前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇楼宇能源管理系统方案范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
重庆江北国际机场(简称江北机场)是西南地区航空枢纽之一,也是国家大型枢纽机场。本项目江北机场东航站区及第三跑道建设工程位于现有机场东侧,项目包含新建T3A航站楼、第三跑道及相应的供水、供电、供气等配套设施,计划2015年底基本建成。
基于该项目的实际需求,科华恒盛凭借在能源自动化领域,尤其是机场方面的软件系统集成服务经验,为江北机场提供了一套IEMS3000能源管理系统综合解决方案。该IEMS3000能源管理系统包括基础信息管理、能量平衡优化管理、能效管理、能效审计、能源计划管理、工程数据备份及维护、应用软件定制开发等应用功能,通过建立该能源管理系统可对机场东航站的工作区和货运区、电、气能耗数据进行采集分析、收费管理,并可接收T3A航站楼和飞行区能耗数据,实现对江北机场水、电、气表的远程集抄和能耗管理,从而达到人员优化和节能降耗的目的。
作为国内领先的智能化能源管理系统综合解决方案供应商,科华恒盛定位高端,所属业务品牌――康必达公司致力于为能源自动化领域用户创造高价值服务,包括能源管理、数字化变电站、电力自动化、工业自动化等相关产品研究开发、系统集成和应用服务。目前,科华恒盛相关产品解决方案已经广泛应用于机场港口、石油化工、有色冶金、煤炭水泥、电力发电、智能楼宇、政府公共及军工等各个行业,帮助客户实现可持续的节能增效项目、优化企业运行和提高生产管理。
此外,科华恒盛携高端电源产品解决方案还成功中标了临汾机场采购项目,其中包括高端UPS及相关核心设备,共计80多套,为临汾机场的安全运营提供了高可靠的绿色电源保障。
据悉,临汾机场于2010年9月20日奠基,于今年10月份竣工试飞,年底开始试运营。根据规划,临汾机场复航改造工程本期目标为2020年旅客吞吐量43万人次,货邮量为1500吨以上。在山西省进入全面转型跨越发展的大背景下,临汾机场的正式运营,将为临汾今后发展架起空中经济桥梁。
关键词:智能建筑能源管理节能
中图分类号: TS958 文献标识码: A
一、概述
目前,全国现有房屋建筑面积已达430亿平方米。在建筑的建造和使用中,能源消耗高、利用效率低的问题十分突出。相关部门的调查数据表明,2009年建筑耗能占全社会耗能总量的比例由1978年的10%上升到30%左右。我国每年竣工建筑面积约为20亿m,其中公共建筑约有4亿m。2万m以上的大型公共建筑面积占城镇建筑面积的比例不到4%,但是能耗却占到建筑能耗的20%以上,中国工程院的相关人士在对居民住宅、公共建筑的用电量进行比较之后发现,一些写字楼、饭店等大型公共建筑的单位平方米年耗电量在100度~300度之间,是居民住宅的10~15倍。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。
在我国现有的建筑中,只有4%采取了能源效率措施,单位建筑面积采暖能耗为发达国家新建建筑的3倍以上。根据测算,如果不采取有力措施,到2020年中国建筑能耗是现在的3倍以上。在国家大力推行节约型社会之时,酒店、大型办公楼、商场等能耗量较大的公共建筑开始意识到设备运行中能耗过高的问题。因此,做好大型公共建筑的节能管理工作,对实现国家建筑节能规划目标具有重要意义。二
二、智能建筑能源管理系统的结构
智能建筑能源管理系统是基于自动化控制系统基础上一套计算机智能化的管理软件平台。该系统通过对建筑物内各类能耗参数的收集、分析,运用科学算法发出合理的操控指令,通过楼宇控制系统实现其动作。
智能建筑能源管理系统以计算机、通讯设备、测控单元为基本工具,为大型公共建筑的实时数据采集、开关状态监测及远程管理与控制提供了基础平台,它可以和检测、控制设备构成任意复杂的监控系统。该系统主要采用分层分布式计算机网络结构,一般分为三层:管理层、网络通讯层和现场设备层 。
1)管理层
站控管理层针对能耗监测系统的管理人员,是人机交互的直接窗口,也是系统的最上层部分。主要由系统软件和必要的硬件设备,如工业级计算机、打印机、UPS 电源等组成。监测系统软件具有良好的人机交互界面,对采集的现场各类数据信息计算、分析与处理,并以图形、数显、声音等方式反映现场的运行状况。
