前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇虚拟仿真技术应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
依据企业现有的三坐标数控镗铣床用CATIA软件进行机床部件的三维实体造型建模,如主轴、床身、导轨、刀库等;接着以STL格式输入到VERI-CUT软件系统中进行组装,组装时应把握其装配约束关系(即几何约束关系、运动约束关系和排斥约束关系)设定机床坐标系、部件坐标系和它们之间的关系,然后根据机床的拓扑关系进行装配。虚拟仿真数控机床建模完成后,要设置各运动部件的运动参数,如工作行程范围、刀具补偿等,其中主轴中心到主轴端面的距离和主轴线的偏移距离参数较为重要,应正确设置,以免影响仿真结果的正确性。
2虚拟仿真数控镗铣床应用研究
通过虚拟仿真数控机床的建立,除对机床的运动进行论证和虚拟设计好所应用的机床夹具外,主要是对数控加工过程进行仿真论证,以解决刀具运动轨迹错误、刀具干扰选择错误等问题,同时,利用虚拟仿真技术可以进行加工过程的优化,以充分利用机床和提高生产率。
2.1验证数控加工过程的错误
进行仿真验证时,通过系统应用等软件将零件的加工信息转换为STL格式输入到仿真加工系统生成数控加工程序,最后进行仿真加工,验证程序轨迹是否存在错误。在实际工作中,由于输入数据有误造成仿真加工时零件形状错误与输入图形信息不符,如刀具未进行补偿、未抬刀、啃刀等,此时可返回原图形信息输入模拟数据,进行检验校正干涉碰撞错误,这是数控加工经常产生的错误之一。验证时观察刀具对非加工部件,如对工作台、夹具等的干涉、碰撞及对工件非加工表面的碰撞,也可对经常发生的干涉现象进行专门的验证。
2.2优化数控加工程序
应用VERICUT软件时,其带有在知识库基础上建立的优化模块,根据所加工小样的类型选择加工机床参数、应用刀具参数、金属切削数据库等知识进行加工过程的优化,其优化内容主要为粗加工、精加工及高速切削加工时的优化。
2.2.1粗加工优化
为提高生产效率、达到尽快去除粗加工余量的目的,根据已给出的进给量对刀具走刀路径上应去除的金属材料进行速度优化,实现粗加工安全、稳定、高效率。
2.2.2精加工优化
切削力的变化是影响加工尺寸精度和表面粗糙度的主要因素,为此在刀具切入、切出时应调节进给率,使其切削力产生较小的变化,减少振动,从而提高加工质量、延长刀具的使用寿命。值得注意的是,在用球状铣刀加工倾斜面或曲面时进给量会有较大影响,加以适当调节则可使切削平滑、顺利地进行。
2.2.3高速切削加工优化
在工件刀具不产生振动的前提下,高速切削是切削加工的发展方向,通过高速切削不仅可提高生产效率,同时会降低工件的表面粗糙度值。减少切削力的优化方法主要是控制进给量,保持较为稳定的切削力和切屑去除率,通过实际应用对球状铣刀加大进给率,提高主轴转速进行精加工的效果较好。当然也可采用优化切削速度,即对主轴转速进行精加工优化,达到提高表面质量的目的。
3应用特点
利用虚拟仿真技术对数控加工进行仿真试验,通过一段时间应用获得较为显著的效益,主要表现在以下几方面。
3.1提高生产效率
通过仿真切削加工的优化,提高了加工过程的合理性,针对不同加工对象优化切削速度和进给量,使其达到最优切削状态,减少刀具的非正常损坏,从而减少辅助时间,提高加工效率。
3.2提高加工质量
据统计,飞机制造业新机研制过程中加工废品的30%是由于工人操作不当造成,60%是由于数控程序错误造成,10%是其他原因而形成;为此,利用该仿真系统可模拟加工过程,提高了数控编程的正确性,可以大大减少废品的产生。
3.3减少数控机故
数控加工时,刀具的碰撞、干涉会导致较大的损失,采用虚拟仿真技术可以避免并减少机床和刀具在加工时不必要的损失。缩短新产品的研制周期新产品研发时,加工出合格的关键零、部件是其中重要环节之一。传统方法试制单一零件耗时费力,容易出现废品,而通过虚拟仿真技术则可基本上验证了所编数控程序的正确性和可靠性,为新品试制节省了大量时间,降低了新品试制的成本和研发周期。
