首页 > 文章中心 > 韧带的生物力学特性

韧带的生物力学特性

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇韧带的生物力学特性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

韧带的生物力学特性

韧带的生物力学特性范文第1篇

【摘要】目的 探讨项韧带钙化与颈椎病的关系。方法 观察210例项韧带钙化的X线特征,结合文献分析与颈椎病的关系。结果 项韧带钙化与颈椎病的形成密切相关。结论 项韧带钙化单独存在时可作为颈椎病的早期诊断。

【关键词】项韧带钙化;颈椎病

项韧带钙化是项韧带出现的一种钙化现象,正确认识这一病理现象对预防及治疗颈椎病意义重大,本文对210例项韧带钙化的X光四位片综合分析,结合临床和文献总结出项韧带钙化与颈椎病的形成密切相关,项韧带钙化可作为颈椎病的早期诊断,报告如下。

1 临床资料

1.1 一般资料本组210例,其中男121例,女89例,年龄41~79岁,平均年龄51.2岁。

1.2 临床表现颈部僵硬105例,颈后疼痛91例,上肢麻木131例,头痛39例,眩晕101例。

2 结 果

本组210例项韧带钙化者,其中193例颈椎椎体前后缘、钩椎关节等处有不同程度的骨质增生现象,47例有生理曲度的改变,89例伴有颈部不同程度的椎间盘膨出、突出表现,仅有2例为单纯的项韧带钙化,此2例年龄均为41岁,临床均以颈部僵硬一月以内为主诉就诊,其余208例患者均有一月以上病史,伴随有不同程度的颈椎病。

3 讨 论

3.1 项韧带的功能及钙化的意义项韧带有协助颈部肌肉支持头颈的作用,并有对抗颈椎屈曲保持颈椎挺直的作用,其主要功能为限制脊柱前屈。当项韧带受到拉伸负荷时,韧带变长;当拉伸解除后,胶原纤维在其周围弹力纤维的牵拉下,恢复其原有的弯曲结构。胶原纤维本身的伸展性较差,而项韧带内胶原纤维与弹力纤维有着微妙的比例关系,这样既允许椎骨间有一定的活动度,又参与了脊柱的稳定作用。多数学者认为:项韧带钙化可理解为项韧带超负荷的一种表现[1,2]。

3.2 项韧带钙化的病因及病理多数学者们认为项韧带钙化与创伤有关[3],外伤性的急性牵拉,头部过度前屈、持久低头工作或睡眠时枕头过高均可牵拉项韧带引起疲劳性损伤,肌轻微撕裂、出血、渗出、水肿,在不断损伤和修复的过程中,肌与肌、肌与韧带间发生粘连、挛缩、瘢痕、变形、硬化、局部微循环发生障碍,从而使大量的软骨细胞增生,甲苯胺蓝染色使胶原纤维及软骨细胞呈强阳性,强异染物质系酸性粘多糖,其主要成分是硫酸软骨素,研究表明其与钙盐的沉着密切相关。此外,软骨细胞具有合成碱性磷酸酶的能力,这也是基质钙化所必须的。项韧带钙化的上述病理改变表明它最终是朝着骨化的方向演变。

3.3 项韧带钙化与颈椎病的关系颈椎病是中老年的常见病和多发病,是由于颈椎椎体、椎间盘、钩椎关节、关节突关节及颈部软组织发生退行性改变而压迫或刺激颈部血管、神经根和脊髓引起的一系列临床症状。随着年龄的增长,颈椎发生退行性变、侧弯、旋转、椎间关节紊乱、失稳等状态下,此时颈椎的运动功能及生物力学特性发生了变化,椎体承受力量不均匀,项韧带负荷过重,受损伤的机会也增加,进一步加剧颈椎骨骼-肌肉系统的退变。颈椎生物力学失衡是引起颈椎病的重要原因。项韧带的代偿性拉长及剥离,打破了生物力学的平衡及协调的肌群,而导致颈椎的不稳定和序列紊乱,进一步加剧颈椎病的发生。目前普遍认为颈椎生物力学失衡是引起颈椎病的外因,颈椎病的发展可视为正常颈椎生物力学平衡的破坏,而项韧带在颈椎稳定性中起着重要的作用。以上所述均说明项韧带损伤、钙化与颈椎病有着密切的关系,是引起颈椎病的一个因素或是颈椎病的早期形成[1-3]。

总之,当颈椎椎间盘及颈椎关节发生退行性变化时,则出现颈椎关节节段性失稳,于是破坏了颈椎正常的生物力学平衡,并有椎体侧弯或关节突关节移位、滑脱,在相当于该段水平的项韧带可发生钙化。人们长期前倾或低头工作引起项韧带肌肉痉挛、劳损,久之肌力减弱,使动力平衡破坏影响了静力平衡,从而促使颈椎病的发生。作者认为在项韧带钙化单独存在时,应视为颈椎病的早期诊断依据,此阶段是治疗及预防颈椎病的最有利时机。

【参考文献】

[1] 王长峰,贾连顺,魏海峰,等.项韧带钙化与颈椎病黄韧带退变的相关性研究[J].中国矫形外科杂志,2006,14(3):203-205.

韧带的生物力学特性范文第2篇

[关键词] 颈椎;胸椎;腰椎;脊柱畸形;有限元

[中图分类号] R682[文献标识码] A[文章编号] 1673-7210(2014)05(a)-0167-03

Application progress and prospect of finite element analysis in spine malformation

QIU Yunpeng HUO Hongjun

Department of Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot 010059, China

[Abstract] Spinal finite element method is a relatively new research method in recent years in spine biomechanics, which has been widely used now. This study describe the development process of the finite element method, finite element method in cervical, thoracic and lumbar spinal; the article evaluate the present situation of the development and prospects of the finite element model in scoliosis and kyphos.

