前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物医学电磁技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:多参量光声成像;生物医学领域;应用
光声成像是近年来诞生的一种新型复合成像技术,是借助光声效应产生而来,光声效应的声信号即光声信号,其强度是由力学、光学、运动学、热学等特征来决定的,光声成像具有声学成像与光学成像的优势,在生物医学领域的应用已经非常成熟,取得了理想的成果。
1光声成像的优势
光声信号产生的基本原理是:当用短脉冲激光照射吸收体时,吸收体中的分子吸收光子后,当满足一定的条件时,吸收体分子的电子从低能级跃迁到高能级而处于激发态,而处于激发态的电子极不稳定,当电子从高能级向低能级跃迁时,会以光或热量的形式释放能量。在光声成像应用中通常会选择合适波长的激光作为激发源,使吸收的光子的能量转化为热能的效率最大,通常从光能转化为热能的效率可达到90%以上。释放的热量导致吸收体局部温度升高,温度升高后导致热膨胀而产生压力波,这就是光声信号。与声学成像相比,光声成像利用了光吸收系数,在化学成分的分析方面,有着独特的优势。其中,声波能够获取物体的弹性参量、密度等力学特征,应用在生物体中,可以将生物体的功能信息、生理结构等清晰地反映出来。与光学成像相比而言,光声成像对于组织有着非常高的分辨率,光学成像往往只能够得出组织表层1mm深度左右的高质量图像,如果深度偏高,分辨率就会大受影响,与之相比,声波的散射强度更小,在生物组织中的传播有着低散射、低耗散的优势,空间分辨率的成像深度非常理想。此外,光声成像在生物医学领域中的应用更加安全,该种成像方式应用的是激光、微波照射法,与X射线、CT相比,更加安全,只需要很少的电磁辐射能量,即可获取到理想的光声信号,避免对生物组织造成热损伤。
2多参量光声图像在生物医学领域中的应用分析
2.1多尺度成像
多参量光声图像可以得出深层组织图像,还能够利用图像参量来实现多尺度成像,揭示出生物体的功能与结构信息。所参量光声图像的成像效果,与组织的生理功能、光吸收系数有着密切的关系,在应用的过程中,需要根据各个组织的成分来合理选择电磁波波长,选择性针对组织中的成分进行分析,得出解剖、代谢、分子、功能、基因方面的信息。如,DNA、RNA的紫外线吸收能力较强,利用紫外线作为激发光源,即可获取到高对比度图像。在临床医学中,如果细胞核形态存在异常,也就说明,癌细胞DNA复制发生障碍,因此,该种诊断方式对于早期癌症的诊断有着重要的意义;血红蛋白主要吸收可见光频段电磁波,利用光声成像,可以获取到关于血液系统的高对比图像;油脂、水等对于近红外段电磁波与微波段吸收情况良好,利用近红外激光、微波作为光源,可以快速分析出其中的异常聚集问题。在生物组织中,每一种化学成分的光吸收特性都是不同的,在诊断过程中,可以借助多波长激光照射组织来获取相关信息,通过定性分析与定量分析相结合的方式得出生物组织各项化学组分信息,利用波长与电磁波吸收特性,既可以分析出血红蛋白含量,还可以获取到脱氧血红蛋白与氧合血红蛋白的相对含量,分析出血氧饱和度。血红蛋白是生物体内的重要载体,可以直接反映出生物的新陈代谢过程,这对皮肤疾病、脑血管疾病、肿瘤的早期诊断,有着重要的意义。
2.2生物组织黏弹特征
此外,借助多参量光声成像,还可以检测出生物组织黏弹特征,在检测时,需要使用连续激光照射样本,得出组织黏弹参数,利用光声信号相位与强度,获取到最终的检测信息,与光吸收特性相比而言,该种方式从力学角度反映出组织硬度、血液粘稠度,可以直接计算出组织生物力学系数与光学参量,为诊断提供可靠的信息指导,在心血管疾病、肿瘤的早期诊断上,有着突出的作用。
2.3温度分布情况
多参量光声成像还能够反映出温度的分布情况,光声信号强度与光吸收系数是密切相关的,与媒介系数为正比关系,在媒介温度升高之后,媒介系数也会相应升高,因此,利用该种系数可以反映出具体的光声图像。数据显示,在每升高1℃,光声升压会增高5%。借助光声成像,可以直接得出温度系数,灵敏度高达0.16℃,能够检测出绝对温度值,准确度非常高。光声成像还可以借助光声多普勒效应与光声信号之间的关系来得出血流速度的相关信息,检测出信号多普勒频移,借助这一原理,可以满足血流速度精细成像的要求,根据相关数据,得出低速流体信息。
