前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇逆向思维培养方法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2014)21-0149-01
反其道而行之进行推理寻找缘由,可以说是逆向思维能力特征的完美解释,在高中数学教学中注重培养学生的逆向思维能力能有效培养学生的创新思维能力,提高整体教学水平,推动教育的革新,使学生们通过对数学的学习实现思维的逻辑性,并不断创新,从而实现学生自身的全面发展。逆向思维能力的培养对改善目前高中教学存在的教学困难、整体教学质量不高、学生厌倦数学等现状有极大的促进作用。
一 逆向思维培训的迫切性
我国长期以来培养的都是理论型逆来顺受的被动的人员输出,现今各行各业,尤其是科研机构,对于创新型人才极为需要,面对数学教学设立是培养学生逻辑思维能力的初衷,教学的本质开始发生变化,因此培养学生的逆向思维能力,将会全面促进学生的发展。
二 逆向思维培养的方法
在数学中培养逆向思维能力也是如此,以一种小概率的思维模式来解决问题,反而会取得意想不到的效果。高中数学的逆向思维实际上就是一种数学分析法,因此要掌握逆向思维能力,首先要认清逆向思维的本质,即违逆常规;其次要明确逆向思维所具备的特点,包括普遍性、新颖性、批判性、异常性和反向性等;最后,要了解逆向思维的三种类型:反转型逆向思维法、转换型逆向思维法和缺点逆向思维法。在明确逆向思维的原则、特点及类型的基础上,通过在实际教学和解题中的不断操练,才能使运用逆向思维能力进行思考成为一种习惯。
1.逆推法
逆向思维的培养最为直接的方式便是逆推法,实际上也就是反向逆推,通过反向逆推去辨别命题的逆命题的真假。当然,逆推法并不是适用于任何情况,因为逆向思维不是要将本来容易解决的问题复杂化,而是通过逆向思维去寻找更为简便的方法,因此在实际教学中要明确这一点,切忌将逆向思维复杂化,以至于让学生感觉逆向思维似乎更加难以消化。
2.综合法与分析法
作为数学解析上的一种综合分析法,逆向思维能力的培养要求学生们要从已知的条件着手,根据相关概念和定义逐步分析推导,最终寻找到缘由。即在分析法的使用过程中,学会先果后因的解析思维,要从结果入手寻找原因,如在日常生活中,张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。即综合法是“由因及果”的过程,分析法是“执果索因”的过程。
三 逆向思维的课堂教学培养
高中数学教学的逆向思维能力培养需要建立在大量题海战术和反复练习之上,要加强教师对学生的引导作用,以互问式的方法来实现逆向思维能力的培养。
1.正向思维与逆向思维的比较
比较是让学生们了解逆向思维的有效方法,通过正向思维和逆向思维带来的求解过程的对比,使学生明白逆向思维的可操作性和简便性,是训练其反面求解的有效方法。如在对于正向思维感到解题困难的题目中,逆向思维的简便化就能引起学生们的兴趣,能有效提高学生们逆向思维的能力,让学生们明白难解的题目在正向思维无法解决的情况下,通过逆向思维思考可能会找到解题的方法和技巧,久而久之,学生们便会逐渐形成逆向思维的习惯。
2.重视互逆关系的公式和法则
高中数学中有许多具有互逆关系的公式和法则,重视对其结构的分析和求证的解析,将有利于学生逆向思维能力的培养。如在幂运算时就要注意其公式及法则的运用,要求学生们计算62+3=( ),am-n=( )时,以填空的形式来强化学生们的逆向思维能力。高中数学中许多概念和定义都有其逆运用,这就要求我们在实际教学中重视这些逆运用,通过对学生的引导和激发来促使学生进行双向思维,依据概念和定义来强化定理及命题的逆运用,将对培养学生的逆向思维能力起到积极的作用。
3.辩证分析
从高中政治哲学辩证法的部分来诠释,逆向思维能力的培养要从矛盾的对立面去思考问题,遵循着“执因索果”的理念,从命题的不同方面来引导学生进行逆向思维,从而提高学生辩证分析问题和解决问题的能力。
4.加强逆向思维的训练
