前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物的遗传教学设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:遗传,干预,朴素生物学理论,朴素理论 分类号:B844
1 引言
近些年发展心理学家对儿童认知发展的研究集中在探查儿童认知概念的“领域特殊性”(domain.specificity)方面。领域特殊性是指儿童对具有特定内容的某一类现象的理解是按照该领域本身的发展速率进行的,并且认知变化符合此类现象特有的概念化的推断方式。不少研究者主张,儿童对生物领域性知识的理解也是因循领域特殊性规律的。
儿童早期生物学概念化过程是基于该领域最基本的现象发生的,这些基本现象包括生物过程和机制(如自主运动、生长、繁殖和遗传),不可见的生物内部功能(如进食、消化和血液循环等),以及生物结果(如疾病和死亡)。儿童对生物过程的理解对于他们获得生物学领域知识是最基础的。因为自主运动、生长、遗传等对于解释动物的行为和判断它的身份具有更广泛且关键的意义。比如,在预测或解释后代的特征时会运用到遗传知识;而且,比起身体功能,父母亲更有可能谈论出生、生长以及亲属关系等话题。
大部分学前儿童都知道狗会生出小狗而不是小猫,在日常生活中他们还发现自己与父母的某些特征相似、某人和他的兄弟是“双胞胎”。这些现象背后潜藏的生物学特征――遗传是最基本的生物过程/机制之一。遗传(heredity)是指生物亲代繁殖与其相似的后代的现象,生物有遗传特性才能繁衍后代,保持物种的相对稳定性。儿童虽然不明白遗传学的内容,而且遗传的生物过程无法直接观测,但他们可以依据现实中的一些遗传现象利用已有的直觉性概念或理论进行初步理解和推测。
从以往的研究来看,儿童对遗传现象的认识和推理相对缺乏准确性和稳定性。有研究发现童年中期的儿童还不能对作为遗传的基因意义有清晰的认识,甚至有的错误概念会持续到童年后期。但这些错误概念在教学中并非不能改善,只是教学设计不只是简单地更正儿童的事实性错误,而是要让他们对生物学的理解实现概念转变。假如通过干预帮助儿童获得某个特殊领域的有组织的知识,并能使其对这些知识进行重组(restructuring)形成合理的因果解释框架,就有可能促进他们在该领域的认知发展。甚至适合的干预设计应用到年龄相对较小的儿童身上,对其以后遗传概念的理解和掌握也具有促进作用。
更进一步看,儿童对遗传概念的理解并没有与他们对生物的理解密切联系起来,比如,许多儿童把植物看作非生物、认为卡通人物具有DNA等。儿童的生物学概念之间很少形成适当的联系,显现出一种很贫乏的生物学发展体系。那么对于遗传概念的教与学,更重要的意义在于为生物科学的未来教育奠定有力的认知基础。首先,利用有益的方法推动儿童超越对亲属关系或生物成幼相似的理解,达到对基因解释机制的正确认识,这既是遗传教育也是生物学教育的目的。第二,科学教育的长远目标应当是帮助儿童在互相关联的、更广泛的生物理论中或者在对生物体知识体系的完整把握上以一种一致性的方式(coherent form)融合某种特定的生物学概念。这表明教学干预的焦点应当是形成生物学知识的统一,在亲属关系、遗传、基因等概念上与儿童从整体上理解生命和生物学建立起连贯的认知系统。
2 干预内容对儿童掌握遗传知识的影响
2.1 儿童对“事实性知识”的理解有助于他们理解遗传概念
关于某个领域的特定的基本事实或常识性的知识被称为“事实性知识”(factual knowledge),它们是人们在学习科学概念之前基于长期日常经验形成的对事物、现象的看法和观念。如,春天里树木生长发育旺盛,蜗牛有壳、身体柔软、两只眼睛长在两个触角上等。而科学概念是对事物本质属性的认识,某事物的本质属性是该事物区别于其他事物的特有的、基本的性质。事实性知识不同于科学概念知识,但特定知识领域内的事实性知识是该领域科学概念形成的必要要素,可为儿童学习系统的科学知识奠定基础。