2.4红细胞形态特征
借助多参量光声信号的功率频谱参数,还可以得出亚波长微结构信息、细胞形态、声学功率谱特性测出红细胞形态特征,鉴别早期血栓与癌细胞的形成。根据研究实验显示,针对窄带低频光声呈现系统的信号进行分析,可以鉴定出亚波长尺寸微结构信息,以频谱斜率作为参数,计算出亚波长尺寸结构。在生物组织之中,存在大量的微米量级微结构,如红细胞、微钙化斑点、黑素瘤等等,借助多参量光声成像,能够为相关疾病的诊断提供有价值的信息。此外,借助于物化谱参量呈现技术,可以将声学功率谱与光学吸收谱分析相结合,得出组织的化学特征与物理特征,该种分析方式为物化谱分析法(Physio-chemicalspectrum),在分析时,需要先利用不同波长激光脉冲进行照射,得出带有组织化学成分信息的声学功率谱,计算出一维功率谱,将亮相参数结合起来,即可获取到组织的二维物理化学谱。物理化学谱可以清晰地反映出组织的微结构特征与物理化学成分,得出组织特异化标签。
3多参量光声成像的应用分析
多参量光声成像不仅具有深分辨率高的优势,也具备信息敏感、成像对比度高的优势,可以从血液流速、组织力学、温度分布、生化组分、微结构特性来分析生物的功能、解剖、基因、分子、代谢信息,选择适宜的工作频率和成像模式,可以达到纳米级的分辨率,深度也能够达到50mm。多参量光声成像技术的应用满足了生物医学领域的发展需求,有着非常大的应用潜力。但是,毕竟多参量光声成像属于新型技术,在应用的过程中,还有一些难题需要突破。首先,该种技术的理论是建立在生物组织声学特征均匀的基础上,如果组织的声学特征不均匀、分布复杂,必然会影响应用效果。在人体组织中,空穴、骨骼的声阻抗是存在差异的,容易致使声传播出现反射和散射的问题。其次,虽然多参量光声成像的深度已经达到了50mm,但是对于更深组织成像,还具有局限性,这也是下一阶段需要重点解决的问题。
参考文献
[1]陈炳章,易航,杨金戈,等.光声内窥镜系统在人体直肠癌离体组织中的实验研究[J].物理学报,2014(8):76-77.
[2]曾志平,谢文明,张建英,等.基于聚焦光声层析技术的甲状腺离体组织成像[J].物理学报,2012(9):23-25.
[3]EricM.Strohm,ElizabethS.L.Berndl,MichaelC.Kolios.ProbingRedBloodCellMorphologyUsingHigh-FrequencyPhotoacoustics[J].BiophysicalJournal,2013(1):116-117.
近20年来,磁性高分子微球的研究非常活跃,已从最简单的高分子包裹磁性材料发展到多种类型的组成方式。本文根据磁性高分子微球的结构类型将其分成三类(见图1),但是,组成磁性微球的基本材料仍然是磁性物质和高分子材料。磁性物质包括Fe3O4、r-Fe2O3、Pt、Ni、Co等,其中Fe3O4使用最多;高分子材料包括合成高分子材料和天然高分子材料。合成高分子材料常用的有苯乙烯共聚物、聚酯类、聚酰胺类高分子;天然高分子材料常用的有明胶、白蛋白、纤维素和各种聚糖。此外,近年来有人为了电磁方面的应用,研究了一些导电性的磁性高分子微球[4,5],聚吡咯、聚苯胺等导电聚合物也可用来制备磁性微球。磁性高分子微球的性质不仅与组成材料的性质有关,还与制备方法有关。因此,制备方法的研究十分重要。通常不同类型的磁性高分子微球其制备方法也有所不同。
2磁性高分子微球的制备方法
2•1a型磁性高分子微球的制备方法a型磁性高分子微球是一种简单的核壳微球,其制备方法有两种分类法:一种是根据磁性物质与磁性微球的形成次序分,有一步法和二步法;另一种是常规分法,有包埋法和单体聚合法。这两种分法的交叉部分在于包埋磁性物质可采用一步法或二步法,而单体聚合包裹则大多采用二步法。
2•1•1一步法