[Key words] Cervical vertebra; Thoracic vertebra; Lumbar vertebra; Spine malformation; Finite element method

有限元法又称有限元素法[1],其基本思想是20世纪40年代由国外学者首先提出,并在20世纪60年代由平面弹性论文中用“有限元法”这个名称命名,这标志着有限元法的正式诞生。1970年,随着计算机和软件的发展,有限元又跟医学的发展紧密相连,并在骨科方面中得到充分的利用。通过有限元合理赋值得到接近正常的人体模型,从而可以有效地对人体结构的应力、应变及模拟分析,得出正确的结论,由于有限元模型具有重建不规则、复杂材料特性结构的能力以及易于重复模拟复杂静止或动态负重状态下的应力而应用越来越广泛。现阶段开发的有限元软件总体功能强大,模块齐全,在我国的市场占有量也最大,现在有限元分析法已经成为动物模型和尸体模型研究方法之后单独作为骨科生物力学研究有效方法和手段之一。

1 有限元分析法在脊柱外科中的应用优势

近年来由于随着计算机技术发展和软件的开发的不断进步,有限元法已经成为了解脊柱力学变化及脊柱疾患的研究非常有用的工具之一,模拟的条件不断进步并越来越接近正常、结果使人更加信服。与其它方面研究生物力学方法如动物标本和尸体标本相比较,有限元法更具有的优势,体现在多方面,可以显示脊柱内部生物结构受力及形变等情况[2],并能将这种受力和形变情况以直观的图形来展示,如对脊柱的椎体、椎间盘和小关节在受力和形变情况下应力分布的显现,描述局部椎体及椎间盘在各种内固定条件下承受的应力变化等;可以对脊柱手术应用的内固材料本身的受力分布情况,分析内置物局部应力集中点等数据,如直观的显示椎弓根螺钉的局部应力分布等;可以在同一脊柱模型上反复进行试验研究,从而确保所施加的对象完全一致,从而在比较不同干预措施下的脊柱生物力学效果及所得数据更加准确等[3]。

2 有限元分析法在人体脊柱中的应用现状

有限元在人体脊柱外科领域的应用发展迅速。自国外学者首先建立腰椎的三维有限元模型,并进行模拟生物力学分析之后,国内外相关脊柱方面的研究逐渐从腰椎、颈椎、胸椎模型建立到全脊柱模型并从脊柱有限元模型的构建发展到脊柱疾患发病机制的研究、脊柱手术术前规划及术后疗效评估等方面的研究。

2.1 颈椎有限元模型的研究

1991年Saito等[4]建立了二维有限元模型,此模型是比较简单,它是在简化小关节的基础上的几何生物模型,导致了模型内部的压力分布、负荷分配的结果与实际结果相差较多。1993年,Kleinberger等[5]建立了第一个颈椎三维有限元模型,它虽然简化了许多重要结构,如缺乏关节突关节等,其应力结果分析不太理想。但是将颈椎的模型带入了三维时代。1997年Voo等[6]建立了局部节段颈椎模型,包括椎间盘及椎体使颈椎三维有限元模型构建了较为成熟的。固定下位椎体使上位椎体在其各个方向旋转时受力所得结果与体外实验相对比,结果较为符合实际。2006年陈强等[7]应用CT扫描所得的断层图像并对其重建的方法,建立了全颈椎三维有限元模型。2011年林国中等[8]建立了全颈椎三维有限元模型具有详细解剖结构,最终验证结果表明,该模型具有良好的生物逼真度。颈椎有限元分析经历了相对简单的二维模型到以CT扫描和三维重建技术为基础的单一椎体精细有限元网格构建,在到多节段颈椎椎体建模并在一定程度上再现椎间盘、小关节、韧带等非骨性结构的发展过程以及具有高仿真度仿真模型出现,经历了30余年时间,把对颈椎生物力学的研究带入了一个全新的领域,开辟了新的天地。有限元在颈椎模型方面研究及生物力学应用发展迅速。

2.2 胸椎有限元模型研究

人体胸椎连接胸廓结构复杂,从而使胸椎的有限元模性建立较晚,模型建立与生物力学研究结果与实际相差较大,2008年胡辉莹[9]等利用有限元软件辅助建立的人体胸廓三维有限元模型具有较高的真实性和精确度,为下一步人体胸椎包括胸廓有限元模型的分析提供了基础。2010年费琦等[10]建立了胸椎后凸的三维有限元模型,实验结果表明,当给予轴向压力后,椎间盘、终板及椎体整体的应力也成相应增加。2010年李筱贺等[11]在CT扫描结合逆向工程软件建立下胸椎三维有限元模型,通过计算机软件实现从CT图像中提取数据建立下胸椎,完成数据与逆向工程软件间的衔接,并将逆向工程技术引入模型的建立中,成功建立了表面形态和内部组织结构都与实体一致的模型,该模型具有结构完整、空间结构准确度高及单元划分精细等特点。实现了以用于计算机辅助设计、快速成型、有限元分析等领域的研究,从简单的胸椎模型到加入胸廓三维模型重建到生物力学的研究胸椎有限元模型真实性、精确度不断完善,并随着计算机软件技术成熟完善,得到进一步完善,应用越来越广。