Springer对关于遗传的事实性知识的观点主张幼儿对遗传的理论化信念的形成依赖于其事实性知识的获得。他从一系列事实性知识与儿童遗传概念的关系的研究中,推断出儿童必须首先知道的3个事实性知识是:胎儿生长在母亲的体内;在母亲肚子里的生长一般与外界影响相隔离;身体上的接近或连结会促进特征的传递。儿童具有这些事实性知识有助于他们对遗传过程进行适当的推理,遗传概念认知的关键性发展就是获得事实性知识。根据成人有关遗传概念的“理论”,遗传主要被理解为动物的身体特征的生物学起源,尽管儿童不理解遗传学,但是他们可能会用“一个婴孩是在哪里孕育”的知识,来理解父母与子代生物学特征的相似。
根据自己的假设,Springer发现4~7岁儿童中只有极少数不知道上述事实,而知道这些事实知识的一半儿童的推理符合研究者提出的遗传信念的标准,即动物亲、子代之间拥有的共同稳定的身体特征要多于非亲属关系之间;不管是好的还是不好的功能性特征同样可以遗传;遗传是通过一些碎小物质的传递发生的,他对3、4岁儿童进行有关事实性知识的干预训练,结果表明实验组儿童在一系列遗传任务上的成绩明显高于控制组。然而,Springer的研究虽然反映出儿童拥有这些事实对遗传理解的必要性,但却没有证明其充分性,即幼儿仅拥有事实知识并不能保证他们一定会做出恰当的因果解释。
并非所有的研究都能发现事实性知识的学习在儿童理解遗传概念中的作用。Williams和Affieck改进了Springer的“前测一后测”方法,采用“前测一后测一延迟后测”技术试图提高4岁和7岁儿童对遗传概念的理解。干预内容包括胎儿在母亲子宫内的/胚胎时期的成长和出生的基本知识。前测、后测及延迟后测中都涉及有关成幼先天特征和后天特征相似性的判断以及遗传的因果解释任务;测验任务中还附加了收养内容和估计父亲生殖作用的问题。前测发现有36.4%的4岁儿童和50%的7岁儿童具有较丰富的关于动物胚胎时期的发展和出生的基本事实知识;4岁儿童的解释相对不规则且水平低,7岁儿童提供了较高水平的相对合理的解释。但是干预训练对任何一个年龄组的认知增长都没有产生明显效果。
可以看出,尽管有研究者发现在儿童充分理解
遗传概念之前,让其参与有关遗传的事实性知识的学习,可能会促进这一特定领域“理论”的形成和发展;不过仍有研究表明虽然学前儿童知道一些理解生物学遗传所必需的事实,如“幼崽是从妈妈的肚子里来的”等,但是儿童的事实性知识之间若缺乏前后一致的因果推理机制,那么他们的遗传认知就还不是特定的生物学领域的。例如,儿童倾向于判断被收养的后代在身体特征上与生父母相似,却不能理解由于生活环境或教养的缘故在信念特征上会与养父母相似;而且他们更愿意将母亲的特征(而非父亲的)归于后代。儿童把出生当作是成幼相似背后的因果机制,但他们也会确定像衣服颜色这类非遗传特征对亲属关系的作用。因此,虽然出生等事实性知识确实在儿童关于遗传的判断推理中具有直接且重要的作用,但这种推理还不是特定的生物学领域的。
2.2 概念重组促进儿童的遗传认识
事实性知识的学习是概念发展的必要组成和基础,但儿童生物学概念的发展不只是知识数量的增加,而更是获得的许多知识碎片进行重组、实现科学视角的生物学概念转变的过程。Solomon和Johnson提出概念发展可能是以一些事实与另一些事实怎样形成因果联系的概念重组为标志,儿童获得生物学遗传概念的重要问题是如何将个别的事实知识与更广泛的一致性的解释框架融合起来。他们主张要使那些尚未理解遗传概念的学前儿童建构出“似成人的”(like-adult)遗传认识,对事实性知识进行重组会促进儿童重构关于子代如何及为什么与父母相似的因果认知;并基于此设计了一种讲授性的干预方法探讨5、6岁儿童如何形成与成人相似的遗传理解。研究中,主试先让儿童意识到自己缺乏对遗传现象的解释,这种意识一旦形成,便给他们提供相关信息,即告知一种因果解释(如,关于遗传基因的概念)使儿童能够运用之组织和补充事实性知识。研究者假设儿童可能使用“基因”的概念作为一种因果解释来理解亲代到子代的特定特征的传递,并在先天特征和后天特征上对成幼相似性做出区分。结果发现,训练组的成绩显著好于控制组,但要使经过训练的儿童对复杂现象的理解从完全的无知达到像成人那样的理解仍是不可能的,同时该研究也没能回答“基因”知识对儿童的遗传概念的转变如何发生作用的问题。然而,一项针对2年级小学生遗传认知的干预研究发现,通过基因、DNA、和染色体概念的讲授和有意义的学习,实验中至少一半的6、7岁儿童能明确得将这些新概念与遗传和有关生命体(包括动物和植物)的广泛知识联系起来,形成一个网状的认知体系。还有研究表明,参与到传统的讲授训练中的许多中学生能够重组他们最初对遗传的不当认识,获得更符合公认的科学原则的知识。
