面。

1.1 生物乙醇燃料

生物乙醇研究的重点主要集中于能源转化效率和温室气体排放两个方面。 以秸秆为原料生产燃料酒精的工艺中存在若干亟待解决的技术难题, 纤维素酶的生产是其中难点之一。目前提倡固体发醇, 但固体发酵不可能像液体发酵那样随着规模的扩大而大幅度下降成本。故从长远发展角度来看, 应选用液体发酵技术[1]。

1.2 生物质气体燃料

生物质气化技术是一种热化学处理技术,通过气化炉将固态生物质转换为使用方便而且清洁的可燃气体,用作燃料或生产动力。

德国沼气工程普遍采用产气率高专用的青贮玉米作为主要发酵原料,产气率是鸡粪的2.5倍,猪粪的3.4倍,牛粪4.5倍。[2]

我国生物燃料可持续发展的外部机遇较好,内部因素中环保指标及可再生性优势明显,所以要依靠内部优势抓住外部发展机遇在最优SWOT战略组合选择上,应侧重SO战略( 即增长型战略),同时兼顾ST战略( 即特色经营战略),突出生物燃料的特色,努力打造我国生物燃料种植生产和销售的产业集群。

1.3 生物制氢

生物制氢过程可以在常温常压下进行, 且不需要消耗很多能量。生物制氢过程不仅对环境友好, 而且开辟了一条利用可再生资源的新道路。此外, 生物制氢过程可以和废物回收利用过程耦合。

生物制氢过程可以分为 5 类:

1)利用藻类或者青蓝菌的生物光解水法;

2)有 机 化 合 物 的 光 合 细 菌 ( P SB ) 光 分解法;

3)有机化合物的发酵制氢;

4)光合细菌和发酵细菌的耦合法;

5)酶法制氢。[3]

1.4 生物柴油

所谓生物柴油,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。生物柴油来自于植物油 ( 玉米、棉籽、海甘蓝、花生、油菜籽、大豆、向日葵) 或动物脂肪。

生物柴油的主要优点在于其环境友好性, 大气污染小, 尤其是硫含量低, 是一种优良的清洁可再生燃料。

生物柴油的制造方法有以下 4 种:

(1)直接使用和混合;(2)微乳法;(3)热解;(4)酯交换。[4]

生物柴油的生产在技术上已经基本成熟, 主要生产工艺分为化学法、生物酶法和超临界法化。生物柴油生产的主要问题是成本高, 制备成本的 75 % 是原料成本。降低成本是生物柴油能否实用化的关键, 目前仍处于试验研究及小规模生产与应用阶段。

1.5 其他典型技术的例子

奶牛-沼气-牧草0循环型农业生产模式, 即: 奶牛场排出的粪水经沼气池发酵, 产生的沼气用于牧场锅炉燃烧, 沼液、 沼渣用于浇灌狼尾草草地, 收获的牧草为奶牛提供青饲料。以期通过该循环利用模式, 增强系统的自净化能力, 实现资源的高效、 持续利用[5]。

DPSIR模型是由欧洲环境局( EEA) 提出的,内容涵盖资源 环境与经济社会等多个领域,可以较为准确地描述系统的复杂性和相互之间的因果关系,广泛用于资源可持续利用评价 城市化与资源环境相互关系分析水资源承载力评价等研究中,其科学性、应用性已得到学术界普遍认可[6]。

在能值理论的这一特点,Brown和Ulgiati 提出了能值可持续指标ESI,将其定义为系统能值产出率与环境负载率之比[7]。

生物质直燃发电作为 CDM 项目, 引入发达国家资金和关键技术,不仅可有效增大系统的能值产出率,降低环境负荷,使生物质直燃发电系统更具有竞争力,还能使系统能值可持续指标提高,使之富有活力和发展潜力,可维持较长时间内的可持续发展[8]。

2 面向未来的生物能源开发战略

2.1 可持续发展

实行清洁生产, 实现综合利用、循环利用、尽量减少排放和能耗; 将能源开发与废物处理结合起来, 在整体、协调、再生、循环的前提下合理建设以生物能源为纽带的生态产业园, 如沼气工程。

2.2 因地制宜

开发生物能源一定要因地制宜, 不可盲目上马。除了上述的 3 种有前景的生物能源产品, 沼气、生物质气化技 术等都值得好好推广应用。

2.3 前瞻性

开发中国的生物能源需要做到以下的政策和软件支持:(1)加大宣传。有必要通过舆论宣传加强人们对生物能源的认识。(2)加大政府投资和扶持。在新的生物能源初始商业化阶段要进行减免税等优惠政策。(3)借鉴国外经验, 充分调动地方和工业界的积极性。(4)加强高校对于生物能源的教育及研究。[9]