2.3 腰椎有限元模型的研究

腰椎的有限元研究较早,自1975年Liu等[12]建立了第一个真正包括椎间盘的腰椎三维有限元模型,并模拟不同情况下的椎体的受力情况,将腰椎有限元的建立分析带入了全新时期,但对其椎体附件等结构未进行详细分析,1998年Goel等[13]首次通过应用CT扫描建立了局端腰椎的复杂三维有限元模型,此后又连续进行了脊柱外伤、椎体融合及椎间盘退变等临床研究。2004年Zander等[14]利用L3/~4的有限元模型,模拟依次切断部分韧带计算剩余韧带的应力。结果显示韧带的存在明显影响腰椎各节间的活动范围。2006年Rohlmann等[15]利用有限元模型评估在不同下所需躯干肌的肌力,通过考虑肌肉的作用后,脊柱三维有限元更逼真,有限元分析更符合实际情况。2009年闫家智等[16]研究表明,在给予施加轴向压缩力时,腰椎纤维环最大应力集中于髓核和终板中央,应力随轴向压缩力的增加而增大。EI-Rich等[17]建立了L2/3活动节段三维有限元模型,该研究表明,俯屈和伸展时应力的分布不同,从而使骨折的发生部位亦明显不同,该实验认为椎体后部结构在维持脊柱稳定性上起着重要作用。腰椎有限元从基础的椎体模型的建立到分节段椎体生物力学分析,再到腰椎全节段的模型建立在治疗腰椎疾病及术后评估发展迅速如,已成为研究脊柱外科的重要方法之一,并随着计算机软件的开发将越来越普及的应用。

3 有限元在脊柱畸形方面的研究现状

目前有限元分析法已进入脊柱侧凸、后凸及两者合并存在等热点的研究领域,学者们借助有限元分析方法,构建脊柱侧凸后凸的模型并深入的探讨了脊柱畸形的发病机制,相关结构的应力分布及结构改变所致身体其他部位的所连带的身体机能的改变,同时应用有限元研究脊柱疾患生物力学分析、内固定器械受力分布及脊柱手术术前规划、术后评估等问题。

3.1 脊柱侧凸畸形三维有限元研究

脊柱侧凸畸形有限元及内固定器材料的研究现阶段非常广泛,国内外的相关报道较多,Stokes等[18]将有限元模型应用于脊柱侧凸,将内固定器械应用于侧凸矫形生物力学的研究。2002年Grealou等[19]利用有限元对切除肋骨对脊柱侧凸畸形矫形的生物力学影响,并检测对胸廓的整体影响机制。2008年汪学松等[20]利用计算机软件成功地建立特发性脊柱侧弯的有限元模型,具有良好的仿生效果及生物逼真度,2010年韦兴等[21]腰椎侧凸螺钉内固手术矫正效果影响的定节段对有限元分析中建立了高仿真度腰椎侧凸模型,并得出结论:在保持一定固定范围条件下,间断减少非弧顶固定螺钉。在三维有限元模型上可得到较好的矫形效果。目前,对脊柱侧凸畸形的有限元模型的重建、对于脊柱侧凸的发生机制、脊柱侧凸畸形病程不断恶化的过程、脊柱侧凸形成过程中存在的相关机制以及对脊柱侧凸畸形手术术前规划,术后效果评估成为了大家关注的焦点。

3.2 脊柱后凸畸形的三维有限元研究

2003年程立明等[22]利用有限元软件构建脊柱后凸畸形的有限元模型,证实脊柱胸腰段后凸畸形改变了相应椎间盘的负荷应力分布,可能加快椎间盘退变并使其椎间盘后方易受损破坏。同年张美超等[23]利用三维有限元模型在正常与后凸畸形胸腰椎体力学性能比较中的应用中"在纵向压缩载荷下正常脊柱T12~L1段椎体后部容易损伤和骨折后T12~L1后凸脊柱T12~L1段椎体前部容易损伤和骨折。2004年国内学者建立了颈椎后凸畸形有限元模型并验证全椎板切除可以明显改变颈椎正常前凸转变为后凸:颈椎间盘和韧带结构对全椎板切除后颈椎曲度有显著影响,颈椎椎间盘、韧带结构对颈椎生理曲度有双重作用,颈椎椎间盘、韧带结构弹性模量减少,将加剧颈椎后凸曲度。另有学者利用CT扫描资料,输入有限元软件重建胸腰段椎体的三维有限元模型,其结构完善、外观逼真、数据精确性好,并模拟L1椎体骨质疏松性压缩性骨折及椎体后凸成形术治疗,总体来看对于脊柱后凸模型的建立及生物力学分析相对于脊柱侧凸研究较少,但未来的发展空间较大,利用模型应用于脊柱后凸矫形术前规划反面作用突出,将成为研究脊柱后凸畸形的重要方法之一[24-25]。

4 三维有限元在脊柱畸形方面应用的展望

高质量人体脊柱模型的建立成为进行有限元分析的关键,是进行脊柱畸形方面疾病研究的基础。现国内外已有脊柱的各节段高仿真有限元模型的建立的报道,并随着计算机软件开发及联合应用建模功能的发展强大,成功仿真模拟了脊柱侧凸、脊柱后凸的三维模型的建立,这种有限元分析方法将能够为脊柱侧凸、脊柱后凸的发病机制的及生物力学研究提供量化指标,协助医生研究脊柱畸形发病机制,预测患者的矫形过程和效果,并能针对具体患者进行个体化的仿真模拟操作和生物力学分析,为临床实践提供一定的理论依据,并为今后医生制定和优化脊柱侧凸、脊柱后凸的临床治疗方案开辟了新的途径。随着脊柱矫形生物力学研究的深入和计算机可视化技术发展,计算机辅助制订矫形策略可能是临床的发展趋势。

[参考文献]

[1]胡勇,谢辉,杨述华,等.三维有限元分析在脊柱生物力学中应用研究[J].医用生物力学,2006,21(3):246-250.

[2]Lotz JC,Colliou OK,Chin JR,et al. Compression-induced degeneration of the intervertebral disc:an in vivo mouse model and finite-element study [J]. Spine,1998,23(23):2493-2506.

[3]Kumaresan S,Yoganandan N,Pintar FA. Finite element analysis of anterior cervical spine interbody fusion [J]. Biomed Mater Eng,1997, 7(4):221-230.