监控主机:用于数据采集、处理和数据转发。为系统内或外部提供数据接口,进行系统管理、维护和分析工作。
打印机:系统召唤打印或自动打印图形、报表等。
模拟屏:系统通过通讯方式与智能模拟屏进行数据交换,形象显示整个系统运行状况。
UPS:保证计算机监测系统的正常供电,在整个系统发生供电问题时,保证站控管理层设备的正常运行。
2)网络通讯层
通讯层主要是由通讯管理机、以太网设备及总线网络组成。该层是数据信息交换的桥梁,负责对现场设备回送的数据信息进行采集、分类和传送等工作的同时,转达上位机对现场设备的各种控制命令。
通讯管理机:是系统数据处理和智能通讯管理中心。它具备了数据采集与处理、通讯控制器、前置机等功能。
以太网设备:包括工业级以太网交换机。
通讯介质:系统主要采用屏蔽双绞线、光纤以及无线通讯等。
3)现场设备层
现场设备层是数据采集终端,主要由智能仪表组成,采用具有高可靠性、带有现场总线连接的分布式I/O控制器构成数据采集终端,向数据中心上传存储的建筑能耗数据。测量仪表担负着最基层的数据采集任务,其监测的能耗数据必须完整、准确并实时传送至数据中心。
三、智能建筑能源管理系统建设
智能建筑能源管理系统建立,具体包含以下几个方面内容。
1、能源规划(Energy Planning)
根据建筑具体情况,全面规划智能建筑的能源使用,建立建筑能源使用模型。包括建筑物综合节能解决方案,各系统集成,太阳能、地源热泵等新能源与可再生资源的利用模型。
按照世界能源委员1979年提出的“节能”定义:采取技术上可行、经济上合理、环境和社会可接受的一切措施,来提高能源资源的利用效率。即尽可能地减少能源消耗量,生产出与原来同样数量、同样质量的产品;或者是以原来同样数量的能源消耗量,生产出比原来数量更多或数量相等质量更好的产品。以此延伸开来,建筑物的节能可以定义为:在基本不影响建筑物功能和舒适性的前提下,尽量减少能耗。所以,判断一个建筑物节能与否,节能多少需要有个参照物,通过和参照物比较才能得出结论。对于改造的建筑,通常可以用同一气候条件下的历史能耗数据作为参照。而新建建筑则相对比较复杂,日前在实际工程中常见下列几种方式:
类比法:以类型、规模、功能相仿的建筑的能耗作为参照。主要适用于连锁酒店、连锁超市、连锁商场等建筑条件相仿,管理模式相同的同一集团或管理公司旗下的建筑物。
测试法:在建筑物正常运行后,分别在各气候条件下测试采取能耗管理措施和未采取措施的日能耗数量。通常可以在夏、冬两季各选择数天,采取隔日测试法,即第一天,测试采取能源管理措施日能耗量;第二天,关闭能源管理软件测试日能耗量;以此类推。这种方式缺陷是测试的时间跨度偏长。
计算法:通过为建筑建立模型,设定参数,模拟计算出该建筑物的能耗。这种方式优点很明显,通过模型能对建筑物的各设备能耗全面计算,为能耗管理提供方向性指导。但采用不同的软件计算出的能耗值有差距,目前对计算出的能耗值的准确性和权威性均存在争议,计算结果能否作为节能合同内的节能率计算依据是主要的分歧点。
2、能耗监测(Energy consumption Monitoring )
监测建筑物内的能耗使用,具体到各系统分项监测,环境参数与设备运行参数,对机电设备进行动态管理。数据可通过建筑设备管理系统(BAS系统)采集。
数据的采集和存储是整个系统的基础
数据内容主要包括:实时监测建筑分类 、分项能耗情况,及时报告能源及设备运行状况,包含建筑物环境参数、设备运行状态参数、各设备能耗数据等。获取的参数越多、运行的周期越长,越容易得到准确的结论。但若参数过多,又会造成建设成本的大量增加,因此可根据各建筑物的具体情况把数据分为:系统运行所必须的基础数据和辅助数据(可选数据),在管理效果和建设成本间取得平衡。
3、能耗分析(Analysis of Energy consumption )