2.4 以生物质能高效利用为核心构建农村循环经济系统

(1)对农林生物质能开发利用应充分考虑资源的有限性和利用方式的平衡。

(2)坚持以沼气为主以太阳能和风能等新能源综合利用系统构建能满足农村基本用能需求的供应体系。

(3)高度关注农村能源加大政策扶持力度。

(4)创新机制推动农村新能源市场发展。

(5)创建示范工程为生物质资源有效利用不断探索新的途径。[10]

3 结语

开发利用生物质能, 既是我国缓解能源供需矛盾的战略措施, 保证社会经济持续发展的重要任务。随着国际原油价格的持续攀升和资源的日渐趋紧, 石油供给压力增大, 生物能源产业、生物质材料产业的经济性和环保意义日渐显现, 生物质能源在不远的将来一定会得到大力推广。

【参考文献】

[1]王建楠,胡志超,彭宝良,王海鸥,曹士峰.我国生物质气化技术概况与发展[J].农机化研究,2010,1.

[2]刘瑾,邬建国.生物燃料的发展现状与前景[J].生态学报,2008,4,28(4).

[3-4].王建楠,胡志超,彭宝良,王海鸥,曹士峰.我国生物质气化技术概况与发展[J].农机化研究,2010,1(1).

[5]奶牛-沼气-牧草,循环型农业系统的能值分析[J].生态与农村环境学报,2 010,26(2):120-125.

[6]孙剑萍,汤兆平.基于DPSIR模型的生物燃料-可持续发展量化评价研究:以江西省为例[J].科技管理研究,2013(4).

[7]杨谨,陈彬,刘耕源.基于能值的沼气农业生态系统-可持续发展水平综合评价(以恭城县为例)[J].生态学报,2012,7,32(13).

[8]罗玉和,丁力行.生物质直燃发电 CDM 项目可持续性的能值评价[J].农业工程学报,2009,12.

生物质燃料的优点范文第4篇

关键词:生物质 生物质能发电 技术状况

中图分类号:TP273 文献标识码:A 文章编号:1672-3791(2014)05(b)-0120-01

1 生物质概述

生物质,从广义上讲,是指通过光合作用而形成的各种有机体,包括了所有的动植物和微生物。生物质所蕴含的能量称为生物质能,是一种可再生能源,它直接或间接地来源于绿色植物的光合作用。

生物质能是地球上最古老的能源,一直以来是人类赖以生存的重要能源之一。在目前世界能源消耗中,生物质能占总能耗的14%,仅次于石油、煤和天然气,是世界第四大能源。在生物质能的利用过程中产生的二氧化碳可被等量的植物通过光合作用所吸收,从而实现二氧化碳的零排放和生物质能的循环利用,同时生物质能也是一种含硫量低的可再生能源,可以转化得到气态、液态和固态燃料,从而补充和替代化石燃料,减少对矿物能源的依赖。

目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以达到保护矿产资源,保障国家能源安全,实现二氧化碳减排,保持国家经济可持续发展的目的。

2 生物质能的利用转化方式

目前,我们对生物质能的利用主要有生物质直接燃烧、气化、液化、固化和沼气技术等方式。

生物质直接燃烧是通过燃烧将化学能转化为热能,从而获取热量。直接燃烧可分为锅炉燃烧、炉灶燃烧、炉窑燃烧和炕连灶燃烧。

生物质气化是在一定的热力学条件下,将组成生物质的碳氢化合物转化为含一氧化碳和氢气等可燃气体的过程。气化过程不同于燃烧过程,一方面,燃烧过程中需供给充足的氧气,使原料充分燃烧,从而获取热量,而气化过程希望尽可能多地将能量保留在反应后得到的可燃气体中,所以只供给较少的氧气以满足热化学反应的需要;另一方面,燃烧后产生的是水蒸气和二氧化碳等不可再燃烧的烟气,而气化后的产物是含氢、一氧化碳和低分子烃类的可燃气体。

生物质液化是生物质热裂解技术的一部分。生物质热裂解是生物质在完全无氧供给的条件下热降解为可燃气体、液体生物油和固体生物质炭三种成分的过程。其中,反应产生的生物油可进一步分离,制成燃料油和化工原料。

在生物质能转化利用的各种途径中,利用生物质能转化后的热能来发电具有高效、环保等优势,在丹麦、瑞典、芬兰、荷兰以及巴西和印度等国家已得到广泛应用。近年来,随着能源和环保压力的增大,我国生物质能发电得到快速发展。