[4]Saito T,Yamamuro T,Shikata J,et al. Analysis and prevention of spinal column deformity following cervical laminectomy:Ⅰ:pathogenetic analysis of post laminectomy deformities [J]. Spine,1991,16(5):494-502.

[5]Kleinberger T,Shenk T. Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription [J]. J Virol,1993,67(12):7556-7560.

[6]Voo LM,Kumaresan S,Yoganandan N,et al. Finite element analysis of cervical facetectomy [J]. Spine,1997,22(9):964-969.

[7]陈强,铁胜.全颈椎三维有限元模型的建立[J].第一军医大学学报,2006,27(5):554-555.

[8]林国中,王根宇,郭亮,等.颈椎三维有限元模型的建立和证[J].临床神经外科杂志,2011,8(4):169-172.

[9]胡辉莹,何忠杰,吕丽萍,等.应用Mimics软件辅助重建人体胸廓三维有限元模型的研究[J].医学杂志,2008,33(3):273-275.

[10]费琦,王炳强,杨雍,等.椎体后凸成形对邻近节段力学影响的有限元分析[J].中国组织工程研究与临床康复,2010,14(35):6461-6465.

[11]李筱贺,由博,李少华,等.下胸椎前路单钉棒固定系统有限元分析[J].中国临床解剖学杂志,2010,28(2):214-217.

[12]Liu YK,Ray G,Hirsch C. The resistance of the lumbar spine to direct shear [J]. Orthop Clin North Am,1975,6(1):33-49.

[13]Goel VK,Kim YE,Lin TH,et al. An analytical investigation of the mechanics of spinal instrumentation [J]. Spine,1998,13(5):1003-1007.

[14]Zander T,Rohlmann A,Bergmann G. Analysis of simulated single ligament transaction on the mechanical behaviour of a lumbar functional spinal unit [J]. Biomed Tech(Berl),2004,49(1-2):27-32.

[15]Rohlmann A,Bauer L,Zander T,et al. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data [J]. J Biomech,2006,39(6):981-989.

[16]闫家智,吴志宏,汪学松,等.腰椎三维有限元模型建立和应力分析[J].中华医学杂志,2009,89(17):1162-1165.

[17]EI-Rich M,Arnoux PJ,Wagnac E,et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions [J]. J Biomech,2009,42(9):1252-1262.

[18]Stokes IA,Gardner-Morse M. Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis [J]. J Biomech, 1991,24(8):753-759.

[19]Grealou L,Aubin CE,Labelle H. Rib cage surgery for the Treatment of scoliosis:a biomechanical study of correction mechanisms [J]. J Orthop Res,2002,20(5):1121-1128.

[20]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯模型[J].中国组织工程研究与临床康复,2008,12(44):8610-8614.

[21]韦兴,胡明涛,史亚民,等.腰椎侧凸螺钉内固定节段对手术矫正效果影响的有限元分析[J].中国脊柱脊髓杂志,2010,20(11):895-897.

[22]程立明,陈仲强,张美超,等.胸腰段后凸畸形对相邻椎间盘力学影响的三维有限元分析[J].中国临床解剖学杂志,2003,21(3):273-276.

[23]张美超,程立明,李义凯,等.三维有限元在正常与后凸畸形胸腰椎体力学性能比较中的应用[J].中国康复医学杂志,2003,18(11):653-655.

[24]张玉新,马信龙,徐桂军,等.后路经伤椎单节段固定胸腰椎骨折力学性能的三维有限元分析[J].中华创伤杂志,2013,29(6):507-510.

韧带的生物力学特性范文第3篇

摘 要 肌肉的主动收缩和舒张控制之下动物会产生各种不同的运动形态,这属于肌肉力矩的主动改变而肢体运动又会反作用于肌肉力矩。在不断的进化中人类逐渐形成自身完善的神经肌肉系统负责自身运动的控制与协调。除了主动的肌肉力矩之外,接触力矩、重力力矩以惯性力矩也会对肢体运动的具体方式和表现产生影响,生物力学是研究人类运动控制机制的基础,因而本文就生物力学在运动控制与协调研究中的作用进行了分析。

关键词 生物力学 运动 控制协调 应用

人体运动需要在多个部分的共同协调配合下完成,而单纯运动学角度只针对物体的运动效果以及其他外作用力的影响进行研究,无法对人体肢体运动控制和协调的具体机制作出判断。生物力学从关节力矩的角度并结合运动动力学方法可以对肢体运动的产生方式和作用机制进行科学合理的分析,推动人体运动控制机制理论研究的发展。

一、生物力学与运动控制的关系分析

肌肉的收缩是人类肢体运动最直接的动力,人体神经系统可以对不同部位的新陈代谢速率和能量释放方式进行调整,从而起到控制骨骼肌腱可控张力的效果,肌腱又将动力传给关节、韧带以及骨骼等,最终实现对各个运动单位的控制。神经肌肉骨骼系统包括肌肉运动单位与神经元之间的突触连接、运动单位叠加与肌腱上的合力、肌肉骨骼系统的整合以及关节力矩整合协作四个层次。人体的骨骼、肌肉结构都十分复杂,因而神经中枢系统很难直接对每个运动单位进行控制,目前猜测中枢神经系统对运动目标协作实现方式或者是关节水平运动方式进行控制,再由该环节传达至各个运动单元。

二、运动控制的生物力学研究技术

(一)生物传感器技术

目前生物传感器技术在科学研究中的应用已经较为广泛,包括力量、肌电图、加速度以及位移传感器等等,这些技术相关专业的教科书以及很多文献中都有涉及到。随着研究的深入和技术的发展三维陀螺仪运动测量技术应运而生,在生物力学测量中可以对物体的运动速度、不同时间点的方位、角度等数据进行测量和记录,因而可以应用于疾病诊断和治疗康复中,该技术在医疗领域的应用也日益广泛。