一步法又称共沉淀法,是指在生成磁性物质(Fe3O4或Fe2O3)的同时产生磁性高分子微球的制备方法,即先将高分子物质溶解,然后依次加入Fe2+和H2O2或FeCl2和FeCl3溶液,搅拌的同时滴加碱性溶液提高pH值,这样磁性物质一产生就被包裹形成核壳磁性高分子微球。邱广亮[6]等采用这种方法制备了纳米级磁性明胶微粒,并用于纤维素酶的固定化。一步法的优点是制备方法简单,避免了制取磁流体或均匀分散磁粒子的相关处理,制得的磁性微球粒径较小、表面积大。缺点是磁性微球大小不均匀、磁响应性较弱。
2•1•2二步法
二步法通常是先制备Fe3O4微粒子(或直接购买Fe3O4粉末),然后将其与聚合物或高分子单体溶液混合作用制得磁性高分子微球。目前制备磁性高分子微球普遍采用二步法。Emir[7]等先制取Fe3O4,接着将Fe3O4粉末和壳聚糖倒入分散剂中反应,同时加入交联剂戊二醛,通过控制反应条件得到无孔的粒径在100~250μm之间的壳聚糖微球。由于一步法制得的Fe2O3-PANI复合微球室温电导率和磁化率都较低,且结构和性质难以控制,Deng’s[4]实验小组经改进,采用二步法合成了电磁性Fe3O4交联聚苯胺复合粒子,粒径在30~40nm之间,研究表明,控制Fe含量和掺杂程度可提高饱和磁化率与导电性。
2•1•3包埋法和单体聚合法
这两种方法宫月平[8]等阐述得很全面,在此不再赘述具体的方法,只介绍最新的研究成果。在包埋过程中,采用交联剂交联高分子层可增加磁性微球的稳定性,但通常化学交联的磁性微球大小不均匀且有聚集,粒径分布较宽且球形不规则。为了解决这些问题,Chatterjee[9]等采用热固化包埋法合成了人血清蛋白磁性微球,粒径分布、球形都有所改善,微球更分散。Harris[10]等采用亲水性三段式共聚物(PEO-COOH-PEO)包覆Fe3O4纳米粒子得到磁性微球分散体系,研究了PEO长度对微球分散稳定性的影响。Chang[11]等将磁粒子羟基化后与甲基丙烯酸丙酯基三甲氧基硅烷连接,再与异丙基丙烯酰胺接枝共聚得到核-壳磁性高分子微球。DengY[12]等用反相微乳液聚合合成了聚丙烯酰胺磁性微球。Kondo[13]采用两步无乳化剂乳液聚合制得热敏性P(St-NIPAM-MAA)磁性微球。Zhang[14]用分散聚合的方法制备聚(苯乙烯-烯丙醇)磁性微球,将其与CuPc(CoCl)4反应后得到一种具有良好光电导性的磁性微球。
2.2b型磁性高分子微球的制备方法
b型磁性高分子微球分为两类见图1(b1,b2),主要有两种制备方法。
2•2•1界面沉积法
界面沉积法可用来制备b1和b2类型的磁性高分子微球。它通常是先分别制取聚合物胶体粒子和无机物粒子,通过加入电解质、调节pH值或其他方式使聚合物胶体粒子和磁性粒子表面带上相反性质的电荷,由于静电作用,两者混合后磁性粒子被吸附在聚合物胶体粒子表面形成包覆层,得到b2型磁性微球。如果以此乳胶粒子为种子进行乳液聚合,可制得夹心式结构(b1型)的磁性高分子微球。SauzeddeF[15,16]实验组用这种方法制备了三种夹心式的亲水性磁性高分子微球。由于界面沉积法制备的磁性高分子微球粒径主要由最初的高分子微粒的大小决定,故其粒径易于控制,大小均匀,磁一致性强。
2•2•2非电性沉积法
非电性沉积法也称化学沉积法或EPS法,用于制备b2型的磁性高分子微球。具体做法是先制得表面带功能团的微球,在微球表面引入贵金属离子(Pd2+),接着将金属离子还原成0价得到活化的聚合物微球,最后化学还原过渡金属离子使其沉淀在聚合物微球表面。这种沉积不是由静电作用引起的,是一种非电性沉积。WangYanmei等[17]以Pd激活P(St-AA)微球,将Ni和Co沉积在其表面得到核壳型的P(St-AA)Ni和P(St-AA)Co磁性微球,他认为化学沉积是表面功能团引发的。这种方法制得的磁性高分子微球,粒子大小由高分子微粒的大小和过渡金属离子的浓度决定,粒径均匀,但微球表面不太光滑。
2•3C型磁性高分子微球制备方法