根据能耗监测数据,进行能耗分析。没有大量的数据就无法进行有效的分析,没有有效的分析就无法得到正确的能源管理措施。对智能建筑中各系统,各设备用能情况进行综合分析,与模型数据,历史数据进行综合比较,为节能运行提供科学依据。通过对建筑的能耗数据统计、分析,结合模型建筑物能耗对比,确定建筑物能耗对比,确定建筑物的能耗状况和设备能耗效率,从而提供建筑物能源管理优化措施。能耗数据分析模块是能耗管理软件的精髓所在,目前市场上各家软件的算法不尽相同,其效果还需市场验证。然而,以模糊语言变量及模糊逻辑推理为基础的计算机智能控制技术的发展将极大推动能源管理水平。
对建筑能耗数据进行历史能耗分析、能耗比例分析、能耗分布、能耗排名等各项能耗分析,并通过图表进行展示,帮助用户直观了解能耗变化情况,把握重点能耗;
系统具有能耗标杆库,将用户能耗情况与标杆值进行对比,实现能耗对标,帮助用户了解与同行业能耗水平之间的差距;
系统可通过对用能费用预算完成率、用能结构、管理节能情况、安全情况及设备情况等各项评价指标的分析,对用能情况进行评估打分,有助于提升用能效率,降低用能成本;
能源管理报表:用表格和图片的形式体现建筑物的能源使用情况、设备能耗、设备运行效率、能耗历史曲线等,以适应不同人群的需求。系统一般应能提供WEB服务,获得授权许可的远程用户能通过浏览器了解建筑物的能源使用状况
4、节能控制(Energy saving control )
根据能耗监测与能耗分析,通过楼宇智能化控制各系统设备,达到经济运行,合理运行,降低能耗。建筑物的节能措施主要通过建筑设备管理系统(BAS系统)来执行。能源管理平台和BAS系统的完美结合,是能源控制和管理措施实现的保障。目前,能源管理和BAS还分属不同智能化系统,两系统的相互融合应该是智能化系统发展的方向。
节能控制采取的主要方法:
1)时序控制法:根据大楼工作作息时间按时启停控制设备,如风机、照明等。
2)运行模式控制:根据不同的时间段,不同的工作模式设置设备运行数量与工作模式。如:夜间工作模式、节假日工作模式等。
2)温度―时间延滞法:根据大楼内温度保持的延滞时间,提前关闭空调主机或锅炉达到节能之目的。
3)调节供水温度:根据室内外实际温度调节空调系统的供水温度,设定合适的供水温度减少系统主机的过度运行,实现节能。
4)经济运行法:在室外温度达到13℃时,可直接将室外新风作为回风;在室外温度达到24℃时,可直接将室外新风送入室内。在这样的情况下,系统可节约对送回风系统进行处理的能源。
5)设备等寿命运行:对楼内冷热源主机、泵机、风机等设备进行等时间交替运行,延长设备的运行寿命,节省维护费用。
5、节能改造(Energy sources reconstruct)
系统能够记录每一次节能改造的过程及成果,使原来无法说清楚的能源管理,变得可量化、可比较、可评价。
四、智能建筑能源管理系统建设展望
针对能源需求日趋紧张的情况,中国政府高度重视节能与环保,积极推进节能减排、发展绿色产业和绿色经济,建设部科技司司长赖明曾大致估算了建筑节能这个市场的市场值,“建筑节能势在必行,建筑节能市场容量很大,据测算,有5000亿元的空间。”有专家表示,“在建筑节能方面,国家推出了一系列政策,统计表明,我国节能减排市场每年至少有3000亿~5000亿元的市场需求,2020年我国用于节能建筑项目的投资至少是1.5万亿,建筑能源管理系统的市场前景是很广阔的。
对此,认为建设智能建筑能源管理系统将有如下几个方面特点
1. 全面的能源解决方案,可以节约20%-30%的能源成本控制;从建筑设计阶段-建筑使用-建筑节能改造,进行全面的能源管理,包含建筑结构,建筑设备,建筑使用管理等全方面的能源控制,真正做到智能建筑全生命周期的节能降耗控制;
2. 快速安装调试、便捷管理。操作界面更加灵活,便于人机交互。灵活科学的安装控制方案可减少30%-50%的安装和重新配置时间;
3. 在整个楼宇生命周期内可以灵活改造,建立能效控制中心,持续监控能源使用效率;
关键词:互联网;智能建筑;设备能源;管理系统
1 节能建筑是社会发展的需要
我国在《智能建筑设计标准》GB/T 50314―2006 中对智能建筑的定义是“以建筑物为平台,兼备信息设施系统、信息化应用系统、建筑设备管理系统、公共安全系统等,集结构、系统、服务、管理及其优化组合为一体,向人们提供安全、高新、便捷、节能、环保、健康的建筑环境”。