(二)生物力学建模与仿真

当人体运动时除了肢体的外部状态,肌肉状态、关节连接处软组织的形状等也会发生一定的变化,而对这种形变进行观察和研究的难度较大,因而可以将整个人体作为一个完整的运动系统并以此为基础建立相应的人类肢体运动动力学研究方程,也可以将其称为生物力学模型。研究方向以及研究切入点的不同都会对最终的模型构建产生影响,一般来说任意运动的计算机模拟或者仿真需要应用正向动力学知识和技术,而对肢体运动的外力因素进行测量时则需要应用逆向运动学。

(三)运动学影像技术

影像技术在生物力学研究领域的应用由来已久,随着科技的进步和科研领域投入的提高,更多新型的运动学影像技术开始出现。高速荧光透视技术可以对人体运动状态下的骨骼、关节的情况进行精确的分析,拍摄速度更快且由于无侵入性对人体的伤害也更小。将该技术应用于人体医疗中将大大提高骨科检验的准确性。即时超声波成像技术可以将人体运动状态下的肌肉、肌腱等的形态包括肌纤维排列、肌肉羽状角的情况进行成像。

三、运动控制的生物力学原理

运动控制涉及的生物力学原理较多,本文就其中几个较为重要的原理进行分析阐述。人们在做出某个动作之前,为了提高动作的完成效果,往往会先做一个跟目标动作方向相反的动作,例如扣篮时先将手臂抬高,一方面下扣动作的幅度更大,另一方面肌肉的弹力也会有所增大,下扣的力量随之提高,这就是反向动作最佳起始力原理的典型表现。人体神经肌肉系统功能的完善性,以及个体肌肉力量和爆发力量对于体育竞赛成绩有着重要的影响,在某些体育活动中,人们为了获取运动速度的最大冲量会采取一些助力措施,例如对于跳远运动员来说,他们在进行跳远前都会有助跑,铁饼投掷运动员在投掷铁饼时,也会有身体的旋转运动等等,以上各项体育运动都是通过延长加速度时间和距离来增加力的作用效果,这体现的是运动速度的最大冲量原理。物体之间的碰撞效果一般会受到以下两方面因素的影响,即物体质量和速度这两方面的影响,质量与速度的乘积称之为动量,生物力学中有打击碰撞动量保持原理,该原理在运动控制中的体现有:网球的击球、拳击等等,运动员为了提高碰撞效果在确保撞击速度时还会提高撞击的力度。因此,对于运动员来说,一定要掌握运动控制的生物力学原理,进而将其在际运动中得到充分运用,这对提高运动员成绩来说起着非常重要的作用。

四、结束语

综上所述,生物力学的应用可以在对关节力矩和分量进行分析的基础上研究神经肌肉系统对肌肉收缩力矩的调节模式,主动的肌肉力矩在神经系统的控制之下对运动产生的被动力矩进行对抗,在平衡的状态之下完成肢体运动动作要求,生物力学的应用大大降低了运动控制协调相关问题的理解难度。

参考文献:

韧带的生物力学特性范文第4篇

【摘要】 以应力松弛的试验方法研究气管软骨的应力松弛特性,为临床提供气管软骨的应力松弛特性参数。在日本岛津电子万能试验机上对10个软骨进行应力松弛实验,应力松弛实验应变增加速度为50%/min,实验温度为(36.5±0.65)℃,设定实验时间7 200 s,采集100个实验数据,以一元线性回归分析的方法处理实验数据。结果表明:气管软骨7 200 s应力松弛量为0.316 MPa,7 200 s时应力松弛曲线基本达到平衡。气管软骨应力松弛曲线是以对数关系变化的,气管软骨为非线性粘弹性材料。

【关键词】 气管软骨;应力松弛;粘弹性;力学特性

Abstract:To research the tracheal cartilage stress relaxation characteristic and provide the tracheal cartilage stress relaxation characteristic parameter for the clinical.10 cartilages were taken on the electronic universal testing machine to carry on the stress relaxation experiment.The increasing speed of the stress relaxation experiment strain was 50%/min.Experimental temperature was (36.5±0.65)℃,the experimental time was set at 7 200 s.Then 100 empirical data were gathered and processed by the method of Unary Linear Regression Analysis.The tracheal cartilage 7 200 s stress relaxation quantity was 0.316 MPa,the 7 200 s stress relaxation curve achieved the balance basically.The tracheal cartilage stress relaxation curve is changed by the logarithm relations,the tracheal cartilage is the non-linear viscoelastic material.

Key words:Tracheal cartilage;Stress relaxation;Viscoelastic;Mechanics characteristic

1 引 言

国内外学者对气管损伤气道功能重建,对人工气管的基础研究和临床实践做了一定的研究,但对气管软骨的生物力学研究报道较少。前田富兴等[1]对人工气管的抗变形能力进行了研究。ToomesH等[2]以人工气管气道再建进行运动物实验研究。刘德若等[3]对人工气管进行了实验研究。徐艳等[4]研究了纺织结构复合材料人工气管。关于气管软骨的生物力学特性实验国内、外学者们也进行了一定的研究,邓卫军等[5]对成年离体猪气管进行了生物力学的特性实验。王忆勤[6]等对大鼠气管的零应力状态进行了研究。 杨林等[7]对旋转生物反应器用于提高组织工程气管软骨力学强度进行了研究。以往对气管软骨力学特性研究多以动物气管软骨和一维拉伸实验居多[5-7],对人气管软骨应力松弛粘弹性力学特性研究较少。生物材料的粘弹性主要以应力松弛蠕变为表现形式,应力松弛是软组织在恒应变作用下,对载荷松弛适应性的反应,虽然机制尚不清楚,但气管软骨的应力松弛力学特性对于认识吻合口张力,确定气管损伤后的张力临界点具有重要意义。