C型磁性高分子微球由溶胀法(也称化学转化法)制取,该法是Ugelstad在1979年创立的。此法通过溶胀大孔的、表面及孔内含多种官能团(-NO2,-OH,-CHO)的聚合物粒子,让一定浓度的磁性金属离子渗透到大孔中去,然后利用碱性试剂或改变温度使金属离子转化为磁性氧化物,再利用交联剂或其它方法封闭孔道。在封孔之前,可通过反复渗透和中和来调整磁含量达到所需水平。采用此法制备的磁性聚合物微球单分散性好,磁含量可控,磁均一性强。溶胀法是目前制备磁性聚合物微球的最好方法,已商业化,但操作程序繁琐。张梅等[18]用此法制备出磁性较强、磁分布均匀的强酸树脂、磁性磺化微球等。康继超[19]也用二步溶胀法制取了单分散、大粒径的磁性聚苯乙烯微球。除了以上介绍的制备方法,有些研究还尝试了新的方法制备磁性高分子微球。Burke[20]在氨和聚合物分散剂存在下热分解Fe(CO)5得到聚合物/金属壳核纳米微球。Avivi[21]等用超声化学法制备了磁性牛血清蛋白微球,粒径分布窄,但微球表面不光滑,有Fe2O3粒子聚集。此外,为了满足生物医学应用对磁性高分子微球性质的要求,常常需要对其表面进行修饰。这样不仅保持了磁性高分子微球生物降解性,而且提高了强度,改善了球形,可用作靶向药物的载体。
3磁性高分子微球的生物医学应用
由于磁性高分子微球的特殊性质,使其在生物医学领域的应用非常广泛。磁性微球的高分子外壳的表面多样性使它可以通过各种化学反应与生物活性物质中的配基偶联,从而识别相应的抗原或抗体、核酸等,最后在外加磁场中进行分离。正是由于磁性高分子微球的顺磁性,使它在磁场中定向移动,达到分离或靶向的目的。
3.1固定化酶
游离酶在生物化学和生物医学方面的应用往往不尽人意,而将酶固定在磁性载体上则有诸多的优势。这是因为酶固定在磁性高分子微球上后,其热稳定性、存放稳定性和操作稳定性都得到提高;固定化酶再生性好,使用效率高;可用于连续生产,降低生产成本;可在外加磁场作用下快速分离,适于大规模连续化操作。Akgo[22]用羰基二咪唑(CDI)活化的磁性聚乙烯醇微球来固定转化酶。Arica[23]等将环六亚甲基二胺(HMDA)连接在聚异丙烯酸甲酯(PMMA)磁性微球表面,用CDI或CNBr激活后用于共价结合葡糖淀粉酶。Rittich[24]采用三氯三嗪法将脱氧核糖核酸酶固定在磁性纤维素微球和磁性聚(HEMA-EDMA)微球上,用来降解染色体和质体DNA。BílkováZ等[2]用磁性P(HEMA-EDMA)微球的酰肼衍生物固定半乳糖氧化酶,被定向固定的酶表现出很高的存储活性和对环境的低敏感性。磁性载体的性质对固定化酶的应用十分重要,它必须满足一定的条件:①无毒;②可生物相容;③能够提供足够大的表面积,使酶反应顺利进行,降低酶反应基质和产物的分散限制;④具有一定的机械强度。
3.2细胞分离
有效的细胞分离是临床免疫应用最基本最重要的一步。在磁性高分子微球表面接上具有生物活性的吸附剂或配基,然后与目标细胞结合,加上外磁场将细胞分离、分类,即磁性细胞分离,是一种有效的细胞分离方法。此法具有操作简单快速、分离纯度高、保留细胞活性、成本低等优点。Chatterjee[25]在白蛋白磁性微球(ALBMMS)和聚苯乙烯磁性微球(PSMMS)表面接上凝血素,用来分离红血细胞。Kacemi[26]等为了研究胎盘内皮细胞在血管形成及血流量维持中的作用,用免疫球蛋白磁性微球从胎盘中分离出内皮进行分析。
3.3磁性靶向给药
磁性靶向给药是以磁性高分子微球为载体,将药物包封在其中,吸附在高分子层或偶联在表面,口服或注入体内,利用外加磁场引导载药微球到病患处集中并缓慢释放,定向作用于靶组织。定向给药可使靶区药物浓度高于正常组织,减少药剂量和药物毒副作用,提高药效。GhassabianS[27]等将地塞米松和Fe3O4包埋于白蛋白微球中,用于治疗淋巴细胞肿瘤。HafeliUO等[3]用磁性聚乳酸放射性微球靶向治疗肿瘤细胞,进行了体外和体内放射效果研究。由于药物载体会与药物一起进入人体内,而药物载体必须不能对人体造成伤害。故用于靶向药物的磁性高分子微球必须满足一定要求:(1)具有生物降解性;(2)粒径<1•4μm,以免阻塞血管,利于微球在靶区均匀分布;(3)具有一定的缓释性;(4)具有最大的生物相容性和最小的抗原性;(5)载药微球及其降解产物无毒或毒性极低。
3.4核酸(DNA)分离、提纯