4结语
关键词:虚拟仿真;eNSP;Cloud桥接
引言
本文主要通过对华为虚拟仿真软件eNSP中Cloud桥接设备的学习研究,实现虚拟仿真软件中的交换机、路由器、防火墙等网络设备与本地多台计算机的互通,使得本地多台计算机可以通过Xshell等客户端软件,登录虚拟仿真软件中网络设备,进行相关的配置练习或工程仿真,就像真实操作相关的网络设备一样,可以进行实验教学或专业技术人员的工程训练[1]。通过这样的虚拟仿真技术,既可在很大程度上节约网络设备投资成本,又可方便地进行操作训练,还可以进行团队协作等方面的配合工作,对于提升网络工程技术人员的专业技能和完成岗位职责效率有很大的帮助。
1虚拟仿真简述
虚拟仿真是一种可以测量网络性能的科学手段,即在计算机等设备上运用虚拟化技术建立模拟软件,通过虚拟仿真运行,在计算机中构建计算机实验平台并能够得到相关数据[2]。目前在计算机网络工程技术中常用的虚拟仿真软件很多,例如PacketTracer、eNSP、GNS等,根据国内网络工程技术的应用状况和发展前景来说,华为系列的网络设备及技术越来越普及,所以对华为网络技术的学习和应用就变得很重要,eNSP这个华为专用的网络虚拟仿真软件也就成了广大工程技术人员应当熟练掌握和应用的工具之一了。网络工程技术专用虚拟仿真软件eNSP功能非常强大,本软件内部集成了常见的交换、路由、安全及无线等网络设备,还有自带的案例库,既能满足初学者学习练习,又适合具备一定网络工程技术基础的专业人员根据具体工作任务设计、模拟工作情境,搭建相关网络模型,提前把客户的需求及设计方案演练成熟,为真实的工作提供了事半功倍的效果。本软件主界面如图1所示。
2虚拟仿真软件eNSP中的Cloud桥接
对于eNSP中的Cloud桥接,功能非常强大,既可以在虚拟仿真软件中把所有的网络设备根据工程设计要求进行连接和通信,更为重要的是可以通过这个Cloud桥接,把本地计算机的网络接口卡进行绑定,通过相关的配置,实现了虚拟设备与本地真实计算机的连接,再配合相关的远程终端软件如Telnet或Xshell等,把本地其他计算机与虚拟仿真软件进行通信,可以用多台计算机对虚拟仿真软件中的网络设备进行配置和操作,可以提升工作的效率,更高效完成网络工程任务。下面就实现上述虚拟仿真技术进行阐述。(1)搭建如图2所示的网络环境,交换机、路由器、防火墙及Cloud各一台。(2)接下来要把Cloud与其他网络设备连接起来,关键是要在Cloud中增加相关的接口,要注意Cloud中接口的类型要选择GE类,这样便于与其他三台网络设备进行连接。可以双击Cloud,打开其属性对话框,增加三个绑定信息为UDP的接口,然后在虚拟仿真主界面中用线缆把三台网络设备具体属性设置及最终结果如图3所示。注意,以上各个设备的IP配置时,交换机的管理IP地址与路由器和防火墙的接口IP地址应该和本地物理主机是在同一网段,建议先获得本地物理主机的IP地址,具体方法在下一步,这样便于后面进行测试和登录配置。(3)接下来的一步很重要,要实现Cloud桥接与本地物理主机的连接,这是整个仿真技术的核心步骤。首先要获得本地物理主机的上网IP地址,可以在“运行”中键入CMD命令,打开CMD的对话框,再键入IPCONFIG/ALL,找到本机上网的IP地址,如图4所示。在上面的图示中找到本地物理主机连接网络时使用的IP地址,假如本机使用无线网适配器上网,通过DHCP获得的IP地址为192.168.0.106,返回到虚拟仿真软件中,在图3中的界面左上角的绑定信息中选择刚才找到网络接口卡,再单击增加按钮,可以看到下面的接口列表中增加了一个属性为PUBLIC的接口,并显示本地无线网络接口卡的信息。如图5所示。