加强逆向思维训练最常用的方法是给出一个命题并要求学生们判断它的正误,一般情况下给出一个命题,让学生积极寻找命题成立的原因。要从证明的结论出发,逐步寻求推证过程,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。
通过长时间的举反例训练,有利于学生深入了解定义和概念,并能有效利用定理间的逆向关系来思考和解决问题,与此同时,在培养逆向思维能力的过程中,能让学生寻找到概念间、定理间的相互关联,并能学会举一反三。
【关键词】逆向思维 结构定势 功能定势 状态定势 因果定势
教育承载着培养创新人才的重任,创新性人才需要创造性思维,而创造性思维的一个重要组成就是逆向思维。逆向思维从思维过程的指向性来看,和正向(常规)思维方向相反而又相互联系,学生的日常学习对正向思维关注较多,很容易造成消极的思维定势,因此,在数学教学中应格外注重“逆向思维”能力的培养。
能力与知识(包括隐性的)是相辅相成的,在高中数学内容中,很多知识都与“逆向思维”有关,如分析法、逆运算(如对数就是指数的逆运算)或逆命题(三垂线逆定理等)、充要条件、反函数、反三角函数、立体几何中的性质定理与判定定理等,只要揭示“逆向”本质,不但能让学生将新知识合理建构在原有知识体系上,达到温故知新的效果,还能让学生不断认识逆向思维的过程和方法。
但是,仅凭这样,还是难以具有逆向思维能力。因为“逆向思维”是相对于正向而言的,它的存在价值就在于小概率思维,就在于“正难则反”的一种策略观,如果不经过真正的逆向训练,着实难见成效。大多数学生在解决问题时,会碰到“正难”,但却不习惯也不善于“则反”,其原因是学生的大量训练往往是“类型+方法”式的,学生在大量的思维定势中尝到的是甜头,而不是苦头。一旦碰到解决不了的问题时,也只会怪罪于问题太难,技巧性太强,不能上升到一般的方法层面。其实,运用逆向思维重建心理过程的方向也有其一定的方法,合理逆向思维的过程往往是成功克服思维定势的过程。在逆向思维的培养过程中,一定要注重克服常见的思维定势。
常见的思维定势有以下四类:结构定势、功能定势、状态定势和因果定势,它们分别为相对于结构逆向思维、功能逆向思维、状态逆向思维和因果逆向思维。为了克服长期正向思维对逆向思维的影响,减低正逆向思维联结的难度,教师在各类数学问题解决中,一定要有意识地让学生明白思维瓶颈所在,积极克服思维定势的消极影响,开拓、培养学生的逆向思维。
一 克服结构性定势,培养结构逆向思维
结构定势最为极端的一种表现,就是数学哲学中的结构主义(构造主义),它认为要证明一个数学对象存在就必须把它构造出来。这显然与我们的数学主流思想是不吻合的。过度依赖结构,有时会造成一定的思维障碍。看到“ ”,就想到里面一定是平方式;看到“-α”,就觉得一定是负角;看到“α+β”就觉得一定是两角和;无视题解目标,僵化地认为变形形式就应符合一般化简要求。比如,在判断函数f(x)= 的单调性(题1)中,学生很少会想到分子有理化(分母无理化),因为代数式分母不能是无理式的结构定势僵化了思维,束缚了学生思维的逆向转换。
二 克服功能性定势,培养功能逆向思维
数学来源于生活,又应用于生活,数学有着强大的功能,大到学科分支或重要的思想与方法,小到某个小知识点或某种数学技巧。正因如此,数学学习中,也往往会产生各种功能性定势。
比如,在本文题1中,不但是结构定势,也是关于有理化技巧的功能定势(认为只能对分母实施有理化)。又如,在“积、商、幂的对数公式”初步学习中,学生对形如“loga(x3y)分解成loga x 和loga y”的要求易如反掌,但对简单的“lg2+lg5=?”却一时拐不过弯,究其原因,由视觉连带造成了从左到右的结构性定势,又进一步造成了公式(等式形式)运用从左到右的功能性思维定势,这种定势相当普遍,阻碍了学生对公式的灵活运用。所以,教师在教学中应不时强调公式有其逆用的功能,并配以一定的练习。
再如,在指数函数的图像与性质教学中,往往已知函数和求指数函数的各类性质(定点、单调性等)不同,但事实上,利用数形结合,不仅可以探求性质,也可以根据函数的具体性质,去求它的解析式,这是相当重要的。克服函数性质学习中的这种功能定势,有意识地引导学生进行功能性逆向转换,在培养逆向思维的同时,又能为学生今后学习解析几何奠定基础,因为根据曲线性质求曲线方程以及根据曲线方程求曲线性质是解析几何的两大中心任务。这种功能性逆向思维的正向迁移无疑会使学生受益匪浅。