样品制备的质量,尤其是DNA分离的效果,是衡量DNA技术的基本标准。经典的DNA/RNA分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。使用磁性高分子微球进行核酸分离可避免这些局限。Oster[28]使用含Fe3O460%、非特定蛋白质结合率低的M-PVA磁珠,从血液中分离DNA,产率很高。用于核酸杂化测定或含特定序列核酸的提纯,可自动操作和重复使用,产物纯度高。除了可应用于以上生物医药领域,磁性高分子微球还可用于生物分子识别,细胞跟踪速度标定,微量有机物测定等。
4展望
近年来,对磁性高分子微球的研究已多见报道,但要使磁性高分子微球在应用领域得到推广,还需做很多深入细致的研究工作。
(1)用导电性聚合物包裹磁性物质得到电磁性微球克服了导电聚合物机械强度和加工性能差的缺点,同时兼具电导性和磁性,可望在电池、电磁屏蔽材料、传感器等方面有巨大的应用潜力。因此,电磁性高分子微球的研究是今后工作的重点之一。特别是要解决如何使聚合物微球即具有良好的磁响应性又具有较好的电导率。有人用TiO2包裹PSt/Fe3O4磁性微球制得多层的电磁响应性的复合微粒,其双电常数和电导率处于PSt/Fe3O4微球和TiO2之间,接近TiO2[5]。所以,还可考虑采用其他导电物质来制备电磁性聚合物微球。
(2)国外已有商品化磁性微球试剂盒(Dynab-eads)出售,但价格昂贵,对推广应用不利。因此,降低磁性高分子微球的制备成本也是今后的一个工作重点。
本发明涉及一种电磁炉陶瓷板及其制备方法。采用普通陶瓷骨料、有机粘结剂以及有机成孔剂,配比为陶瓷骨料72%~90%、有机粘结剂5%~8%、有机成孔剂5%~20%的成分;采用干压成形制备工艺。通过该技术制备出的电磁炉陶瓷板具有 800~1100℃无变形;其热膨胀系数为0~1.5×10-6/K;能承受650℃到室温水 10次循环无开裂;制备能耗是微晶板的2/3左右,成本是微晶玻璃的1/2左右;能够抵抗535g钢球11~18cm高跌落不开裂或冲击锤冲击5次不开裂的强度;孔隙率在0~40%;在使用中无发黄现象,该电磁炉陶瓷板符合行业要求。
专利号:200910042423.9
掺加氧化锌晶须制备磷酸钙基生物陶瓷的技术
本发明涉及了利用掺加氧化锌晶须制备磷酸钙基生物陶瓷的技术,属于无机非金属材料科学领域。本发明的基本实施步骤为:以TCP/HAP 纳米复合粉体为主要原料,分别添加不同量的ZnOw,采用机械混合的方法混合均匀;在40MPa成形压力下进行冷压成形,将成形后的试样置于高温炉中烧结。所得样品力学性能好、生物相容性好,并且生物降解速度与骨的生长速度相匹配;本发明的优点为设备简单、投资少、生产成本低,所得产品性能高、产品性能可控。
专利号:200910000785.1
β-TCP/HAP/Ca2P2O7多相多孔生物陶瓷的制备方法
本发明涉及到骨组织修复材料,特别涉及一种制备β-TCP/HAP/Ca2P2O7多相多孔生物陶瓷的制备方法,属于生物医学领域。本发明首先对牛松质骨做去脂去蛋白处理;其次使用不同浓度的NH4H2PO4溶液处理去脂去蛋白后的牛松质骨;最后待牛松质骨干燥后再高温烧结制备而成。制备的材料能够保持天然骨骼的三维立体多孔结构,孔连通性比较好,可以诱导新骨的长入并且具有较好的生物降解性、生物相容性以及优良的力学性能特点。使用NH4H2PO4溶液处理牛松质骨比较稳定,在常温下不会释放出对人体有害的氨气,实验制备过程更安全、健康。
专利号:200910000784.7
还原氮化法原位合成镁阿隆/β-赛隆复相陶瓷材料
还原氮化法原位合成镁阿隆/β-赛隆复相陶瓷材料,属于结构陶瓷与耐火材料领域。使用原料的质量百分比为:硅粉2~30%;铝粉2~10%;氧化铝40~85%;氧化镁3~15%;镁阿隆/β-赛隆复相陶瓷材料中镁阿隆的百分含量为40~95%,β-赛隆的百分含量为5~60%;采用高温还原氮化合成法一步合成。合成镁阿隆/β-赛隆复相陶瓷材料的制备工艺为:高温热处理过程中通入氮气,气氛压力为0.1MPa,温度为1500~1800℃,保温时间为2~8h。本发明以硅、铝为还原剂还原氮并化合成镁阿隆/β-赛隆复相陶瓷材料,具有单相镁阿隆材料或β-赛隆材料的优点,具有强度高、韧性好、抗渣侵蚀性好、抗热震性优的特点。
专利号:200910076060.0
