首页 > 文章中心 > 生物力学测试方法

生物力学测试方法

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物力学测试方法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物力学测试方法

生物力学测试方法范文第1篇

摘要 根据篮球球运动专项力学特点,结合运动生物力学研究的现状、发展趋势、以及篮球运动教学发展的实际需求,对运动生物力学在篮球运动教学中应用和发展趋势进行分析。希望运动生物力学与篮球运动的特点紧密结合,更好地为篮球教学提供帮助。

关键词 运动生物力学 篮球运动 教学 应用分析

近年来,篮球运动受NBA和CBA的影响,很受学生的欢迎,大家都愿意参与这种集体带有趣味的运动。可在教学中可以看到一些学生由于身体的先天条件,动作做起来比较难受,不合理。怎样帮助每个孩子都能掌握这门技术。我想通过运动生物力学的原理去分析学生的特点,通过分析给他们制定不同的水准,不能集体都按统一的标准,这样会使学生感到篮球运动的艰难,我们降低难度就是要使不同的学生体验到成功的乐趣,因材施教使学生在快乐中学习。如何做到这些,我们就要借助于科技的力量和手段,更加全面地、深刻地认识篮球运动的规律。更好的在教学中利用为学生服务。

一、运动生物力学在篮球运动中的应用领域分析

从运动生物力学角度来看,篮球运动要求人体上下肢的协调配合,很好的应用人的手部动作去接球,做蹬地加速的动作,如何在这个过程中做到合理就必须了解学生的生理结构,肌肉力量的相互作用。什么角度的运动适合此阶段性的学习。用多大力能满足他们的可接受的力量范围,针对不同的学生应该采用不同的方法手段加强学生的学习,切不可让学生做过多大于自己身体不能做的力量训练。帮助他们在自己合理的技术动作内做到自己最适合的动作。对于动作的要求不可统一要求,要区别对待,这样一方面可以鼓励学生很好的练习;另一方面要使学生不断进取不至于伤害学生的自尊心。在场地器材方面要对学生认真讲解。使他们真正认识到自己的力是如何传导的,如何在正确的用力前提下做到做好的自己。

二、运动生物力学研究方法在篮球运动中的应用分析

(一)运动生物力学研究方法分类

按研究方法划分,运动生物力学应用在篮球运动中的研究大体可分为两类:一是力学理论研究方法,二是实验研究方法。两者相辅相成,相互统一,应当紧密结合,才能使运动生物力学更好地在运动实践中应用[1]。这就要求在实践当中很好的将二者紧密结合共同应用到学科领域当中。

(二)运动生物力学的力学理论研究方法在篮球运动项目中的应用分析

该研究方法因为是通过模拟手段对人体运动仿真,一般包括五个步骤:1.确定运动特征,建立目标函数;2.选择模型确定刚体的自由度;3.建立动力学模型;4.实测已知数据并求解;5.根据求解结果解释运动规律,这一步骤是将求得的数学规律化为体育运动语言对运动技术进行合理的指导[ 2]。根据此研究方法,可以对篮球中许多问题进行研究。如对于篮球运动中学生的伤病的研究,有助于对学生在篮球运动中的损伤认识和预防。可以利用力学理论研究的方法对关节力和力矩进行推算。这实际上是为人体的运动给予科学化得定量,通过科学实验找出人体运动的范围和幅度,为更好的人类发掘自身的潜能和动作的量化提供参考依据。

(三)运动生物力学的实验研究方法在篮球运动中的应用分析

由于动力学研究方法与运动学测试在篮球运动项目中运用的较少,所用到的生物力学仪器不多。因此运动生物力学的实验研究方法在篮球运动项目中有极大的发展空间。

1.常用的生物力学仪器将在篮球项目中的广泛应用

许多已经在其他专项中运用较为广泛的生物力学仪器在篮球运动项目中尚未广泛使用。比如,肌电仪,脚垫受力分析鞋垫。脚垫受力分析可以反映地面对人体的反作用力。运动员投球的力最终是通过人体蹬地面,同时地面给人体的反作用力而实的。通过在运动员的鞋子里放上受力分析鞋垫,可以得出在移动过程中,脚底压力的分布图,可以为篮球运动员鞋子的设计提供参数。通过肌电仪可对完成某动作所参与的肌肉活动的强度和时间进行描述,确定主要的参与肌群。这样学生就可以很清楚地知道完成某动作的肌肉用力顺序是什么,哪些是主动肌,哪些是被动肌,可为力量训练提供参考。

2.多机同步测试的研究

多机同步测试研究是运动生物力学研究的发展趋势。对于篮球这项精密的运动,以往的研究多是从一维的视角来进行的,对篮球运动的生物力学的研究应朝着多维的研究视角发展。比如,将摄像系统和测力台系统同步的测试方法,综合运动学和动力学的数据对篮球运动进行更加深入、全面的研究与分析。