(4)完成上面的工作之后,还要把本地物理主机与虚拟仿真软件中的网络设备进行连通,除上面要求的IP地址的配置条件之外,还需要在Cloud桥接属性中进行端口映射设置,把上述步骤中增加的所有接口进行双向通道的连接,本案例中有4个接口,故在端口映射表中有8条记录。最终效果如图6所示。(5)接下来应该是在虚拟仿真软件主界面中启动所有的网络设备,以便于进行本地物理主机与仿真软件中各个设备的连接登录测试。相关设备的启动界面如图7所示。以上所有的过程完成后,用本地物理主机进行网络设备的登录测试,应该可以进行正常登录。由于交换机和路由器及防火墙验证方式不一样,且也不是本文研究重点,故这里不再详细演示各个设备的登录过程。
3远程登录实现简析
在本地其他主机上正常安装远程登录软件,如Xshell,并且这些主机的IP地址应该和运行虚拟仿真软件的物理主机的IP地址处在同一个网络之中。然后运行Xshell软件,进行正确的配置,实现从其他主机上登录虚拟仿真软件中的网络设备进行操作和配置。Xshell的配置主要如图8所示。
在科学技术迅速发展,科技成果广泛应用的今天,虚拟仿真技术因其投入成本小、易操作、适用范围大的优点正逐步取代传统的实验教学方式,成为实验教学中的主要教学工具。因此,本文将对虚拟仿真技术在机械工程实验教学中的应用进行探究,希望对机械工程实验教学有所帮助。
关键词:
虚拟;仿真技术;机械工程;实验教学
不同于文史类专业的学习方式,理工类专业主要是进行实际动手操作的训练,因此实验教学必不可少。而将虚拟仿真技术应用于机械工程的实验教学中可以给学生提供机械工程实践要求的处理和生产基础,让学生有身临其境的感觉,可以更好的进行实验,观察实验结果,使学习过程更加严谨,促进学生进一步学习机械工程。
1机械工程实验教学现状
机械工程的教学方式主要是依靠实验来实现的,因此,实验教学已成为机械工程教学中必不可少的教学手段。但是,就我国目前的教学水平来看,机械工程的实验教学现状并不乐观[1]。中职的录取学生越来越多,学校的实验基地和实验设备不足以满足学生进行实验的需求,学生无法动手进行实验,不能有效的理解课堂的理论知识,影响学习效果。另一方面,多数的机械工程实验有一定的危险性,考虑到学生自身的安全问题,学校通常会采用参观和听讲座的方式对学生进行实验教学,这样学生只是能够看到实验的过程,而不能够实际动手操作,无法积累实验的经验,对实验的认识理解也不深入,因而无法有效的学习机械工程。
2虚拟仿真技术在机械工程实验教学中的应用
科学技术的发展,在带动计算机网络技术进一步发展的同时,也促进虚拟仿真技术更加先进,同时教育工作者也在机械工程实验教学中广泛应用虚拟仿真技术[2]。
(1)带传动性能测试实验。由于带传动在机械传动过程中的广泛应用,使带传动成为机械工程实验中的基础实验课程。所谓的带传动性能测试是指学生通过对带传动过程中打滑现象和弹性滑动的观察,然后对其进行承载能力的分析,同时利用观察到的数据对带传动弹性滑动图以及传动效率图形进行描绘。而利用虚拟仿真技术进行带传动性能测试实验时,就不需要例如转矩力测杆、电动机、发电机、传感器以及光电测速装置的使用等。它是将计算机作为实验的硬件设施,利用LabVIEW软件设计带传动性能测试系统。带传动性能测试系统包括:测力传感器、加载装置、转速传感器、数据采集卡等,在传动实验过程中对各种运动和动力进行检测并分析[3]。运用该系统可以将带传动的传动效率曲线和弹性滑动曲线准确的绘制出来,进而计算出传动效率与弹性滑差率之间的关系。
(2)减速器装备实验。机械设备中常常使用减速器,因此机械设计中最基础的一项课程就是减速器实验。在之前的减速器实验中,教师一般会将真正的减速器带进课堂,然后将其进行拆装,使学生了解减速器的内部结构、工作原理及功能。但是这种实验方式会消耗大量的资金,而且实验具有很高的不稳定性,实验结果容易受到各种因素的影响。而使用虚拟仿真技术进行减速器装备的实验,可以用操作软件代替对实物的拆装,首先利用Inventor软件建立减速器的模型,然后在虚拟的环境下使用减速器传动原理进行装配。之后利用ADAMS软件对动力学进行仿真,再根据实际的运行情况,准确的约束、激励及载荷减速器,对其进行仿真和修形。最后利用ANSYS软件分析减速器的固有频率。