建筑能耗占整个社会的能源消耗的较大份额,而其中建筑信息系统、建筑设备(空调、照明、电梯等)、建筑安防系统是建筑能源消耗中的主要部分。随着社会的进步,人类生活水平的提高,节能意识的增强,舒适、节能及安全的智能建筑是未来社会发展的必然选择与趋势。新兴发展的互联网技术正是一种可以适应建筑智能化的发展趋势,与建筑信息、设备、安防系统相融合的技术手段,能够大幅提高建筑的能源管理水平,降低能源消耗。
2 智能建筑能源管理的目标
智能建筑能源管理的目标首先就是要提高建筑通信系统、建筑设备(空调、照明、电梯等)、建筑安防系统的能源消耗水平,通过自动控制,将不必要运行的设备、通道、线路及时置于休眠状态,并提高现有运行设备的运行效率。而智能建筑与以往的旧有建筑相比的主要优势在于通过基于数字技术为基础的互联网系统将以往各自为战、互不相同的通信、设备、安防系统集成起来,形成一个共有的平台,并通过互联网技术实现建筑内的各系统的远程操控。互联网技术在此提供强大的数据传输、计算及处理功能,打通了传统的不同自动控制系统间信息交流和集成的诸多障碍。
依托于互联网技术的智能建筑能源管理系统集成节能特点具体体现在对智能建筑BAS控制方案的优化与融合,目标是为了对建筑的能耗实现精确的计量,进行能耗分类归纳汇总,计算单位平均能耗,查找高耗能点和挖掘节能潜力。对于智能建筑能耗集成管理的重点主要有两方面:(1)对能源消耗信息的集中采集与监测;(2)通过互联网技术对建筑中各系统的集中的远程监控,在保证建筑功能服务水平的前提下提高智能建筑能耗水平。在能源消耗信息的集中采集与监测方面,通过采用与互联网兼容的数据收集单元全面采集对室内外的温度、湿度、CO2浓度等环境信息。在远程监控方面,在考虑了收集上来的不断变化的室内和室外环境信息,在允许的范围内系统的确定变量的控制,寻找最小的能耗输入,远程地控制照明、风机、水泵、空调机组,从而来满足室内舒适度和健康环境。
3 智能建筑节能技术与互联网技术的融合发展
互联网技术应用在智能建筑的能源管理系统中通常可以划分为3个层次:感知层、网络层和应用层,如图1所示。
感知又饕就是完成采集数据的任务。通过各种传感器、控制器等智能装置自动采集物体的各种信息,实现物体识别、信息采集、数据上传的功能。
智能建筑能源管理系统运用系统集成的方法和手段,借助楼宇自动化系统(Building Automation System,BAS),完成各个子系统的关键数据的采集和存储。这类代表性的信息比如设备用电信息、环境信息、空间信息、时间信息等,从而建立智能建筑较完整的系统运行数据库,为下一步的设备运行管理分析和能源管理分析作数据储备。
网络层主要就是实现数据信息的处理、传输和控制。网络层作为互联网体系架构的中间层,是互联网的中心环节,包括Internet,3G/4G,WiFi 等有线和无线的通信网络,同时还有基于以太网 TCP/IP 等的通信控制网络。
应用层的主要任务是对于已经上传的数据进行分析,并利用经过分析处理的数据实现智能化识别、定位、跟踪、监控和管理的功能。
应用层对于基础的数据分析是根据智能建筑能源管理系统采集到的数据完成设备查询分析。应用层软件将基于数据模型,并根据数据统计结果,分析能源消耗数据与用能结构,通过对能量消耗状况的掌握,能准确找到建筑物中能耗可能的控制点。根据事先建立的全国的同类建筑运行状态和行业规定标准的能耗数据库,建立标准的数据节能特征数模曲线,通过对比分析,找出能耗偏高的症结所在,并给出科学的、合理的、可行的一套基本的优化节能管理方案,从而达到节能的效果。
互联网技术除了可以收集、分析能耗情况、远程控制高能耗设备,还可以进行建筑设备的故障诊断、维护管理及自动调试。传统的设备维护管理是按照维护计划进行执行,不能够及时地发现问题、解决问题,设备无故障时也浪费了人力。而通过互联网技术收集到的设备数据信息,可以有效地、有针对性地对可能产生问题数据的设备及时地进行维护,大幅提高了设备的维护水平,降低了维护成本,同时对于由于设备故障产生的高能耗问题预先进行解决。
通过互联网系统采集到的基础数据也可以用于对智能建筑的节能效果进行分析。通过实际能耗情况和节能计划对比分析可以得到实际的节能效果。通过这种分析可以帮助用能单位后期更加详细地制定能源消耗指标,并实时地加以监督,及时地制定改进措施。最终通过节能分析,可以记录并各项节能措施的节能量,并能够清晰了解、展示节能改造的实际效果。