一种碳化硼基复合陶瓷及其制备方法
本发明公开了一种碳化硼基复合陶瓷及其制备方法。按重量百分数,包括下述组分:碳化硼粉末45~50%、酚醛树脂5~8%、金属硅42~50%;上述组分称量后,先用酒精溶解酚醛树脂,并加入碳化硼粉料,机械球磨混合均匀;用造粒机造粒,模压成形所需制品形状的生坯;将压制好的生坯,放入烘箱干燥固化;石墨坩埚内加入定量的金属硅,将固化后的生坯,放置于金属硅上,连同坩埚一起放入高温真空烧结炉内烧结,烧结温度为1550~1700℃,保温1~3h后随炉冷却,即可制得碳化硼基复合陶瓷。本发明的酚醛树脂在复合陶瓷制备过程中可起到粘结剂和碳源的作用,在烧结过程中也可以起到为生坯提供多余气孔的作用,因而提高了硅的渗入性。
专利号:200910020811.7
电熨斗全陶瓷底板及其制备方法
组织工程基质材料研究进展 闫玉华,周文娟,李世普,万涛
组织工程用高度多孔生物可降解支架的制备 罗丙红,卢泽俭
人工血管基因修饰的研究进展 王继亮,王国斌
组织工程骨修复中的局部基因疗法 易静,汤雪明
血液密度测量及其在基础医学和临床中的应用 吕霞付,蔡绍皙
微囊化细胞移植的研究进展 周薇,王正荣
α稳定分布噪声下诱发电位潜伏期变化的自适应检测 邱天爽,王宏禹,李小兵,张旭秀,鲍海平,张杨
脑电逆问题的研究进展 郑旭嫒,万柏坤
联合疗法与放疗的比较 高悦,杨国胜,王健琪,范晓宇,王华
常用蛋白交联方法及其对胶原的影响 曹正国,李成章
训练特伦德伦伯格症步态的微处理器步态分析系统
由心磁图信号的ST段偏移计算的总电流矢量检查心肌异常的方法
在慢性声刺激期间心率变异性的24小时节律变化
由运动心磁图计算的电流比分布图检查心肌异常的方法
小型的经腹胎儿和母体心电图长时间记录器
连续心输出量监护系统
磁共振图像中非均匀场的校正 李音
微电极技术与脑运动性信息传导的研究 宋毅军,田心
信息融合技术及其在医疗监护系统中的应用 陈鹏慧,吴宝明
隐马尔可夫模型的原理与实现 刘河生,高小榕,杨福生
肝脏组织工程学中的胚胎干细胞 胡安斌,郑启昌
骨组织工程种子细胞的研究进展 郭宗科
骨组织工程材料的表面修饰和细胞粘附 刘刚,胡蕴玉
聚氨酯的血液相容性评价 胡国栋
聚乳酸制备研究进展 李曹,王远亮
基因纳米粒子在血管再狭窄的基因治疗中的应用 李大伟,冷希岗
人工神经网络在基因组信息学中的应用 陈志宏,严壮志
胚胎干细胞向神经细胞诱导分化的研究 沈干,丛笑倩,刘晓音,汪铮,曹谊林
植入式装置与体外程控装置数据交换技术的进展 曹妮妮,金捷,孙卫新,狄亮
磁感应断层成像及其实验室设计 李世俊,秦明新,董秀珍
生物芯片及其在生物医学工程中的应用 刘伟庭,郭希山,王钟,陈裕泉,王立人
电磁场对骨组织和成骨细胞的作用 赵云山,张西正,郭勇
载药纳米微粒的临床应用研究进展 肖延龄,李伯
组织工程中生物材料表面修饰的研究 郝杰,郑启新
骨髓间充质干细胞分离培养的研究进展 王运涛
脂肪组织工程研究进展 梁伟中
高强度聚焦超声"切除"肿瘤过程中的空化效应 顾惠琼
睡眠监护技术的发展 叶志前,郑涛,裘利坚
软骨组织工程种子细胞及预防其老化的研究进展 何黎升,高瞻,陈富林
Platelet-rich Plasma(PRP)在骨组织再生中的应用 刘兴文
独立分量分析及其在脑电逆问题中的应用 高诺,朱善安
哺乳类动物心室肌细胞的Luo-Rudy模型及计算机仿真研究的进展 金印彬,杨琳,阔永红,张虹,黄诒焯,蒋大宗
3D-EIT图像重建的研究进展 王妍,任超世
血浆蛋白对生物材料细菌粘附影响研究进展 李艳星,黄云超,熊素华
生物人工肝的临床应用及其生物成分研究中的几个热点问题 舒桂明
共同培养在生物人工肝中的应用 黄艳欣,刘晨
有限元分析法研究脊柱生物力学的新进展 高允海
磁共振谱成像(MRSI)技术的研究进展 钱勇先,黄敏,林家瑞
生物电流检测和组织功能成像的新技术 刘军,李光,陈裕泉
心脏建模仿真研究进展 霍梅梅,夏灵
基于突变理论的心脏运动数学描述 刘,李迪,孙尧
骨组织力学信号转导的研究 王昊,张西正,张永亮,郭勇
心室辅助装置的内皮化 李晖
基因工程的下游技术 周思翔,华慧,王正荣