3 生物质能发电技术

生物质发电的主要形式有:生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电、沼气发电和垃圾发电。

生物质直接燃烧发电与燃煤火力发电在原理上没有本质区别,主要区别体现在原料上,火力发电的原料是煤,而直接燃烧发电的原料主要是农林废弃物和秸秆。直接燃烧发电是把生物质原料送入适合生物质燃烧的特定蒸汽锅炉中,产生蒸汽,驱动蒸汽机转动从而带动发电机发电。直接燃烧发电对原料预处理技术、蒸汽锅炉的多种原料适用性、蒸汽锅炉的高效燃烧、蒸汽轮机的效率等方面都有较高要求。

生物质混合燃烧发电,顾名思义,即为生物质与煤混合作为燃料发电。混合燃烧的方式主要有两种:一种是将生物质原料直接送入燃煤锅炉,与煤共同燃烧;另一种是先将生物质原料在气化炉中气化生成可燃气体,再通入燃煤锅炉与煤共同燃烧,最后发电。可见,在混合燃烧方式中,对生物质原料的预处理过程显得尤为重要。一般情况下,通过改造现有的燃煤电厂就可以实现混合燃烧发电,只需在厂内增加储存和加工生物质燃料的设备和系统,同时对原有燃煤锅炉燃烧系统进行适当改造就可以了。

生物质气化发电是利用生物质气化技术产生的气体燃料,经净化后直接进入燃气机中燃烧发电或者直接进入燃料电池发电的过程,可以分为内燃机发电、燃气轮机发电、燃气―蒸汽联合循环发电和燃料电池发电。生物质气化发电是生物质能最有效、最洁净的利用方式之一,它不仅能解决生物质难于燃用、分布分散等缺点,还能充分发挥燃气发电设备紧凑和污染小的优点。

沼气发电是一种新型的发电方式,也是沼气能量利用的一种有效形式。在沼气发电中,驱动发电机组发电的是沼气而非蒸汽。

垃圾发电包括垃圾焚烧发电和垃圾气化发电,简而言之,垃圾发电就是将垃圾直接作为燃料或者将垃圾制成可燃气体作为燃料来进行发电的方式。垃圾发电不仅能够回收利用垃圾中的能量,达到节约资源的目的,同时还解决了垃圾的处理问题。

我国的生物质能资源及其发电的状况

我国作为传统的农业大国,生物质资源非常丰富。我国农作物秸秆年产量约为6.5亿吨,2010年达到7.26亿吨;薪柴和林业废弃物资源中,可开发量每年达到6亿吨以上。近年来,高产的能源作物如甘薯、甜高粱、巨藻、绿玉树、木薯、芭蕉芋等,作为现代生物质能源已受到广泛关注,越来越多的科研机构、科技企业也不断参与到研究和发展生物质能资源的队伍中来,为生物质能源产业提供了可靠的资源保障。

我国的生物质发电以直接燃烧和气化发电为主要方式,原料主要采用农业、林业和工业废弃物等。我国生物质发电起步较晚,但也有近30年的历史,2006年我国生物质发电总装机容量约为2000 MW,其中蔗渣发电约为1700 MW;从2006年12月,我国第一个生物质直燃发电项目―― 国能单县生物发电厂正式投产开始,截止2008年8月,我国累计核准农林生物质发电项目130多个,总装机容量约3000 MW,已有25个生物质直燃发电项目并网发电;2009年我国6 MW及以上火电设备中生物质发电共占到0.37%,预计到2020年将建成总装机容量为20000 MW的生物质发电项目,这样每年就可以节约7500万吨煤,而且减少大量的污染排放,此外,秸秆销售还可以给农民增加200~300亿元的收入。

4 结语

从总体上看,我国生物质发电产业尚处于起步阶段,商业化程度较低,效益也不高,市场竞争力较弱。但是,近年来,国家对生物质能的开发利用逐渐重视,已连续在4个“五年计划”中将生物质能利用技术的研究与应用列为重点科技攻关项目,并先后制定了《可再生能源法》《可再生能源中长期发展规划》《可再生能源发展“十一五”规划》《可再生能源产业发展指导目录》和《生物产业发展“十一五”规划》,提出了生物质能发展的目标和任务,明确了相关扶持政策。有了这些政策和技术支持,相信生物质能的未来必定会生机勃勃。

参考文献

[1] 王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.