4 智能建筑节能技术与互联网技术融合发展实例
互联网系统应用于智能建筑能源管理系统中,能够让建筑内的通风空调系统运行在全自动状态。智能控制方式可以预先设定若干基本工作状态,根据天气情况、房间内的人员情况,自动地调整房间内的供热、供冷及通风量。例如,在上班时间到来前,可以根据预先设定的时间,提前开启通风空调系统,使建筑物内的污染物(如甲醛、CO2,Rn等)提前稀释,达到人能够正常工作的安全状态。在下班后或人变少后能够自动地降低通风量或关闭通风系统。再如,互联网智能控制系统能够时时控制房间内的温度、湿度,使房间内的环境根据天气预报,及时地调整空调系统的运行状态和方式,从而达到节能降耗的作用。除此之外,互联网系统的加入,能够使房间内的环境信息及时地传递给远程的控制室,通过对于房间环境的掌握,从而可以远程地对房间环境做出精准调节。当采用精确调节方式后,智能建筑的空调系统可以在过渡季节充分利用外界自然的冷暖空气,减少机组的运行时间及负荷,最终达到节能降耗的目的。
通过互联网技术+智能建筑,可以提高智能建筑的管理水平,减少建筑的维护费用。智能建筑智能通风空调控制系统将普通通风空调人为地控制空调系统转换为智能化管理,不仅使大楼的管理者提高其管理意识和管理素质,而且将大大减少大楼的运行维护费用,并带来巨大的投资回报。
试论“贯标”的有效性许峻(3)
e—Home数字家园:科技创造新生活陈萍(7)
从数字地球到数字城市规划(上):兼论上海城市规划信息系统简逢敏(10)
楼宇自控系统现场控制站软件系统:控制技术系列文章之二顾锦瑜窦晖(18)
LonMark互可操作性:Lonworks控制网络技术系列讲座(3)张晓燕(22)
住宅电气设计标准孙兰(26)
网络房屋离我们究竟有多远刘叶冰(32)
斜拉桥损伤识别的径向基函数(RBF)神经网络设计刘效尧(35)
布线系统中的屏蔽与屏蔽(38)
注塑模具参数化设计孔凡国(40)
建筑工程施工项目的管理集成系统技术黄如福符岚(43)
智能住宅的安全防范系统设计朱立彤(47)
芳村小区的综合布线设计(52)
凤山桥装饰工程结构设计张小明韦爱凤(55)
螺旋面亭顶的实体造型技术罗康贤李健(57)
AutoCAD环境下桥涵设计软件的二次开发徐庆元唐进峰(60)
AutoCAD环境下提高绘图效率命令的应用周传辉(62)
分布式事务处理系统平台在智能化住宅小区中的实现:HG2000A…李俊红蔡晟(66)
巡视光栅矢量化软件(上)Bytnes,D(70)
2008年度智能建筑品牌精彩绽放(1)
智能建筑真的智能了吗?——三大典型建筑智能化建设专项调查初步分析(12)
面对面——酒店建筑的智能化建设路小北(被采访人)(17)
面对面——医院建筑的智能化建设王健(被采访人)(21)
面对面——机场建筑的智能化建设吴文芳(被采访人)(24)
建筑节能坐标——能源计量(34)
行业扫描
光纤布线技术风暴(6)
IB商务沙龙——用户需求:2008(北京)现代金融业建筑信息化、智能化建没商务沙龙成功举办(7)
国际先进布线阻燃技术——大金布线阻燃专题研讨会(7)
行业领跑者要努力成为标准制定者(8)
核心技术,推动中国建筑节能——同方Techcon控制产品与智能建筑专家交流会(9)
IB专栏
智能建筑正当时(10)
本期关注
酒店的建设需要软硬件一起抓——酒店建筑智能化建设初步分析(13)
数字化医院的建设之路——医院建筑智能化建设初步分析(18)
为机场插上智能化的翅膀——机场建筑智能化建设初步分析(22)
面对面——集成商谈建筑智能化建设(29)
楼宇自动化
建筑节能坐标——能源计量(35)
大型公建能耗计量系统设计与应用王志蔡波钟衍(39)
能耗计量是建筑能源管理的出发点和基础(44)
能源监测与控制系统——西门子基于网络的经济有效的能源管理解决方案陈昕昕(46)
江森自控的可持续能源管理(48)
布线全攻略
光纤跳线管理指南(50)
6类布线系统的施工与安装曾光波(56)
数据中心预连接光缆布放技巧孙慧永(60)
网络数据传输铜缆结构之演变工程设计CAD及自动化 万志康(63)
如何在现场检测整箱线缆和跳线的质量尹岗(66)
如何解决Cat.6A成品线材和成品跳线测试黄定铖(70)