三 克服状态性定势,培养状态逆向思维
在数学中经常遇到状态性定势。比如,已知f(x)=(x+2)/(4-x),求f -1(-2)的值,学生的常见方法是:先求反函数,然后再求值。学生的主要思维障碍就在于对f -1(-2)中的-2存在着状态定势,总认为它是一个自变量,对应的是x,如果对这个状态不存在定势,那么就容易想到它其实就是原函数的一个函数值。故此,教师应点破实质,使学生对自己的思维定势有一个明确的认识,让学生真正能“吃一堑长一智”。
函数、方程、不等式是数学的三大代数形式,它们相互联系又相互转换,在许多题目中,都需要克服状态性定势。
比如:在求 的值域中,我们就需要克服状
态性定势,将由函数转换成方程来进一步解决。只有不断联系并转换,才能克服状态性定势,从单一的逆向反转走向多维的逆向转换,并开拓逆向思维,培养出较高的逆向思维品质。
四 克服因果性定势,培养因果逆向思维
数学是注重逻辑的学科,因果关系是数学学科中表现最为普遍的一种关系,但是,若学生只会想当然地将“已知”看成“因”,将“未知”看成“果”,或者始终将命题的条件看成“因”,将结论看成“果”,那么,就会形成学习中的因果定势,阻碍学习的进一步发展。
学生学习数学往往有这样的困惑:听老师讲或看别人做觉得不难,但是自己却不会做,这个问题的根源就在于“只知其然,不知其所以然。”现成的解答往往是从因到果进行演绎的,而问题解决思路的得出却又常常依赖于“执果索因”的分析。所以,必须培养学生进行因果反转式的思维训练。
数学归纳法的第二步证明就是一类很好的例子。又如,在学习单调性及反函数后,可以让学生思考反函数的单调性与原函数的单调性有何关系,这里就有着典型的因果逆向思维特征。教师在教学中,重点不仅是告诉学生或与学生共同推导这个重要推论,更重要的是唤醒学生因果逆向思维的自觉意识,让学生知道突破思维定势,就犹如突破了思维瓶颈,让学生感受到逆向思维是创新的一种新源泉。
综上所述,这四种逆向思维定势并不总是单独存在,教师多方位、多角度的关注,定能使教学处处体现出独到魅力,启发学生突破思维瓶颈,在逆向思维能力的发展上突飞猛进。
参考文献
[1]唐庆华.新课标环境下克服思维定势负迁移之策略[j].中学数学杂志(高中版),2008(1)
[2]龙必增.在数学教学中如何克服思维定势的消极影响[j].黔东南民族师范高等专科学校学报,2002(6)
[3]赵维波.数学教学中如何培养学生的逆向思维[j].中学课程辅导 教学研究,2010(17)
关键词:逆向思维;求异思维;逆向思维的培养
【中图分类号】G633.6
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于"反其道而思之",让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。当大家都朝着一个固定的思维方向思考问题时,而你却独自朝相反的方向思索,这样的思维方式就叫逆向思维。逆向思维是数学思维的一个重要组成部分,是进行思维训练的载体.加强从顺向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识.数学学习中逆向思维能力的培养不是一朝一夕的事,需要我们教师在平时的教学中多注意积累,有意识地利用各种教学的手段和方法进行一些逆向思维的尝试,并让学生逐步适应和习惯。学生一旦掌握了逆向思维的方法,就突破了习惯思维的方向,克服思维定势的束缚,常常使人顿开茅塞,甚至绝处逢生。所以,我想对数学教学中如何加强学生数学逆向思维能力的培养方面进行些肤浅的的探讨。
1.培养学生双向运用知识的意识。