(3)数据加工仿真实验。现代制造业的核心技术之一就是数据加工技术。而数据加工技术的教学方式是通过使用数控机床实现的,但是购买数控机床需要大量的资金,所以一些学校没有足够多的用于教学的数控机床,学生只能在课堂上观看教师操作,无法亲自动手操作数控机床,这样无法使学生对数据加工技术有一个很好的理解,没有达到实验的目的。但是运用虚拟仿真技术中利用CAXA软件可以建立一个鼠标的数据加工实验,首先,对鼠标的实体模型进行建立,然后选用加工刀具、加工路线以及定义毛坯,最后是仿真加工的实施和工艺清单及代码的生成[4]。
3虚拟仿真技术在机械工程实验教学中的使用要求
教师在利用模拟仿真技术进行机械工程实验教学时应注意以下几点问题:第一,重视学生之间存在的差异。教师在教学过程中要根据学生自身水平的不同,来制定教学目标。对于基础较差的学生,教师为其制定的教学目标相对低一点,之后对其进行单独辅导,及时了解他们的学习进度与情况,并及时修改教学目标,使之符合学生的自身水平。第二,要利用现有资源进行立体化教学。教师与教师之间要多交流和沟通,彼此间分享教材、课件以及考试习题等教学资源,使用适合教学方法,彼此间相互学习借鉴,提高自身的教学水平。同时,教师也应该在不断学习中提升自身的专业素养,学会利用现代的高科技成果进行教学,为学生创造更好的学习环境,从而提高教学质量与水平。第三,为学生构建虚拟仿真实验平台。教师应该利用虚拟仿真技术为学生建立起机械制造虚拟仿真教学平台、机械设计虚拟仿真实验教学平台、机械电子网络化远程实验教学平台以及课外实践与科技创新虚拟仿真平台,利用这四个优势互补、相互依存的实验教学平台充分利用虚拟仿真技术在教学中的应用。其中机械类专业的学生要求能够有很强的操作机械CAD技术的能力,但是培养该能力需要对学生进行机械设计、机械实训以及数控实训,然后再通过实习来实逐步实现的。因此,教师可以先提出一个问题后,针对这个问题把整体的方案设计出来,然后按照方案进行实施。同时在实践教学的过程中要充分利用三维大型CAD软件,三坐标测量仪等大型硬件设备,这样可以为学生提供一个更加完备的教学平台。第四,对学生进行机械设计的基础实验,让学生能够熟练的运用二维、三维软件,进而可以对典型零件的计算机绘图、零部件的设计有一个充分的了解,在虚拟的环境中对零部件的组成以及运动的情况有一个细致的观察,才能更好的进行机械设计。
4虚拟仿真技术对机械工程实验教学的意义
虚拟仿真技术的使用对机械工程实验教学意义重大。在机械工程实验教学中所需要的实验设备价格昂贵、占地面积大、对于设备的保养和维护都有很高的要求,因此需要对其进行巨额的资金投入,加大了中职学校的经济负担。而使用虚拟仿真技术进行机械工程实验教学,可以减少对设备资金的投入,避免了设备的损坏维修的情况出现,而且也可以使每一个学生都可以实现亲自动手操作实验,真正将实验的主动权还给学生,提升学生学习兴趣的同时又可以降低教学成本,达到教学目的。同时,利用虚拟仿真技术可以有效的将教材中的理论知识同实际操作联系起来,让理论知识不再拘泥于书本,实现理论服务于实践,强化学生动手能力的同时也让他们对理论知识有了更深的理解与印象。
5结论
将虚拟仿真技术应用于机械工程实验教学中,可以增加学生对于实验的参与程度,解决了实验教学中设备老化和不足的问题,使实验教学的方式更加符合现代社会的发展要求,使学生有了更好的实验设备,从而提高学生的学习质量与水平[5]。
参考文献
[1]程思宁,耿强,姜文波,占永宁.虚拟仿真技术在电类实验教学中的应用与实践[J].实验技术与管理,2013(07):94-97.