整箱线缆现场测试解决方案刘程吴建新(74)
布线系统屏蔽层与接地的检测任长宁(77)
数据中心里光纤连接方案的迷思(81)
综合布线问与答(82)
安全防范
大连大窑湾保税港区周界防范及视频监控系统实施方案宋松(84)
浅说数字智能视频分析技术的三种实现途径程丽敏(88)
绿色照明
基于模糊技术的智能照度控制系统研究张亚王大欣(91)
技术与工程
模拟和数字广播系统在浦东机场应用的分析和比较顾炜兢(95)
数字技术在奥运场馆中的应用刘宇辉(99)
高科技园区智能化弱电系统的整体规划设计王福良(104)
楼宇自动化系统在医院建筑中的应用王胜(107)
全面整合打造综合布线品牌旗舰——访泰科电子安普布线全球副总裁StephenMitchell先生张喜凤(6)
在线论坛
“IB中国行走近国标”杭州、哈尔滨站推动智能建筑行业创新与可持续发展主题论坛——暨智能建筑新标准新技术推广系列活动之七月盛况王洪涛(9)
本期关注
解读医院智能化建设(二)——推动医院智能化的手臂——访中国医院协会医院建筑系统研究分会研究员于冬赵晶宜(11)
医院智能化工程建设中应注意的几个问题杨国栋(15)
医院的弱电设计(一)苗地(19)
医院智能化系统的设计思路(二)王健(26)
浅谈医院建筑的智能化系统魏燕文(33)
现代化医院智能化系统工程建设实践刘伟陈刚(38)
中控.SUPCON楼宇自控产品在医院建筑中的节能应用龚小斌龙孔荣(42)
楼宇自动化
智能大厦电力监控系统的应用陈明(51)
一种新型的新风机组数字式定风量风阀及其控制器赵晓军宋四海郭启辉王建平(58)
HoneywellEBI与Carrier冷水机组接口通信佘凤程(62)
“八一大楼”楼宇自控系统的改造宋志伟车盖伟(65)
布线全攻略
工程设计CAD及自动化 综合布线系统的设计——综合布线系统设计体会曾松鸣(69)
在综合布线设计中如何选择多模光纤和单模光纤(74)
百通公司优秀布线理念简介倪建华(76)
综合布线系统设计金海涛(79)HttP://
检验布线质量(81)
建筑电气与智能化专业实验室的建设陈志新周渡海张少军(83)
技术与工程
浅议酒店智能化系统工程建设(二)——建设与管理模式篇柳长波沈晔(86)
建筑节能的设计技术、发展探讨陈硕黄宁海(90)
浅谈建筑设备管理系统设计的规范化操作黎安明(93)
绿色照明
《城市道路照明设计标准》CJJ45-2006简介李景色李铁楠(96)
城市道路灯具设计的景观性研究初探王健徐华(100)
城市景观照明的绿色与节能(一)——城市景观照明的发展与问题熊志强(106)
住宅科技
依山别墅的卓越音响(109)
产品与应用
智能流量平衡解决方案沈新荣郁辉球石磊(111)
企业风采
施耐德电气收购Pelco进一步拓展其楼宇自动化业务(116)
培训视界
2007年智能建筑专业技术系列培训课程(117)
“IB中国行走近国标”南京、福州、武汉站:推动智能建筑行业创新与可持续发展主题论坛——暨智能建筑新标准新技术推广系列活动4月再掀热潮赵莹(6)
本期关注
智能建筑企业销售渠道(一)——不断了解和满足客户需求——访比利时巴可有限公司大中国区市场总监唐朝晖比利时巴可有限公司中国区智能显示与虚拟仿真部门总经理苏晹苏慧萍(9)
力求“专注、专业、专一”的管理销售渠道——访美国康普公司SYSTIMAXSolutions大中国区总监黄海涛苏慧萍(13)
以客户为尊,充分了解客户需求——访霍尼韦尔建筑智能系统部中国区销售总监刘锋赵晶宜(16)
精心出精品专业铸卓越——访杭州立方自动化工程有限公司总经理周林健苑晓蒙(18)
信息与双赢施耐德的制胜法宝——访施耐德电气(中国)投资有限公司综合布线产品(中国区)销售经理温燕丹苑晓蒙(20)
保证高品质平衡价值链——访索特自控系统(北京)有限公司市场总监张鸿军苑晓蒙(22)
中控电子:坚持“产品+服务”的营销模式——访浙江中控电子技术有限公司楼宇控制产品事业部总经理龚小斌苏慧萍(25)
楼宇自动化
新一代BACnet控制器吴彬(27)
LonWorks智能节点及其Plug-in程序设计任晓强燕飞韩宁(32)
变风量变水温系统解耦控制实验研究徐小军翁文兵(37)
智能建筑电源技术均应用研究程敏珍缪希仁(41)
布线全攻略