3.开发篮球专项化、反馈快速化的运动技术测试仪器

近年来随着其他运动项目运动学、动力学、测试仪器的质量、功能、效率不断提高,某些运动项目专用的测试仪器不断出现。其它专项的研究可为篮球专项化的测试仪器提供借鉴。随着科学技术的迅速发展,加速度传感器的体积和质量都可以做到非常小,精度可以达到很高,此仪器可以实时监控篮球鞋的速度、加速度和角速度,并可据此推算篮球鞋不同部位的受力情况,以及脚蹬地的初速度。而对篮球鞋运动情况的所做的研究较少。如果这些设想可以实现的话,将丰富这方面的研究可以防止运动者教学脚部的受伤的情况。为更好的教学服务提供保障。防止学生在运动中受伤的概率。

(四)力学理论研究方法和实验研究方法紧密结合

理论力学理论研究方法和实验研究的方法紧密结合对篮球运动进行运动生物力学的研究,将有助于从不同层面和角度更好的认识篮球运动规律,进而可使运动生物力学更好地为篮球实践服务,是运动生物力学在篮球运动中应用的发展趋势。力学理论研究方法必须辅之实验和经验,才能使它在实际应用方面的作用得以发挥,力学理论方法与实验测试方法两者应当紧密结合。前者提供了运动普遍规律,对分析有理论指导意义,后者是理论研究与实际是具体应用的桥梁,能使研究更好地为运动实际服务。实验方法和力学理论研究共同发展、相辅相成,使运动生物力学学科渐趋深入完善。

三、结束语

篮球运动教学的动作技术诊断,力学研究,学生肌肉、骨骼力学特性的研究,将有助于篮球专项测试仪器的开发,篮球运动员损伤机理和预防的研究等领域需要利用运动生物力学在篮球专项中进行全方位的研究。这样有助于在实际中解决一些教学中的学生容易受伤的难题,将生物力学的有关原理服务于学生的课堂,用科学的方法指导学生篮球训练与比赛,更好的预防学生在不同情况下的运动损失与治疗。

参考文献:

[1] 王向东,刘学贞,等.运动生物力学方法学研究现状及发展趋势[J].中国体育科技.2003(2):15-18.

[2] 忻鼎亮.运动生物力学的力学理论研究方法[J].体育科学.1994(4):37-40.

生物力学测试方法范文第2篇

【关键词】运动生物力学 表面肌电 难度动作

中华武术历史悠久,博大精深,一直深受来自全世界人民的喜爱。随着现代体育的不断发展,武术套路也在向世界推广的潮流中不断的前进,现如今已逐步发展成为了以现代体育科学为理论指导,以西方竞技体育模式为运动方式的现代竞技体育项目。在跨学科研究以成为常态的新的背景下,近年来涌现出了很多有关运动生物力学在武术套路中的研究与应用的文章。其中的很多文章多采用运动学的方法对武术套路运动员作运动学的数据测量与分析并得出相应的结论。然而通过表面肌电对武术套路难度动作进行分析和研究的文章却不多。如何更好地运用表面肌电技术研究武术难度动作,已成为一个新的研究热点方向。

1.有关运动生物力学的研究内容与方法

运动生物力学是一门边缘学科,同时也是一门应用性很强的学科。运动生物力学分析不仅在人体运动实践中起着重要作用,它还是运动员和教练员做为教学和训练指导的有力工具。近年来它的发展十分迅速。国内的许多理工类、医学类和体育院校都独立开设了这门课程,有些院校还开设了相应的专业,国内一些学者同时出版了许多相应的教材和专著,在该学科上取得一些居国内外先进水平的成果。对人体与物体的运动分析是运动生物力学的重要研究内容,其中对运动位移轨迹的分析是描述运动的重要方面。

运动生物力学主要通过它的分析应用系统进行研究。并运用运动图像分析法、三维测力台法、步态分析法、肌电分析等研究方法对所要研究内容作出测数与分析。第23届国际运动生物力学年会报告上发现国际生物力学应用技术研究和竞技体育研究仍占主流,研究方法不断得到突破,三维摄像和肌电实现同步测量。各高校还相继研发出新的测试仪器和研究系统,这使得运动生物力学研究不断向前发展。

2.运动生物力学在武术难度动作中的研究

在武术套路中指定难度动作分为A、B、C三个难度等级,武术比赛中指定难度动作因其难度大、扣分重、不易完成使其逐渐成为整个套路的核心。提高指定难度动作的训练质量对提高运动成绩至关重要。