还有研究主张理解某个特定领域复杂的现象需要理解一些系统化的概念或解释规则,拥有似成人的生物学遗传理论至少应与下面这三个概念有关:其一,身体特征和心理特征在本体上是不同的特征类别;其二,后代倾向于与其生父母相似;其三,与出生有关的事实是与对遗传的因果解释相联系的。只理解某一个概念并不能充分说明是一种成熟的理解,那些理解这些概念并能把它们联系起来的儿童才具有一种与成人大体一致的认知框架。学前儿童只是具有初步的遗传知识,若使他们获得和成人一样的理解,那成人认知中的主要概念至少有一些也必须在儿童的认知中占据主要地位,而且儿童必须以成人式的解释方式运用那些知识。因此,儿童要获得像成人的生物学认知可能必须实现概念化的转变,而确认儿童具有的不同于成人的认知方式以及设计出能使儿童重组有关生物学遗传概念的方法就显得十分重要。
最近有研究主张在设计促进学前儿童生物学遗传推理的干预指导之前,确定以下内容是很关键的:(1)似成人的生物学遗传的理解是什么样的?(2)学前儿童的理解在什么方式上不同于成人?该研究探查了指导教学计划对4、5岁儿童关于遗传的高级推理的促进效果。“指导教学”的倡导者主张应考虑儿童目前具备的认知结构,依靠这些已存在的结构进行新、旧知识的连接。基于此,Schroeder等通过言语、图画和操作性的指导教学活动给儿童呈现遗传概念,这些概念涉及身体特征恒定不变、不受学习或主观意图的影响;并非所有的身体特征都来自父母(如假发,隆鼻);后天获得的特征不会传递给后代等。研究者期望儿童能够将这些确定的概念相互联结并且理解它们之间的联结。该教学课程是在特定的讲故事时间(typical story timeformat)进行的。在每个故事的讲授中,主试引导出能够把故事内容与遗传的特定概念结合起来的问题和讨论,以探究儿童对遗传的推理。之后通过给儿童提供理解遗传概念所必需的知识信息,使指导教学活动得以巩固。前后测之间的5周内,实验组儿童每周参与3次生物学遗传指导课程,对照组儿童则参与常规教学时间的讲故事活动,结果显示实验组后测成绩显著优于对照组,实验组儿童对生物学遗传的理解得到有效改善。
3 干预形式对儿童掌握遗传知识的影响
从以往的研究看,讲授相关领域知识的方法是最常使用的干预策略。但Howe和Tolmie曾做了一系列研究来探查合作性任务对儿童概念理解的作用,参与任务的被试涉及那些一开始就有着不同概念的同伴。他们发现具有不同的最初观点的小组成员在物理学概念上表现出很大的认知转变。该结果归因于持有不同概念的儿童之间认知冲突的解决。研究还发现这种解决方式仅仅自发产生于年长的学生当中。Williams和Tolmie采用相似的干预方法探查8~12岁儿童对生物遗传理解的研究也证实了上述结论。通过考查儿童对动物遗传特征的最初理解水平,将被试安排在个人组、观点相似组、观点不同组3种干预条件下,要求被试完成一项关于动物先天及后天特征传递的实验任务。该任务利用给儿童提供正确答案的反馈引起他们理解上的冲突,主试根据儿童对反馈的反应要求个人条件组儿童自己仔细思考,同时指导后两种条件组的儿童进行组内讨论。结果发现最初持有不同观点的小组儿童成绩提高最为明显,观点相似组次之,个人组儿童进步则较小。这说明反馈对于概念转变的重要性;而观点相同组和相异组儿童的更大进步说明了围绕任务的相互交流产生了更为显著的影响。总之,基于教育干预和概念冲突的同伴互动策略的教学活动,可以有效促进儿童遗传认知的发展。
4 干预训练效果差异的原因分析
4.1 干预内容对儿童理解遗传概念的影响效果
尽管Springer的研究表明适当的刺激材料能够教会儿童简单的生物学事实,提高他们关于遗传的“理论的”认识;但以后却有研究发现仅提供有关子宫内的/胚胎时期的发展和出生的基本知识,不会显著改进儿童关于动物遗传的概念性判断;还有研究主张儿童对遗传机制的推理其实并不符合科学生物学理论中“基因遗传”的过程。因此,后
续的研究主张若要促进儿童对遗传概念持有因果一致性理解,除了需要给他们提供相关的事实,还要告知遗传基因的基本概念,帮助其重构有关成幼生物特性相似性的认知。因此,考虑朴素的和科学的生物学知识的相互影响,通过正式学习“科学的生物学”使儿童的生物学理论得到丰富应该是概念重组的有效途径之一。正如Williams和Tolmie主张的那样,重视两个核心生物学“事实”以及与此相关的生物学机制,即强调那些由生殖/怀孕带来的先天特征的可遗传性和后天形成特征的不可遗传性、强调母亲在身体上与胚胎期子代相连的同时也强调父亲对子代生物特征基因传递的贡献,有助于年幼儿童理解遗传概念。