综合布线施工的重要性——综合布线工程实施中问题杂谈(46)
综合布线施工中的穿线曾松鸣(51)
数据中心布线过程中机柜和机架问题工程设计CAD及自动化 张昊巍(55)
关于企业布线(58)
“安装型性能”布线方案梁俊(59)
数据中心即插即用新产品——光/铜转换模块(61)
自由空间光通信技术范围研究(62)
令人期待的视频、数据、语音测试设备CarolineChenDanPayerle庄焰(译(65)
浅谈双绞线在现代化高速公路视频监控系统中的应用(68)
TCL-罗格朗经典工程案例(70)
技术与工程
北京市东直门交通枢纽公交场站火灾探测器的选择邱勇(72)
北京大学体育馆扩声系统浅谈王苏颖(74)
门禁系统百家争鸣——大型智能IC卡网络门禁管理系统在广州地铁三号线中的实际应用苗健(76)
美国西屋门禁系统在电力行业无人值守变电站的应用严斌(83)
智能卡在制衣厂的应用(88)
松下平移自动门门禁系统出入口解决方案(92)
跨区域、跨国大型企业组织出入口安全协同控制和管理技术:Digitalor2006SuperGroup超级组织网络门禁系统(95)
CCF指纹考勤门禁(98)
泰科安防门禁控制和管理(100)
办公室照明的现状与未来(二)袁樵(101)
走近标准
明确智能建筑的建设最终目标——访华东建筑设计研究院国际工程设计部电气室主任林海雄赵晶宜(105)
建设部关于国家标准《综合布线系统工程验收规范》的公告(106)
建设部关于国家标准《综合布线系统工程设计规范》的公告(106)
工程设计CAD及自动化 IB中国行近国标:互动答疑(107)
产品与应用
精臻于专,尊显于惠——HP高性价比AMD双核处理器工作站xw3400(109)
沟槽式解决方案使“鸟巢”管道连接如期完工(111)
关键词:自动化 控制 智能建筑
中图分类号:F407文献标识码: A
一、自动化控制技术概述
自动化控制技术,是指在无人直接参与下,通过使用控制装置操纵受控对象或过程自动地按预定程序运行,它是以数学的系统理论为基础,利用反馈原理自动地影响动态系统,使得输出值接近或达到人们的预定值。自动控制技术将人类从事的各种危险、繁琐的活动趋于安全和简单,大大提高人们工作效率,对人们的日常生活有着重要的影响,随着科技的不断发展,自动控制技术正逐步应用到现代智能建筑中。
二、自动化控制技术在智能建筑中主要运用形式
早期智能建筑应用自动化控制技术一般包括:办公自动化(OA)、通信自动化(CA)和楼宇自动化(BA)三个部分。现在的智能建筑已经发展到5A系统,包括办公自动化(OA)、通信自动化(CA)、楼宇自动化(BA)、消防自动化(FA)和保安自动化(SA)五个部分
1、通信自动化
智能建筑的信息通信系统能够和外部相关结构连接,包括:电话公网、数据网、计算机网、卫星、广电网相连等,这样能够确保建筑内外部之间的有序结合,让智能建筑的性能得到最大发挥。通信自动化可以为用户创造快捷、有效、安全及可靠的信息通信服务,在语言、图形、文字等方面的通信水平都是比较先进的。通信网络系统有:固定电话通信系统、声讯服务通信系统、无线通信系统、卫星通信系统等,各种通信功能都具有。
2、楼宇自动化
楼宇自动化在智能建筑中是不可缺少的构成,对于智能建筑自身价值的体现有着较大的意义。智能建筑利用楼宇自动化系统完成建筑物内设备与建筑环境的有效控制,能够给用户创造良好的生活环境,在安全、舒适、高效、经济、便捷等方面的优势。显著楼宇自动化系统能根据建筑内部所有的公用机电设备,如:建筑的中央空调系统、给排水系统、供配电系统等开展全面管理,实现了整体设备的有序运行,减小了建筑施工、消耗能源的成本投入。
3、办公自动化
办公自动化便是利用先进的信息处理设备,以计算机为中心,采用传真机、复印机、E-mail、国际互联网局域网等一系列现代化办公及通讯设施,最大限度的提高办公效率、改进办公质量、改善办公环境和条件缩短办公周期、减轻劳动强度同时防止减少人为的失误和差错。办公自动化技术将使办公活动向着数字化方向发展,最终实现无纸化办公。
4、保安自动化