气管由于炎症、肿瘤、损伤等疾患需要进行气道再建,现代呼吸道(气道)外科手术对气管病变不超过1/2程度,可切除病变部位气管后直接缝合吻接,修复和重建气管的功能。当气管切除超过其直接的吻合长度,则需要置换人工气管。鉴于临床实际需要,我们对正常国人尸体气管软骨进行了应力松弛实验,得出了气管软骨7 200 s应力松弛量,得出了应力松弛曲线和归一化应力松弛函数曲线。以一元线性回归分析的方法处理实验数据,得出了应力松弛函数方程。

2 材料与方法

2.1 材料

实验标本正常国人新鲜尸体气管标本2个,均为男性,25岁尸体1具,30岁尸体一具。由白求恩医科大学解剖教研室提供。将气管标本生理盐水浸泡的纱布包裹,装入塑料袋中密封后置于-20℃冰箱内保存。实验前取出标本在常温下解冻后,以手术刀切取软骨环试样10个。

2.2 试验装置

日本岛津AG-10TA自动控制电子万能试验机,该机具有自动控制应力、应变增加速度和使应力或应变保持恒定的功能。载荷通过载荷传感器传递,载荷传感器最大量程100 N,使用量程10 N。

2.3 应力松弛实验方法

首先测量式样的原始尺寸。在软组织测量实验中,测量试样的原始尺寸非常关键。作者采用国内外均认可的准长度理论,即在每一给定条件下式样的长度等尺寸。将试样装夹在软组织实验夹具上,给予满量程1%的初载做为准长度的基础。利用读数显微镜测量其长度、宽度和厚度,试样的长度为25 mm,宽度为5 mm,厚度为1.8~2.2 mm,韧带和其他软组织一样,其弹性主要来自熵的改变。因而不存在唯一的自然状态,所以首先对试样进行预调处理,即在同一应力水平下加载-卸载20次。对每个试样分别预调处理后进行实验。

将经过预调的10个试样分别装夹到软组织专用夹具上,夹具与有机玻璃缸连接,玻璃钢内装pH值为7.4的生理盐水,试样置于生理盐水中,装有试样的夹具与实验机上、下头连接。试验机带有-35℃~250℃环境温箱。可自动调节温度并保持恒温。本实验模拟正常人体温,在(36.5±5)℃的温度场下进行。预先设定好程序,记录方式为X-T,其中X轴为应力,T轴为时间。本实验以50%/min的速度对试样施加载拉应变,当应变达到9.28%,应力达到1.207 MPa时保持恒定,应力随时间的改变不断下降。

计算机程序设定从时间t0开始采集数据,每10 s采集一个数据40次,之后每136 s采集一个数据,采集50次,共采集90个数据,历时7 200 s达到设定时间后,计算机自动输出实验曲线和数据。

3 结果

3.1 应力松弛实验数据和归一化应力松弛函数数据

10个气管软骨试样应力松弛实验数据经统计分析后结果见表1。10个气管软骨试样归一化应力松弛函数数据见表2。表1 应力松弛实验数据(x±s)表2 归一化应力松弛函数数据

3.2 应力松弛曲线

对每组10个应力松弛试样的实验数据拟合应力松弛曲线见图1。对每组10个试样归一化应力松弛函数数据拟合曲线见图2。图1 应力松弛曲线

Fig 1 The stress relaxation curve

图2 归一化应力松弛函数曲线

Fig 2 Normalized stress relaxation function curve

3.3 归一化应力松弛函数方程的计算归一化应力松弛函数方程的建立:以一元线性回归方法处理实验数据,松弛曲线是以对数关系变化的,因此设

G(t)=1

c lnt+d t=0

t>0(1)

令φ(a,d)=∑nt=1[G(t)-G(实)]2

则φc=0 φd=0

c∑11i=1ln2t+d∑11i=1lnt-∑11i=1G实=0

c∑11i=1lnt+d∑11i=1d-∑11i=1G实=0(2)

将实验数据带入(2)式,结出屈肌腱c=-0.0396,d=1.0306。将c、d代入(1)式得出气管软骨:

G(t)=1t=0

-0.0313lnt+1.0626t>0

4 讨论

试验结果表明,气管软骨7 200 s应力松弛量为0.316 MPa,应力松弛最初600 s变化较快,达总松弛量的30%,之后应力缓慢下降,达到7 200 s时曲线基本达到平衡,气管软骨的应力松弛曲线是以对数关系变化的。气管软骨在生理上主要是具有一定的舒张性,吸气时伸长而变粗,呼气时复原。气管具有一定的屈、伸性,屈、伸时气管和气管软骨都承受着一定的生理载荷。气管的力学性能的保持主要是胶原纤维的合理排列分布为弹性支架,通过蛋白多糖的亲水作用来形成局部的张力和渗透张力,当组织受载时,由于压力差大于局部张力使水缓慢流出,当去载时由于组织的膨胀压和渗透压使水流回组织内[8]。在正常的生理状态下,气管软骨能在生理载荷范围内适应外力的牵拉,表现出一定抗张性。

气管组织内含有胶原纤维,胶原纤维具有一定的韧性,胶原蛋白是动物体内含量最丰富的蛋白质,它是一种高级结构,可形成最佳的力学特性。胶原蛋白最最重要的力学性质是拉伸刚度和抗拉强度。