[2]邸馗,于天彪,陈培媛,等.虚拟现实技术在机械工程实验教学中的应用[J].实验技术与管理,2014(10):10-12.
[3]林少芳.关于虚拟仿真技术在机械工程实验教学中应用价值分析[J].湖南工业职业技术学院学报,2014(05):65-66,70.
[4]时培成,陈玉,肖平.虚拟仿真技术在车辆工程实验教学中的应用[J].科技信息,2009(13):419,451.
[5]蒙艳玫,唐治宏,董振,等.机械工程虚拟仿真实验教学体系的研究与实践[J].实验技术与管理,2016(05):109-112.
关键词:虚拟仿真技术;服装工艺;教学与学习;应用与实践
尖端计算机技术的高度发展为虚拟仿真技术的发展提供了重要的科学基础和形成依据。这使得服装工艺教学产生了新的思路和成果。虚拟仿真技术作为一种媒体交互技术,通过发挥它自身独有的特点(如交互性强、模拟真实、选择多样、使用灵活等),让服装工艺教学能够在虚拟环境中将服装设计中各个环节的实践环境和实践过程以直观的方式传达给学生。由此,学生能够清晰而深刻地发现实物处理中会出现的种种问题和需要注意的各种细节。让学生达到对专业技能应用性更深刻的理解,便于学生充分掌握教学知识,对所使用的专业技术理解更加完善,以此来高效而深层次地达到服装工艺教学的目的。本文将从虚拟仿真技术在服装工艺教学中的特征和其在服装工艺教学中的应用这两个方面来展开探索和讨论。
1虚拟仿真技术在服装教学中的应用特点
虚拟仿真技术在应用于服装教学过程中,通过配置虚拟的实践环境,调配虚拟的实践器材,有着降低教学资金投入、简化教师描述现象、便于学生直观理解生产流程及掌握专业知识等特点。具体应由如下三个方面来进行考虑和讨论:第一,服装工艺教学最终要为服装市场服务,因此不能单独思考,要同时结合与服装生产企业,以此来确保服装工艺教学时,为达到其教学目的所需要的实用性和实践性。第二,服装工艺的教学不仅要让学生在实践过程中明确和掌握对服装生产过程中出现的问题及其解决方法,更要培养学生的创新意识,所以需要做到将服装工艺教学与服装企业产品的模拟生产有机结合。第三,通过仿真虚拟技术来建立完善且合理的教学体系,让服装工艺教学的过程被扩充和丰富,同时注重学生的思维和独立性,达到因材施教。接下来笔者将具体描述虚拟仿真技术在服装教学中的三个应用特点。
(1)仿真的教学情景。应用虚拟仿真技术,对服装企业的生产场景进行一个虚拟化的演示,并同时建立出仿真的服装生产场景,是学生能够亲眼体验到实践情景的保证。在这种虚拟的实践场景中,学生能感受真实生产中的氛围和环境,并考虑操作步骤和会产生的问题。这种模拟能够激发学生的动手动脑能力,这便是虚拟仿真技术的第一个特点――教学情景仿真性。
(2)形象的教学方式。虚拟仿真技术的第二个特色是具有教学方式形象性。在应用虚拟仿真技术时,会有一个直观而立体的影像展示在学生面前,这个虚拟的影像包含了服装企业的生产技术与生产流程。这种通过眼镜直接接受的信息,比起传统的书面或课件传授,会让服装工艺的教学更利于学生接受,加强学生对服装工艺专业知识技能的理解与掌握。
(3)实用的教学内容。服装工艺学科作为一门技术性和实践性都非常强的学科,对学生应用现代技术的能力要求很高。通过虚拟仿真技术构建的仿真实践平台,能够让学生在虚拟实践中对其过程和处理有实感的体验。这无疑在很大程度上降低了学生和教学者展示实践,进行实践和理解实践的硬件难度。因此,虚拟仿真技术在服装工艺教学中第三个特点便是教学内容使用性。这种特性充分地体现了虚拟仿真技术在服装工艺教学中的重要意义,它不仅提高了服装工艺教学的教学质量与效率,更为社会培养了许多现代化的、高质量的生产技术型人才。