数学中所有知识的概念、原理、法则以及思维方式都具有双向性。概念的定义和分类一般具有对称性,这种对称性就是一种双向性的表现,例如:"有理数和无理数统称为实数"与"实数就是有理数和无理数"就是明显的对称。数学命题都有其逆定理,只是逆定理是否成立而已,数学中还存在大量的可逆定理,例如:"勾股定理'和"勾股定理的逆定理"。就数学方法而言,特殊化与一般化、具体化与抽像化、分析与综合、归纳与演绎等,其思维方向都是可逆的,存在着两个相反方向。充分运用知识的双向性,培养学生双向双向运用知识的意识,是培养逆向思维能力的重要措施。例如:某次乒乓球比赛共有101名运动员参加,如果采用淘汰制,那么觉出冠军共需安排对少场比赛?对于这个问题,习惯思维方向是从胜利者的角度考虑:第一轮比赛,100名参加安排50场,一人落空,有51人进入下一轮。第二场比赛:50人参加,安排25场,1人落空,有26人参加下一轮。......这就是顺向思维,但思维繁琐。如果改为逆向思维,从失败者的角度考虑:每场比赛淘汰一名失败者,决出冠军的过程共有100个失败者,所以,应安排100场。在这个过程中,学生从不同的方向考虑,得到同一结果,潜意识的形成双向思维。
2.在解题中培养逆向思维
数学解题就要注重解题策略,解题策略在数学问题解决中具有重要的作用,逆向思维就是常见的解题策略之一。在顺推遇到困难时可以考虑逆推,直接政法受受堵时可以考虑间接证法,探讨可能性失败时转向考察不可能性等等,都是使思维走向相反方向。这种逆向思维常常可以导致全新的思维和方法,因而应当成为数学解题的策略。比如在证明一道几何命题时,老师常要求学生从所证的结论着手,结合图形,已知条件,层层推导,问题最终迎刃而解。养成"要证什么,则需先证什么,能证出什么"的思维方式。
(1)、在运用定义解题时培养学生的逆向思维.
数学定义总是双向的,我们在平时的教学中,习惯于从左到右的运用,形成了定性思维,对于逆用很不习惯。因此在定义的教学中,除了让学生理解定义本身及其应用外,还要善于引导启发学生逆向思考,从而加深对定义的理解与拓展。在平面几何定义、定理的教学中,渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。教师在分析习题时要抓住时机,有意识地培养学生把某些具有可逆关系的题对照起来解,有助于加强学生的逆向思维能力。例如:在ABC中D、E分别是AB、AC上的任意两点,用反证法证明,BE与AC不能互相平分。证明:假设BE与AC可以平两条相互平分的线段的端点间可以做出一个平行四边形,这应该知道吧你先做出一个图形出来,那么∠BDE+∠DEC=180°'而这是三角形外角得出来的而∠BDE+∠DEC=(∠A+∠AED)+(∠A+∠ADE)=(∠A+∠AED+∠ADE)+∠A=180°+∠A=180°,∠A=0°,这显然是不可能的。所以原命题题成立。
(2)、运用数学公式、法则、性质解题时进行逆向思维训练
教学实践表明,学生对公式、法则、性质的逆向运用不习惯,缺乏应有的潜意识,思维定势在顺向应用上,所以在教学中应强调逆向运用.公式从左到右及从右到左,这样的转换正是由顺向思维转到逆向思维的能力的体现.因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以开阔思维空间.在代数中公式的逆向应用比比皆是.如在教学多项式的乘法公式和因式分解时,利用完全平方公式(a+b)2=a2+2ab+b2和运用公式进行因式分解a2+2ab+b2=(a+b)的互逆关系。恰当合理地把公式、法则和性质等知识进行逆用,能巧妙、简捷、准确地解决某些数学问题,同时培养学生灵活解决问题的能力.。
通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。
总之,逆向思维在中学数学教学中具有十分重要的作用。学生运用逆向思维可以加深对基础知识的理解和掌握,可以发现一些解题技巧,可以培养创造能力,同时还能提高分析问题的能力,加强逻辑思维,开拓思维。因此,教师在教学中应注意培养学生的逆向思维能力,破除思维的定势,跳出一般的轨迹,从而提高学生的思维能力和创新能力。
参考文献
[1]《中学数学教学与实践研究》李玉琪主编
【关键词】高中数学;思维;能力
【中图分类号】G42 【文献标识码】A 【文章编号】1009-5071(2012)03-0244-01