软骨组织工程种子细胞的来源、培养和评价 孙安科,裴国献
角朊细胞培养技术最新进展 李政
异种煅烧骨材料的研究进展 赵铭,郑启新
脑磁源成像技术的研究进展 胡净,胡洁,汪元美
数据挖掘技术在生物医学领域的应用 余辉,吕扬生
诱发电位的非线性动态提取方法 耿新玲,田心
用于组织工程化培养生物反应器的研究进展 吴金辉,张西正,郭勇,武继民,李瑞欣
一种新型医用成像技术--微波激励热声CT 吴石增,于阳,宋涛
上皮干细胞发育调控与临床应用的研究进展 平浩
组织工程化人工皮肤的构建与应用 刘德伍,刘德明
生物人工肝研究进展 李津荣
肝细胞的低温保存及应用研究进展 刘鸿凌,王英杰
体外循环中的肝素涂层技术 杨剑,易定华
人工髋关节翻修术中骨缺损的修复与重建 肖联平
光纤纳米生物传感器的研究进展 李逸尘,潘爱英,姜信诚
纳米控释系统的应用 刘源岗,王士斌,翁连进
磷酸钙骨水泥药物缓释载体研究进展 杨莽,张彩霞,陈德敏
BMPs载体及缓释系统研究新进展 尹绍雅,常祥平
软骨组织工程种子细胞的基础和应用研究进展 张艳,崔磊,曹谊林
破骨细胞细胞骨架的研究进展 李青南,陈槐卿
由猪肝细胞组成的人工肝支持系统的安全性问题 刘青,段钟平
用于生物人工肝的肝细胞组织化培养 吴宇澄,赵卫红,余多慰
生物人工肝中肝细胞来源及培养的新进展 胡安斌,田源
癌热疗中超声无创测温方法的研究 吴水才,白燕萍,南群,夏雅琴
肿瘤热疗的热剂量学应用研究 王伟,李迎新
关键词: 纳米材料 特性 应用
纳米科技是21世纪快速发展的主流科技之一,交叉性、综合性很强,在国民经济和科学技术等方面有着广阔的应用前景。纳米材料是纳米科技发展的基础,被称为“二十一世纪新材料”,在很多领域都有广泛的应用价值,成为人们目前研究的重点领域之一。纳米材料基本组成单元的尺寸在1~100纳米范围内,而且基本单元至少有一维处于纳米尺度范围,同时具有常规材料不具备的优异性能[1]。纳米材料特殊的力学、光学、电学、磁学、热学等特性,已经在当前高速发展的各个科技领域中得到了广泛应用,产生了巨大的经济效益和社会影响。本文阐述了纳米材料的基本特性,介绍了纳米材料在各个领域中的应用,并展望了其未来发展趋势。
一、纳米材料的特性
1.表面效应
表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的减小而急剧增大的现象[2][3]。由于表面原子数增多,表面能高,原子配位数不全,存在严重的缺位状态,很不稳定,活性极高,极易与其他原子结合,从而产生一些新颖的效应。如利用这一特性,金属超微颗粒可以作为新一代具有高催化活性和产物选择性的催化剂。
2.量子尺寸效应
当粒子的尺寸小到某一数值时,费米能级附近的电子能级由准连续变为离散能级的现象就是量子尺寸效应[4][5]。相邻电子能级EF为费米能级。对于大粒子或宏观物体包含无限个原子,即宏观物体的能级间距几乎为零,即能级是连续的;而对于纳米粒子而言,其包含的原子数十分有限,N值很小,于是δ就有一定的数值,即能级是分裂的,呈现为离散能级。因此,当能级间距大于热能、磁能、光子的能量等时,就要考虑量子尺寸效应,导致纳米粒子与宏观物体的特性显著不同。如在超细颗粒态下的金属导体可以成为绝缘体,谱线发生蓝移。
3.小尺寸效应
当纳米粒子的尺寸与光波波长、传导电子的德布罗意波长及超导态的相干长度或磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米粒子表面层附近的原子密度减小,导致声、光、电、磁、热、力学等特性出现特殊变化,这就是纳米粒子的小尺寸效应[6]。如在纳米尺寸下,材料熔点降低、微波吸收增强等。
4.宏观量子隧道效应
纳米粒子的磁化强度、量子相干器件中的磁通量等可以穿越宏观系统的势垒而产生变化,也就是说微观粒子具有贯穿势垒的能力称为纳米粒子的宏观量子隧道效应[7]。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件发展的基础。
二、纳米材料的应用领域
纳米材料的基本特性使其在力、光、电、磁、热等方面呈现出常规材料不具备的一系列新颖的物理和化学特性。因此纳米材料在催化、陶瓷、化工、环境、生物和医学、军事等各个领域具有非常重大的应用价值。