智能建筑安全防范工作很重要,过去依靠人工的方式存在很多隐患及弊端,而智能化小区的最重要目的之一,就是用电装置来保障小区的安全防范工作,为住户提供舒适安全居住环境。现代建筑的安全防范系统可以实时监控着非法闯入的发生,一旦出现警情,系统会自动向中心发出报警信息,同时启动相关电器进入应急联动状态,从而实现主动防范,主要包括安装闭路电视监控系统;门禁管理系统;停车场管理系统;防盗报警系统;出入口管理与周界防范系统;对讲与防盗门控等等,它们都是以自动化控制技术作为设计基础,使人们的公共安全得到保证。
5、消防自动化
智能建筑许多都是高层建筑,其内部设施功能复杂,形成火灾的因素也比普通建筑更多。消防自动化系统通过建筑物内不同位置的烟火控制装置提供的信息进行确认后报警,同时启动联动系统,包括关闭空调、开启排烟装置、启动消防专用梯并且启动消防系统运作、紧急广播疏散人群,从而使得尽可能的减少生命、财产损失。目前智能建筑经常采用的消防自动化系统包括:自动喷水灭火系统;自动气体灭火系统;火灾事故广播系统;安全疏散系统;消防电梯管理系统。
三、自动化控制技术在智能建筑应用中的优势探析
1、卓越的技术优势
(1)通信协议的标准化。建筑自动控制系统采用了国际标准化协议及标准化的协议群,如BACnet协议、Lontalk协议、丁CP/IP协议以及CAN总线协议等,实现了设备与系统全工作流程内的高效监控。在结构交杂的大型建筑中,电气系统组件繁多、功能多样,传统运行方式常常留下管理台区,导致故障的发生。而建立在标准化通信协议平台上的自动化组件,通过“采集一处理一反馈”模块,系统能实时进行数字化监控,能及时将控制中心的指令传达到系统,并将反馈信息同时传递到控制中心,以实现对多个系统高效、实时、不间断的控制和管理。
(2)能源管理数字化。强大的能源管理功能不仅可使用户对水、电、气、冷(热)负荷的每一项费用的细节了如指掌,明白消费,而且系统还提供节能控制方案,实现了能源管理的数字化,精确化。通过智能化计量仪表,能实时监测计量对象能耗情况,数据完备、计算精确,并建立有准确清晰的数据库,以便为后期优化的决策提供信息支持。
(3)集散型控制方式。既可以分布式控制,分散到就地控制,控制调节功能可由系统的控制器独立操作完成,而不依赖主机,即便是在主机掉线状态下,现场控制器也能手动或按策略自动完成各项控制任务,通过集中管理、分散控制这种集散式监控结构的设计原则来实现整体功能。
(4)功能设计一体化。一体化的功能设计,实现了与安防、消防、配电、照明、空调、通信、办公等系统互联互通,信息共享。通信结构简单化,管理层采用以太网进行通信,自动控制层可以采用其他网络,也可以采用以太网。将以上各系统连接为一个整体,大大提高了其联动效果,解决照明、空调系统可根据办公区人员情况自动调节;紧急情况下(火灾、水管爆裂等)系统的自动识别、判断,及时实现预设的应急处理方案,开启应急照明系统、开放喷淋灭火系统、启动防排烟风机、自动投入紧急广播等,实现子系统间的配置与互动。
2、有助于创造舒适的建筑内部环境
建筑自动控制系统可根据人们的需求自动调节建筑内部温度、湿度、空气质量、灯光照度及其他相关设备,满足人们对环境舒适性的要求;可适应不同的人对舒适的感受,支持个性化设定,并且可自动存储个人习惯参数曲线,实现自动调节、分区调节,使建筑环境中的工作人员处处享受到舒适的工作环境。
3、 实现了可观的节能效果
减少浪费是在适当的供给、保持舒适环境所需能源的前提下进行的。通过监测建筑内外环境参数,通过控制各系统机电设备,实时改变水量、风量、热量、电量供应,使所有设备的运行在满足人们舒适性的要求条件下以节能方式运行:再通过系统的能耗数字化管理统计各设备和各使用区域能耗数值,与原所需能量设定值比较,即可确定存在能源浪费的区域和产生原因。最后根据结果进行调节控制,使能量在满足环境需要的前提下,被合理使用。
通过建筑自动化控制系统实现有效节能管理,节能效果非常显著,从而大大优化了建筑内能源的使用,节省了大量的费用。
建筑中设备和设施的运行和管理会产生各种各样的费用,如果对费用不加以控制,将会极大地增加建筑整体的运营成本,降低投资效益。通过楼宇自动控制系统的监控环节,可以准确了解各项运营费用,及时发现和解决问题,从而减少不必要的开销和浪费。另外,通过楼宇自动控制系统提供的维护手段,可以减少管理和维护人员数量,降低人工成本。因此,投资建筑自动化控制系统的增值是通过合理配置资源、减少浪费来实现的。
参考文献