4.2 干预形式对儿童理解遗传概念的影响效果
Williams和Tolmie的研究较为详尽地探查了不同干预形式对儿童理解遗传概念的影响,他们发现8~12岁儿童在理解非遗传的后天特征和父亲对先天特征遗传的贡献上确实有困难,但经过干预,不管是何种干预方式(个人组、相同观点组、不同观点组),最后的结果都是富有成效的,干预使所有被试的判断和解释都取得了进步;而且这种进步在后测中体现为儿童更倾向于以那些可支持正确解释的概念为依据、经过思考而做出判断。所有条件下儿童的认知均有改善的结果说明,任何有儿童观点参与其中的干预和提供反馈的策略对于促进儿童对先天、后天特征是否都可以传递的理解均具有意义。不过,认知水平的普遍提高并不意味着不同干预条件下的认知改变没有程度差异,观点不同组的成绩好于观点相同组,且二者都好于个人组。这同样证明相互交流和讨论能更好地促进概念转变,明确的社会性冲突是概念转变过程的核心。
4.3 被试年龄选取的适当性对儿童理解遗传概念的影响效果
对不同年龄被试的干预效果存在差异是因为儿童关于遗传的最初认知水平存在差异所致。Williams和Affleck关于遗传概念的干预研究针对的是4岁和7岁儿童,发现干预后这两个年龄段的被试成绩都没有提高。这也许是因为两组年龄跨度过大,干预前他们的认知水平处于不同层次的缘故。具体而言,4岁儿童的理解水平较低,不能很好地理解干预内容,干预也就没有起到相应的促进作用;而7岁儿童的理解趋于成熟,干预之前他们关于胎儿期的成长和出生的基本知识本就处于较高水平,干预的增长效果便显得不够理想。尽管其他研究选取年龄接近、认知水平基本相同的被试,但这些研究没有探查随年龄增长儿童的遗传概念的发展趋势。
5 以往研究的不足和对未来研究的展望
有关儿童对遗传的理解的干预研究已取得了相当丰富的成果,但是由于遗传概念本身的复杂性和研究者所采用的方法、策略的不同,过去的研究也存在一些争议和不足,这些争议和不足对未来的遗传干预研究具有重要启示。
首先,以往关于遗传认知干预研究的一个重要策略是给儿童讲授事实性知识,研究者认为基本事实性知识是儿童理解特定领域现象的起点;但干预训练后发现对父母双方对子代的身体特征的传递都有贡献这一遗传特征依然理解不足。虽然有研究在事实性知识的基础上为幼儿提供了遗传基因的知识,但结果并没有发现“基因”知识对幼儿的正确判断有显著影响。今后的研究要着重探讨的是怎样针对学前儿童设计适当有效的干预内容和干预形式,促进他们对遗传现象的生物学推理。
其次,尽管许多研究者考查了干预训练对不同年龄阶段儿童遗传认识的影响,但对于儿童究竟在哪个年龄获得遗传概念还没有达成一致。原因可能是干预对象年龄选取的适当性问题。Terwogt等发现学前儿童对于遗传的推理看上去似乎是“似理论的”,但仍然受生物学之外的其他领域信息的影响;而大多数10岁儿童在遗传相似性的推理中,就很少出现混淆不同领域知识的情况。尽管他们认为儿童遗传认知发展的最佳时期可能是在6~10岁之间,但这个年龄跨度还是太大,后来有研究相对明确了干预训练对学前期和学龄初期儿童掌握遗传知识的作用,但同时也发现,对于那些年龄相同、最初认知水平相近的儿童,同样的干预活动带来明显不均衡的干预效果的情况也存在。以后的研究也许还应当关注在同样干预条件下没有取得任何进步的儿童,探索各种干预策略究竟如何影响其认知转变的。
再次,对儿童的生物学认知与社会文化和经验因素之间联系的探讨逐渐为人们重视,近年的研究已经确认影响儿童的生物学概念的因素包括文化环境、生活教育背景、喂养宠物的日常活动和家庭的组成结构等。比如较高社会经济地位的儿童可能获得了更多的关于遗传和基因的知识。也许,来自于家庭内部的交谈和父母对家庭和遗传的讨论能够促使这些儿童在遗传任务中有良好表现。另外,拥有宠物或生活在重组家庭的儿童通过日常生活也可能得到丰富的生物学知识。未来的研究应涉及那些受社会文化、经验等影响的多样的知识类型,设计适当的干预指导,进一步探查并明确促进儿童生物学遗传认知的各种因素及其相互作用。