1.在催化领域中的应用
纳米粒子表面原子密度大,表面活性中心多,作为催化剂对催化反应如氧化、还原、裂解等反应都有很高的活性和选择性,能加快反应速率,使难以进行的反应顺利进行。例如,使用纳米Ni粉催化火箭燃料,可以提高燃烧效率达100倍以上。
2.在环保领域中的应用
随着工业的发展和人口的快速增长,环境污染也越来越严重,而纳米光催化技术在环境保护中的应用研究日益受到重视,如醇与烃的氧化,无机离子氧化还原,固氮反应,水净化处理,等等。纳米光催化剂光催化作用机理一般是在一定波长的光波照射下,产生光生电子―空穴对,这些电子和空穴能使空气中的氧或水中的溶解氧活化,产生活性氧及自由基等高活性基团,反应关系式如下:
3.在生物医学领域中的应用
纳米材料在生物医学中检测诊断、靶向药物输送、生物分子检测、磁共振成像增强及健康预防等许多方面都有广阔的应用前景。如利用具有独特孔状结构特性的碳纳米管能够实现药物可控释放;以光感应器做开关的纳米机器人,可以疏通脑血管中的血栓,杀死癌细胞等。在医学领域中,纳米材料最成功的应用是作为药物载体(如纳米胶囊)、生物芯片、纳米生物探针和制作人体材料,如人工肾脏、人工关节等。
4.在军事领域中的应用
纳米技术和其他所有技术一样,将在未来战争中发挥着不可估量的作用。例如:纳米机器人、纳米飞机、蚊子导弹等许多无人化设备将在侦察预警、指挥控制和精确打击等方面发挥着越来越重要的作用;纳米卫星组成的卫星监视网,可以实时观察到地球上的每一个角落,使战争变得更加透明;纳米隐身技术可以最大限度地隐藏自己,同时千方百计地寻找和发现敌人,起到武器装备隐身的目的,如用做隐形飞机涂料的纳米ZnO对雷达电磁波具有很强的吸收能力。
5.在精细化工领域中的应用
纳米材料在精细化工,如橡胶、塑料、涂料等领域也扮演着重要角色。例如,掺杂纳米SiO2可以提高橡胶的抗紫外辐射能力。而为了提高塑料的强度、韧性、致密性、防水性等,生产时通常在塑料中添加一定的纳米材料。
6.在陶瓷工业领域中的应用
陶瓷材料在日常生活及工业生产中起着举足轻重的作用。传统陶瓷材料质地较脆,韧性、强度较差,而纳米陶瓷可以克服传统陶瓷材料的缺陷,使陶瓷具有像金属一样的柔韧性和可加工性,并在超高温、强腐蚀等苛刻的条件下起到其他材料不可替代的作用,应用较为广泛。
7.在其他领域中的应用
除了在上述领域中的应用外,纳米材料在诸如电子计算机和电子工业、航空航天、机械工业、纺织工业、化妆品工业等其他领域也有着广泛应用。
三、展望
“谁输掉了纳米,谁就输掉了未来”,这已经成为世界各国的共识。正如钱学森院士所预言的那样:“纳米科技将是21世纪的又一次产业革命”,由此可见纳米科技的重要性。纳米材料是整个纳米科技的基础,在各个领域得到了广泛应用。但从纳米材料的基础研究和实际应用来看,目前其研究还面临很多问题和严峻挑战。如合成方法复杂、单分散的纳米粒子或纳米线的可控制备、生长机制还不完全清楚、缺乏系统的性能研究,等等。但我们有理由相信,随着科学技术的不断进步,制备和改性技术的不断完善,纳米材料在未来将会在更多领域中得到更加广泛的应用。
参考文献:
[1]张立德,李爱莉,端夫编著.奇妙的纳米世界(第1版)[M].北京:化学工业出版社,2004.
[2]王大志.纳米材料结构特征[J].功能材料,1993,24(4):303-306.
[3]张立德,牟季美编著.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
[4]Kubo R.Electronic properties of metallic fine particles[J].Phys.Soc.of Jap.,1962,17(6):975-986.
[5]Li JB,Wang parison between quantum confinement effects of quantum wires and dots[J].Chem.Matter.,2004,16(21):4012-4015.
[6]张立德,牟季美编著.纳米材料和纳米结构(第1版) [M].北京:科学出版社,2001.