软骨是一种多孔的粘弹材料,组织间隙为液体所充满。在应力作用下,液体可在组织中流进或流出(当组织膨胀时流进,收缩时流出),软骨力学性能随液体的含量而变化。事实上,液体在应力下的流动似乎是这种无血管组织取得营养的主要途径。因此,研究气管软骨应力-应变的关系不仅对于了解软骨传递载荷的特性有必要,而且对于了解组织的健康状况也是非常重要的[9],软骨是由一种液相和固相组成,液相主要是水,固相主要是包括胶原纤维和弹性纤维,蛋白多糖和细胞成份。液相主要功能是通过自身的媒介作用把小的溶质传送或扩散于组织内外,固相胶原纤维的网状支架是张应变和张应力的表述[10-11]。蛋白多糖的亲水性很强,对维持软骨的粘弹性及对抗压力起着重要作用。

本实验初始应力与文献[12]相同,但本实验7 200 s应力松弛量低于文献[12]中髋关节软骨和膝关节软骨。承重部位软骨和非承重部位软骨具有不同的力学特性。本实验结果支持软骨的力学性质与软骨的胶原含量呈正相关的观点。软骨所处不同的生理解剖位置及不同的生理功能决定了其粘弹性的存在和其间的差异。

本实验以正常人青年新鲜尸体气管软骨为研究对象。更充分地揭示气管软骨作为生物粘弹性材料的力学特性,对临床更具有实际意义。

参考文献

[1]前田富兴,久保良彦Mesh人工气管的耐变形能研究[J].人工脏器,1991,20(2):641-647.

[2]ToomesH.Experinen tal with prostheticre constructionofthe trachea and bafu-rcation[J].Thorax,1985,40(1):32-36.

[3]刘德若,王福忠.人工气管的实验研究[J].白求恩医科大学学报,1888,14(增刊):147-150.

[4]徐艳,张佩华,王文祖.纺织结构生物复合材料人工气管的开发[J].安徽教育学院学报,2004 20(4):11-13.

[5]邓卫军,史宏灿,裴昶.成年离体猪气管生物力学特性的实验研究[J].医用生物力学,2008,(5):389-393.

[6]王忆勤,滕忠照.大鼠气管零应力状态[J].医用生物力学,2001,(1):6-9.

[7]杨林,武延格,纪灵,等.旋转生物反应器用于提高组织工程气管软骨力学强度的实验研究[J].中国生物医学工程学报,2009,28(1):103-107.

[8]李振宇,马洪顺,姜洪志.关节软骨力学性能研究[J].试验技术与试验机,1989,(2):7-9.

[9]冯元桢著.生物力学[M].北京:科学出版社,1983:251.

[10]Askew M J and Mow V C. The biome chanical function of collagen fibril ultrastructure of articular.cartilage[J].J Biomechanical Engineering,1978,22(1):5-8.

韧带的生物力学特性范文第5篇

【关键词】 腰椎融合术后; 临近节段; 椎间盘应力; 有限元分析

中图分类号 R681.5 文献标识码 A 文章编号 1674-6805(2014)17-0020-03

【Abstract】 Objective:To analysis model under different loads and stress changes by posterior lumbar discectomy through the establishment of normal, L4-5 and L4-S1 fusion and internal fixation model. Method: Analyzed 98 image nodes from 1 volunteers what were divided unit to establish the normal lumbar motion segment (L1-S1) finite element model and L4-5, L4-S1 segment of posterior lumbar interbody fusion and internal fixation model, the three models with five direction load, calculation of adjacent segment disc shall be stress variation, and the results were statistically analyzed. Result: The research showed that the upper two segments adjacent segment than the single disc fusion segment average effective stress in flexion, extension , lateral flexion , rotation load difference was statistically significant(P0.05), whether it was single or double segment L4-5 segment L4-S1 was fixed , the neighboring L3~4 disc effective stress in flexion, extension , vertical compression , lateral flexion, rotation were greater than unfused fixed, the difference was statistically significant(P

【Key words】 Lumbar spinal fusion; Adjacent segment disc; Stress; Finite element analysis

First-author’s address: Nan’an Hospital,Nan’an 362300,China

脊柱融合术被广泛用于治疗脊柱创伤、不稳、肿瘤、畸形及退行性变中,1988年Lee[1]首先报告了一组腰椎融合术患者在随访8.5年后部分出现了邻近节段椎间盘退变(adjacent segment disc degeneration,ASD)。腰椎融合术后出现邻近节段椎间盘退变引起众多学者的重视,目前学者普遍认为引起ASD与其椎间盘纤维环及关节突应力变化有关[2-3]。但是到目前为止,对腰椎融合术临近椎间盘受力情况的评价和报道不多,本组研究中将采用Super-SapV(超级空间有限元计算软件)建立正常的腰椎运动节段(L1~S1)模型及L4~5、L4~S1节段腰椎后路减压椎间融合内固定模型,分别对三种模型加载五个方向的负荷(垂直、前屈、后伸、侧屈及扭转),计算邻近节段椎间盘(纤维环)的应力变化,单、双节段融合内固定术对邻近节段椎间盘的力学影响,为临床治疗提供依据。

1 资料与方法

1.1 一般资料

笔者所在医院面向社会征集1名健康男性志愿者作为本组研究的观察对象,对其脊柱(L1~S1)节段进行扫描,层厚0.6 mm,采集500张CT断层图像,从中选择98张有代表性的图像进行进一步分析。研究设备:SOMATOM Definition AS 128层螺旋CT机(Siemens,德国);计算软件采用Super-SapV(超级空间有限元计算软件),坐标读取及单元构建软件采用Mimics 11.1,CT图像处理软件采用Xiphoid v1.0。

1.2 建立模型

1.2.1 建立正常腰椎节段(L1~S1)三维有限元模型 对所选取的98张图像节点及划分单元,共8836个节点,用Mimics 11.1自动获取节点坐标,并编排成单元,共6388个单元,其中以L3~5节段为研究对象,将各个节点坐标及其所构成的单元号导入Super-SapV软件中,对不同材料的腰椎组织的特性设定相应参数,模拟正常条件下腰椎运动节段的受力情况,并在该节段顶部及韧带附着点处加力,建立正常腰椎有限元模型[4-5]。