2服装工艺教学中虚拟仿真技术的应用
为了将虚拟仿真技术在服装工艺教学中的上述三个特点发挥出来,需要创设合理的虚拟仿真平台来与之配合。其中,又需要划分成仿真软件平台和仿真硬件平台这两个子平台。
(1)虚拟仿真技术在服装工艺教学软件平台上的应用。仿真软件平台的创建有助于实现服装工艺虚拟仿真教学。它在虚拟仿真教学的直观表现、网络传输、信息交互和数字化表现等方面都起着主导地位。仿真软件平台在协作性上的教学形式和教学情景的虚拟表达以及教学内容的仿真传递都至关重要,没有仿真软件平台的搭建很难讲虚拟仿真技术应用于服装工艺的教学中。而将服装企业现代化生产技术作为主要内容,通过建立仿真模型,并创造一个虚拟的仿真环境来表现给服装工艺教学就是仿真软件平台的本质。它在外部配合仿真操作界面搭建了一个虚拟的仿真实践环境,而在内部则是对生产技术实践模式进行了一段仿真演示。要构建仿真软件平台,首先要对服装工艺虚拟仿真教学系统软件有一个明确的理解,在此之上进行设计与开发。当服装工艺虚拟仿真教学系统软件完成后,还需要根据课程和教学目的来进行一个服装工艺虚拟仿真课件的设计与制作。服装工艺虚拟仿真课件的制作需要将学生的专业实践作为参考依据,最终通过虚拟仿真技术,实现一个虚拟的服装企业生产流程,让学生能够获取一个逼真的生产场景,并且实现生产操作的仿真。使学生能够在服装工艺教学中处于一个虚拟的教学场所中,身历其境地以一位企业服装工作者的身份感受虚拟仿真操作。在虚拟化的工作中完成服装企业的现代化生产,这时学生可以更加清晰地了解实际生产过程,充分掌握生产知识。
(2)虚拟仿真技术在服装工艺教学硬件平台上的应用。当学生对专业技能进行学习研究和实践时,则需要搭建仿真硬件平台来为学生构筑一个工作场所,并且配备相应的工具。换言之,仿真硬件平台是虚拟仿真技术在服装工艺教学中硬件设施的基础。而服装工艺教学应用到虚拟仿真技术时,仿真硬件平台所提供的场所和工具的完善程度,将承载着服装工艺教学的质量与效率。仿真硬件平台的特点有如下两个:第一,对企业的生产环境进行仿真。第二,对企业的实际生产过程进行虚拟表现。构建一个完善的服装工艺虚拟仿真硬件平台,其实践的设置和实训室的布置为重点关注的对象。服装企业现代化生产过程需要的特点,应在设施实践中充分体现出来。无论是器械还是设备的配比,都可根据服装企业生产车间的标准来进行相应的配比和模拟。当然,如果条件允许,在仿真硬件平台中配置一些并没有被现代服装企业所广泛使用的高端先进生产设备也是可以的,这些基础设施能够帮助培养学生在服装工艺上的创新意识。仿真硬件平台的配置应当尽可能与现代服装企业相似,为学生创造仿真度高的生产格局,达到一个虚拟实践需求的实践氛围和环境,并通过这种方式来匹配学生在实际的服装工艺实践时基本的硬件需求。
关键词:虚拟仿真技术;数控技术专业;数控仿真软件;中职学校
中图分类号:G642
1虚拟数控仿真系统