学生的思维能力一般是指正向思维即由因到果,分析顺理成章,和逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识。因此,在课堂教学中必须加强学生逆向思维能力的培养。传统的教学模式往往注重正向思维而淡化了逆向思维能力的培养。课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。为全面推进素质教育,加强对学生的各方面能力的培养,打破传统的教育理念,在此我从以下几方面谈谈学生的逆向思维的培养。
1 逆向思维在数学概念教学中的思考与训练
高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合A是集合B的子集时,A交B就等于A,如果反过来,已知A交B等于A时,就可以用A是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。
2 逆向思维在数学公式逆用的教学
一般数学公式从左到右运用的而有时也会从右到左的运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式的逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用。这组公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。
3 逆向思维在数学逆定理的教学
高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用。直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。
4 强化学生的逆向思维训练
一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面人手解决不了就考虑从问题的反面人手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题。正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。
谈敏
(南京市秦淮中学,江苏 南京 211100)
摘 要:在高中数学解题过程中,帮助学生培养逆向思维能力,引导他们正确而巧妙地利用逆向思维,不仅有助于学生突破思维定势,改变其思维结构,进入新的境界,还可以使他们的思维灵活性和深刻性得到培养,分析和解决问题的综合能力也能进一步得到提高。本文从定义、定理、公式等几方面的应用对逆向思维在数学解题中的应用进行了论述。
关键词:逆向思维;高中数学解题;应用
逆向思维是一种与正向思维相反,从问题的反面进行思考的思维方式,也就是把命题的结论作为出发点,进而找寻结论成立的充要条件或者充分条件。在高中数学的教学过程中,教师应该意识到逆向思维的重要性,结合教材,培养学生的逆向思维能力,积极地引导学生在学习过程中正确有效的利用逆向思维,由根索源,反向思考,激发学生的创新意识,完善他们的综合知识,更好地完成教学目标,提升学生的分析能力。本文作者通过对实际数学问题的解析,探讨了逆向思维在数学解题过程中的应用。
一、逆向思维的含义和培养
逆向思维是一种发散性思维,是指人们从问题的反面出发,从问题的对立面去思考问题的答案。逆向思维的特点是另辟蹊径,从不同的角度思考问题,思路宽广,灵活多变,考虑精细,且答案新颖。逆向思维帮助学生突破思维定势,产生新的思考方法,发现新知识,开拓认识的新领域,形成新的思考方法以及新的科学理论的思维方式。在高中数学学习过程中,培养学生逆向思维能力的关键在于挖掘数学知识的逆向思维素材,并选择典型的逆向思维范例。其主要途径有:1、通过数学定义的逆向思维。例如,关于异面直线的定义:不在一个平面内的任何两条直线都是异面关系;2、通过数学定理的逆向思维。虽然并非所有定理的逆命题都正确,但是引导学生对定理的逆命题进行探讨,验证其是否正确,是指导学生研究新问题的有效方法;3、通过数学公式的逆向思维。