1.2.2 建立L4~S1、L4~5节段后路椎间融合内固定模型 在后路以AO脊柱内固定器械为模板,依据其尺寸建立模型并与腰椎模型组合形成两种(L4~S1,L4~5)腰椎运动节段后路椎间融合内固定模型。固定模型的材料特性与单元划分均保持一致,只有内固定系统中螺钉的数量及棒的长度等参数有所改变。

1.3 加载负荷实验

为了防止S1底面在加载负荷时出现平移和转动,要在S1椎体下表面及后部结构各节点完全固定。分别对L4~S1、L4~5固定模型加载500 N生理负荷及五个方向的负荷各50 N,分别模拟人体在完成直立、前屈、后伸、侧屈及扭转时的运动条件,后分别于后外侧纤维环均匀取12个节点,然后在上述加载情况下,计算各节点应力、分析比较融合前后及单,双个节段的腰椎后路融合内固定模型在相同的载荷条件纤维环各节点应力分布情况。

1.4 统计学处理

因融合术后对上位节段影响较大[6],因此本组研究中通过VonMises应力值(L3~4椎间盘节点)计算出各个节点融合前后在不同时负荷下的的应力差值,组间比较采用t检验;计数资料采用百分比表示,数据对比采取字2校验,多个均数两两比较采用LSD检验,P

3 讨论

有限元分析(finite element analysis,FEA)是指利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟,是生物力学试验的重要手段之一,通过FEA可以真实地模拟复杂的力学环境,同时可以直接测量结构内部的力学反应,从而获得全域性信息,这是其他方法所不能做到的[7]。FEA最早应用于临床生物力学研究与体外实验生物力学研究可以追溯到上世纪八十年代,文献[8]报道称FEA的研究结果真实可靠,近年来国内大量文献[9]也验证了FEA的有效性。

本组研究中,双节段腰椎融合有限元模型在上位临近椎间盘(纤维环)应力在部分活动状态下明显高于单个节段的有限元模型,不管是单节段还是双节段融合后上位临近椎间盘(纤维环)应力均高于未融合节段,研究结果与国内外同类文献一致。贾长青等[10]对脊柱内固定后椎间盘的超微结构进行为期6个月的观察,并对比两组在异常应力条件下椎间盘的退变情况,结果发现椎间盘纤维环后侧相对较薄,而且没有韧带保护,因此极易发生髓核突出。

本研究结果表明,L4~5或L5~S1节段的旋转力矩会明显提高L3~4椎间盘的应力,随后依次是侧屈、后伸、前屈和垂直压缩的应力,充分证实旋转是引起椎间盘慢性损伤及退变的最大风险因素,因此术中医生要注意,双节段腰椎融合手术较单节段腰椎融合手术更容易发生邻近节段病,在术前要通过影像检查观察患者邻近节段的椎间盘及小关节情况,预测融合节段长度将引起的影响,以确定手术方式,避免邻近节段病的发生,提高手术疗效。另外,在患者术后康复期内要指导患者注意卧床休息,佩戴保护器具,限制脊柱出现旋转、前屈、后伸、或侧屈活动,避免邻近椎间盘过度受力。

本组研究中的L1~S1运动节段模型的仿真度极高,模型建立数据均采集自于正常活体L1~S1节段的连续断面图像(98张,层厚仅0.6 mm)。研究设计完全按照手术方法,模型的内部结构与材料均与实际情况相符,为其原有的生物材料特性,而且在计算中将韧带与肌肉的作用考虑在内,能够客观地反映患者术后邻近节段纤维环应力的变化情况。

参考文献

[1] Lee C K. Accelerated degeneration of the segment adjacen total umbarfusion[J].Spine,1988,13(3):375-377.

[2]刘则征,张忠民,金大地.腰椎融合内固定术后邻近节段退变的影响因素[J].南方医科大学学报,2010,30(15):1134-1137.

[3]邱俊骏,徐杰,王黎明.邻近节段退变对腰椎融合预后的影响[J].实用骨科杂志,2010,16(3):81-83.

[4] Goe V K,Kim Y E,Lim T H,et al. Ananaly tical investigation of the mechanics of spinal instrumentation[J]. Spine,1988,13(9):1003-1011.

[5] Chen C S,Cheng C K,Liu C L. A biomechanical comparison of posterolateral fusion and posterior f usion in the lumbarspine[J]. J Spinal Disord Tech,2002,15(1):53-63.

[6] Eck J C,Humphreys S C,Lim T H,et al. Biomechanical studyon the effect of cervical spine fusion on adjacent-levelintradiscal pressure and segmental motion[J]. Spine (Phila Pa1976), 2002, 27(22): 2431-2434.

[7] Krag M H,Seroussi R E, Wilder D G,et al. Internal displacement distribution from invitroloading of human thoracic and lum-bar spinal motion segments: experimental results and the oreticalpredictions[J]. Spine,1987,12(2):1001-1007.

[8]刘耀升,陈其昕,廖胜辉,等. 腰椎L4~5活动节段有限元模型的建立与验证[J].第二军医大学报,2006,27(6):665-669.

[9] Chow D H,Luk K D, Evans J H,et al. Effects of short anterior lumbar inter body fusion on biom echanics of neighboring infuse dsegments[J]. Spine,1996,21(5): 549-555.

相关期刊更多

中华外科

北大期刊 审核时间1-3个月

中国科学技术协会

颈腰痛

统计源期刊 审核时间1-3个月

安徽省教育厅

中华关节外科

CSCD期刊 审核时间1-3个月

中华人民共和国国家卫生健康委员会