虚拟数控技术是利用计算机来模仿真实的数控设备工作环境和工作过程的一门技术。它以计算机仿真和数控加工技术为基础,集计算机图形学、人工智能、网络技术、多媒体技术和虚拟现实技术为一体,在虚拟的条件下,对数控设备的工作过程和环境进行全面的仿真。目前国内外研究人员在加工过程仿真方面做了许多工作,如美国Maryland大学开发了用于培训数控操作人员的虚拟数控机床仿真器。同济大学研制的数控程序微机动画仿真系统。清华大学CIMS工程研究中心开发的“通用加工过程仿真器”等等,但目前的虚拟系统都属于几何仿真的范畴,将刀具与零件视为刚体,不考虑切削参数、切削力及其他物理因素对切削加工的影响,只是对数控程序进行翻译,产生刀具位置数据,并以此数据驱动机床运动部件和刀架运动,对工件进行虚拟切削,同时检查是否有干涉和碰撞。未来虚拟数控技术的主要发展方向是向物理仿真发展,包括加工精度分析,切削过程的热变形,切削力作用下的系统弹性变形、夹紧变形,以及机床的动态和静态分析等。
2虚拟数控仿真系统在中职数控教学中的应用
2.1传统数控实训教学中存在的问题
职业教育以岗位需求和职业能力为本位,突出实践技能的训练。目前很多学校都投入购置了数控设备,虽然数控机床的数量增加了很多,但仍不能满足实训教学的需要,教学只能“在黑板上开机床,在练习本上编工艺”;学生从理论学习转入实际操作缺少中间过渡环节,实训的危险性增加;实训教师在现场指导多名学生同时操作时,环境嘈杂,且很多学生围着一台机床,教学效果不好;数控机床结构复杂紧凑,学生在学习过程中观察了解机床的工作状态和工作原理及机床的机构时,观察角度受到限制等等。基于这些在实训教学中存在的问题,我们利用计算机虚拟现实技术,对数控机床的工作过程和环境进行全面的仿真,开发了《虚拟数控机床仿真实训与考核系统》。
2.2利用虚拟仿真技术实现的数控加工仿真教学系统
《虚拟数控机床仿真实训与考核系统》总体上设计了三个部分,即学习帮助、仿真实训和仿真考核。
学习帮助部分是入门学习的资源库,包括了自动操作、手动操作和学生难以掌握的对刀操作的过程。软件的核心部分是采用虚拟现实技术实现的仿真实训与考核部分,对机床、工件和刀具进行了三维实体造型,通过实体间的布尔运算来实现整个数控加工过程的仿真,系统采用OPEN GL作为图形开发引擎,使动态仿真过程变得流畅,实现了机床操作全过程仿真和加工运行的全环境仿真。学生根据图纸确定加工工艺、编制好程序后,就可以在平台上输入程序,完成对刀及零件加工的全部工作。
图2虚拟数控仿真系统
软件针对中职学生的特点,注重过程性,强调细节,增加了安全性训练和工艺性训练功能。比如背吃刀量是根据机床、工件和刀具的刚度决定的,当加工不同的材料时,其取值是不同的,学生往往给出很大的背吃刀量,而这在实际的机床上加工时,是非常危险的,我们的软件中充分考虑了这一点,教师可以根据加工需要来设置背吃刀量,当学生给出的数值过大时,系统就会提示,并停止运行,让学生养成正确的加工习惯。
考核平台,可利用试题生成工具生成试题,通过考试服务界面导入到系统,还可以导入报名表、进行成绩处理等。系统通过网络能够对实操的全过程进行考核,对编程中出现的语法错误和操作运行时发生的碰撞进行检测并扣分,考试结束后学生可查询什么地方出现了错误以及扣掉了多少分。
软件通过三个平台的设置,学生在训练的过程中发现的问题,可以在学习平台上找到答案,之后还可以通过考试系统检验自己学习的效果,使学生能够自主学习、独立操作和自我测评。
3基于《虚拟数控机床仿真实训与考核系统》课堂教学模式实验
为了检验基于《虚拟数控机床仿真实训与考核系统》的教学模式对数控技术专业教学的应用效果,选取了《数控设备与编程》,这一中职数控技术专业的主干课程。该课程在内容相同的情况下,采用《虚拟数控机床仿真实训与考核系统》后,在沈阳市装备制造工程学校的教学课时数从原来的160学时减少为120学时。我们选取开设同样课程、学生总体水平相同的两个班级作为实验研究对象,实验班为09数控1班,对照班为09数控3班,两个班均为38人,其中实验班采用基于《虚拟数控机床仿真实训与考核系统》的课堂教学模式,对照班采用传统教学模式。