生物质燃料的优点范文第5篇

【关键词】污水处理站;除臭工艺;研究

一切可以刺激嗅觉器官从而引起人们不愉快及损坏生活环境的气体物质均可成为恶臭气体。恶臭气体污染现已成为世界七大环境公害之一,因此各国都高度重视恶臭气体的污染防治[1]。但是由于人们对臭气的感觉无法量化,因此只能通过描述或判断性的语言来说明,具有较低的嗅觉阈值[2]。臭气的这些特征给恶臭污染控制提出了更高的要求。随着人们对生活水平和居住环境要求的不断提高,环境质量标准也在日趋严格,因此应加快恶臭处理技术的推广与研发。

1 污水处理站恶臭的来源及危害

1.1 污水处理站恶臭的来源

污水处理站主要产生恶臭的构筑物有:进水口、沉淀池、沉砂池、隔油池、浮选池、生物反应池、污泥池、污泥脱水间等。

由于各污水污水处理站采用的工艺不一样,产生的恶臭污染物浓度也有很大的差距。一般来说,生化处理过程产生的恶臭污染物浓度较高,物化处理过程产生的恶臭污染物浓度次之。

1.2 污水处理站恶臭的危害

(1)恶臭气体会给人带来不适、心情不愉快的感觉,而且会对人的呼吸系统、循环系统、消化系统、精神状态等均产生危害。还会导致头痛、头晕、恶心、呕吐、食欲不振等症状发生,甚至还会对皮肤、黏膜、眼睛等造成刺激或伤害[3];

(2)对金属材料、设备和管道有一定的腐蚀性;

(3)从影响当地的投资环境。

2 污水处理站恶臭气体污染治理措施

2.1 生物除臭技术

生物除臭是近啄暧τ媒隙嗟某臭技术。生物法除臭原理:将收集到的恶臭气体通入长满微生物的填料中,填料上的微生物可以吸附、降解产生恶臭的物质,从而达到除臭的目的。与此同时,恶臭物质还可以作为除臭微生物的营养物质,供微生物生长繁殖。目前常用的生物除臭工艺有:生物过滤池、生物滴滤池、生物洗涤池。生物法除臭具有运行成本低、操作方便、去除率高、二次污染小等优点,其缺点是投资较高、设备体积也较为庞大。目前,生物法除臭主要用于大、中型污水处理站,是目前污水处理站常用的除臭技术。

2.2 吸附法除臭技术

吸附法是目前应用最广泛的臭气治理技术。吸附法的工作原理是将废气通入吸附剂中,吸附剂吸附废气中的恶臭物质从而达到除臭的目的。目前,在污水处理站应用最多的吸附剂活性炭。活性炭吸附法具有操作简单、投资较低、去除率高、能耗低、工艺成熟等优点;但活性炭吸附法运行过程中必须定期更换活性炭,因此运行成本较高,废弃的活性炭如处理不当易造成二次污染。活性炭除臭法也是目前污水处理站应用最多的除臭技术,广泛用于中小型污水处理站。

2.3 吸收法除臭技术

吸收法除臭技术的原理是利用恶臭物质的物理、化学性质;当恶臭气体通过吸收液时,吸收液对恶臭物质进行物理或化学吸收,从而达到除臭的目的。吸收法除臭技术装置种类较多,目前常使用的有喷淋塔、填充塔、洗涤器等。吸收法除臭技术操作较为灵活,当恶臭浓度较高时,一级吸收效果不理想时,可以采用二级、三级或多级串联形式,从而提高去除率。目前我国主要用于大中型水厂。

2.4 雾化吸附剂除臭技术

雾化吸附剂除臭技术是在吸收法除臭技术的基础上发展起来的新型除臭技术。雾化吸附剂除臭技术是将吸附剂雾化作用于恶臭气体,通过物理吸附及化学反应,将恶臭物质转化为无臭物质。该方法具有去除率高、投资少、占地小、反应迅速等优点,但对吸附剂需做低温防护,应用较为繁琐,因此制约了该技术在污水处理站中的应用。

2.5 其他除臭工艺

(1)活性污泥法除臭技术。当污水处理站处理工艺中含有活性污泥工艺时,可以将恶臭气体收集后直接通入活性污泥反应池中,利用池中的活性污泥来降解恶臭物质。该方法不需要再建除臭构筑物,节约成本,但除臭效率不高,适用于恶臭浓度不高的污水处理站。

(2)UV + TiO2催化氧化除臭技术。UV+TiO2催化氧化技术原理是在催化氧化设备内,产生的高能紫外线光束激活TiO2,从而产生臭氧、・OH(羟基自由基),臭氧、・OH(羟基自由基)可以氧化恶臭物质,使恶臭物质转化为无臭味物质,从而达到除臭目的。该方法的优点是除臭效率高、反应迅速、无二次污染、运行成本低等,属于新型除臭技术。目前在污水处理站中的工程实例不多。

(3)燃烧法除臭技术。燃烧法除臭技术的原理是利用恶臭物质的可燃性,将将恶臭物质与燃料气充分混和,通过燃烧将恶臭物质转化成无臭物质,从而达到除臭的目的。燃烧法除臭适用于高浓度的可燃性恶臭气体的处理。燃烧法除臭的优点是恶臭物质可以被彻底氧化分解,去除效率高。但燃烧法除臭需要消耗燃料、运行成本较高、而且容易产生二次污染。