公式的两边是等价的,其本身是双向的,平时学生在运用公式时总是习惯地由左至右,化繁为简。但在一些数学习题中对公式进行逆向应用,由右到左,由简到繁能更好地对问题进行解答,有助于学生形成解题技巧,而且又利于提高他们的解题能力,培养其逆向思维能力,使他们的思维得到锻炼;4、在数学基本概念的学习过程中培养学生的逆向思维能力。例如在对“直角三角形”的定义进行讲解时,教师可以采用如下的形式:正向思维:有一个角为90度的三角形称之为直角三角形。逆向思维:直角三角形中必须有一个角为90度。另外,在教学过程中,教师要明确哪些定理的逆命题是真命题;5、通过反证法,分析法,待定系数法等培养学生的逆向思维能力。
二、逆向思维在高中数学解题中的一些具体应用实例
(一)逆用定义
以双曲线定义为例,若点P的轨迹是双曲线,则等式 恒成立。
例1(福建卷)已知F1,F2是双曲线 (a>0,b>0)的两个焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是()
解:因为MF1F2是正三角形且边MF1的中点在双曲线上,则设设边MF1的中点为P,有角F1PF2=90°,角PF1F2=60°,从而
所以根据双曲线的定义可知
解得 ,故选D。
点评:当已知是何种圆锥曲线且与两焦点有关时,可直接利用定义求解,以达到简缩思路、简化运算的目的。
(二)定理的逆用
勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。若c为最长边,且a²+b²=c²,则ABC是直角三角形。如果a²+b²>c²,则ABC是锐角三角形。如果a²+b²<c²,则ABC是钝角三角形。
例2 如图1所示,在四边形ABCD中,AB:BC:CD:DA=2:2:3:1,且角B=90°,求角BAD的度数。
解:设AD=a,则AB=BC=2a,CD=3a,连接AC,三角形ABC为等腰三角形,所以角BAC=45°,在Rt三角形中,由勾股定理得AC2=AB2+BC2=2AB2=8a2,又因为AD2=a2,CD2=9a2,所以AC2+AD2=CD2。
由勾股定理的逆定理知三角形CAD是直角三角形。
所以角CAD=90°,角BAD=角BAC+角CAD=45°+90°=135°。
图1
(三)公式的逆用
根据所求式子的结构特征及要求,把已知式子变成公式的变形形式或逆用形式,再进行变形的方法叫公式的变形及逆用法。比如对于两角和与差正切公式
可以变形为
即显示了两角正切乘积与正切和与差的关系,若α+β是特殊角,可直接找出它们的关系。
例3:求tan17°+tan43°+ tan17°•tan43°的值。
分析:注意17°+43°=60°
解:因为 =tan60°=tan(17°+43°)=(tan17°+tan43°)/(1-tan17°tan43°)
所以 tan17°+tan43°= (1-tan17°tan43°)
所以 原式= (1-tan17°tan43°)+ tan17°•tan43°= 。
(四)反证法与分析法,待定系数法等的应用
反证法,分析法和待定系数法等重要的数学方法也都是通过逆向思维体现出来的。
例4:已知b=b1+b2,其中b1与a成正比例关系,b2与a成反比例关系,并且当a=1时,b=4;a=2时,b=5,求b与a之间存在的函数关系。
解:依题意,设b1=k1a,b2=k2/a,则b=b1+b2=k1a+k2/a。由已知条件可列方程组
解得k1=2,k2=2。因此,b与a之间的函数关系式为b=2a+2/a。
综上所述,在数学解题中,当应用常规正向思维受阻,或者需要迂回曲折才能找到答案时,改为应用逆向思维,往往能得到更为简单的解答,开拓出新的解答途径。因此,在平时的教学过程中,重视对学生逆向思维能力的培养,可以激发学生的学习兴趣,培养其数学思维,以及思维的敏捷性,并且有助于提高学生的综合能力,开发其智力。
参考文献:
[1]顾秀明.浅谈中学数学中逆向思维方法的应用—以定义、定理、公式的逆用为例[J].理科爱好者(教育教学),2009,1(4).
[2]张恩祥.试论逆向思维在高中数学中的应用[J].理科爱好者(教育教学版),2012,4(4).