通过一学年教学实践,《数控设备与编程》课程对照班与实验班教学情况如表1所示:
表1数控教学情况对比分析表
班级 09数控3班38人(对照班) 09数控1班38人(实验班)
理论教学学时 54 54
实验教学学时 16 6
实训教学学时 3周 2周
总教学学时 160 120
教学组织形式 传统的集体授课 基于数控仿真软件的小班小组教学
教学模式 理论课 教师讲解,并运用有相关示意图演示,学生听、记。 基于虚拟仿真软件的数控课课堂模式
实验课 采用先在黑板上理论讲解,再动手操作。 小组探究,仿真展示、验证,动手操作。
实训课 采用教师指导,学生操作练习。 教师布置项目,学生自主探究、仿真验证、操作练习。
实验班和对照班数控专业技能考试后测对比分析如表2所示:
表2控制班与实验班数控专业后测情况对比分析表
09数控3班38人
(对照班) 09数控1班38人
(实验班)
数控编程正确率 61%(23人) 79%(30人)
操作撞刀 17人次 5人次
工件合格率 53%(20人) 76%(29人)
4结语
《虚拟数控机床仿真实训与考核系统》在数控教学实践中起到了很好的助学和助教的作用,受到老师和学生的欢迎。系统弥补了实训设备的不足,节约了大量的实训材料的投入;仿真系统作为学生从理论学习转入实际操作过程的中间过渡环节,降低了实训的危险性;仿真软件通过三维建模,可以放大、缩小、随意旋转查看机床,直观、清晰,有良好的助教功能,改善了教学效果;学习平台的设立有助于引导学生自主学习,激发学生的学习兴趣。比如一个学生,学完数控车床的操作后,对仿真操作产生了浓厚的兴趣,自己学习了数控铣床的相关知识,编程加工出了自己的名字;对于数控操作中的难点,采用信息技术进行“虚拟现实”的仿真教学,不仅可提高操作学习的安全性,也很容易让技能操作符合规范;仿真系统扩展了课堂容量,提高了教学质量。信息化教学资源的应用打破了传统以教师为“中心”或“标准”的“说教”式教学模式,换之以师生互动、共同探究的“引导式”教学模式,师生之间变得平等。相互尊重的氛围,极大地调动了学生的学习兴趣,提高了课堂教学质量。
数控仿真软件将课堂教学的知识点和实践教学的实训点整合在一起,改变了传统教学模式,让学生在做中学、在学中做,使我们的数控教学取得了事半功倍的效果。
参考文献:
[1]张滢,刘冀伟,杨者青.NC车削加工仿真体系结构研究及实例设计[J].制造技术与机床,2004,10:18-20.
[2]周凡,潘振显,毛勋才等.虚拟制造中的数控车削过程仿真系统研究[J].新技术新工艺,2004,1:6-8.
[3]崔蔚,徐铁钢,韩卫华.虚拟培训技术及其系统开发[J].成都信息工程学院学报,2003,18(4):361-365.
[4]张潞第,朱群雄.新型虚拟现实交互建模方法[J].计算机工程,2008,1:72-77.
[5]黄明吉.虚拟数控技术及应用[M].北京:化学工业出版社,2005,6.
[6]刘启文,邱枫.虚拟现实技术在产品开发过程中的应用研究[J].武汉理工大学学报,2009,12:161-164.
[7]赵骥,朱名铨,罗琦.虚拟生产线框架及其系统开发[J].中国工程机械,2000,11(6):671-674.