2.1 运动生物力学在武术难度动作中的研究过程

通过运动生物力学研究长拳难度动作,一般先把难度动作进行阶段划分,以旋风脚动作为例:旋风脚可以划分为助跑、起跳、空中击响及转体、落地等四个阶段,之后用高速摄像机拍摄或用肌电测试仪进行实验测量,或者两者同时进行,实验结束后,用三维影像分析系统和肌电数据分析系统对所得数据进行处理。最后利用QToolS软件和Excel软件对获得的数据指标进行计算和统计,从而得出想要的结论。

2.2运动生物力学在武术难度动作中的研究发展趋势

通过运动生物力学对武术难度进行研究经历了运动学、动力学、以及多角度分析等三个阶段。

运动学分析阶段主要是通过摄像得出有关难度动作在旋转角度、各关节夹角、以及动作摆动幅度等相关数据并进行分析,这在一定程度上可以对动作进行分析,但不够全面。动力学阶段主要是对武术难度动作进行运动学肌电两方面或多方面测量,不仅从单一运动的角度,更从运动与肌肉发力等多角度进行综合考虑,使研究成果更有价值。多角度分析阶段已不仅仅是再对武术难度动作进行测量分析,将对动作从技术本身从发结合摄像肌电等手段,在运动生理学和运动解剖学等多学科的支持下再对难度动作进行研究,使得研究成果更具说服力。

3.运用表面肌电技术研究武术难度动作

运用表面肌电技术对武术难度动作进行研究,主要是通过使用肌电测试仪对做难度动作的运动员进行肌电测量,获得数据以后在对数据进行处理,其中比较重要的数据指标有积分肌电,它是计量肌肉放电水平的以单位面积放电量为单位,可以初步了解肌肉在做武术难度动作所做的贡献。还有就是放电的时序,即做武术难度动做过程中各个肌肉的放电顺序,我们可以通过这些方面了解各肌肉在做动作中协调工作的情况,从而实现研究目的。在运用表面肌电技术对武术难度动作进行研究中,时程也是非常重要的,它反映了各肌肉放电所持续的时间,使得我们在研究武术难度动作和安排相关肌肉训练上能得到很多借鉴。运用表面肌电技术研究武术难度动作已成为武术套路难度动作研究的新方向。

4.小结

关于运动生物力学在武术套路中难度动作的研究的文章有很多,通过阅读和整理相关资料,可以把这些所研究文章大致分为以下三个方面。

1.对某一难度动作或组合难度动作的运动学分析,即主要运用三维摄像手段进行拍摄,再运用相关运动分析系统对所拍摄图像进行解析。

2.对某一武术套路难度动作的表面肌电分析。

3.运动生物力学在武术中应用的综述类文章。其中由以前两方面的文章居多。如何使用表面肌电去分析和研究武术套路中的难度动作将会成为未来很好的一个研究方向。

【参考文献】

[1]卢德明.运动生物力学测量方法[M].北京:北京体育大学,2003,347

[2]周继群,徐彩桐.武术套路中“旋风脚”动作的运动生物力学分析与训练[J].天津理工学院学报,2002,16:36一37.

生物力学测试方法范文第3篇

胸腰段后凸畸形的病因主要有先天性脊柱畸形、胸腰段脊柱骨折、强直性脊柱炎、Scheuermanns病、老年性脊柱后凸、脊柱结核椎体破坏、椎体肿瘤、软骨发育不全等〔1、2〕,除了脊柱本身的因素外,胸腰段后凸畸形可由腹部肿瘤引起〔3〕。脊柱曲度正常时,身体重力线应通过各节段生理弯曲的交界处。胸腰段以上重心位于胸椎的前部,胸腰段后凸畸形所造成的成角的或短弧形后凸畸形使损伤平面以上躯体的重心更趋前移,必将进一步加重后凸畸形〔4〕。随着我国进入老龄化社会,胸腰段后凸畸形的患者不断增多,胸腰段后凸畸形常出现局部不稳定,脊柱支撑功能丧失,从而引发腰痛,且多并发上腰椎的失稳及加速腰椎间盘退变,从而给患者造成极大的痛苦,有些患者通过保守治疗无效,常需要手术治疗,给患者家庭和社会造成了巨大的负担。下面笔者就目前国内外胸腰段后凸畸形影响腰椎诸节段矢状面稳定性的研究情况进行综述。

1 脊柱胸腰段及腰骶椎的解剖及生物力学特点

胸腰椎移行部与腰椎及腰骶椎相比其形态和生物力学特性大不相同。该部位是后凸的胸椎与前凸的腰椎的移行区,生理弧度变直,这一区域恰好位于活动度较小、稳定性较强的胸椎与活动度较大、稳定性相对较差的腰椎之间;T11、12肋骨为浮肋,抵止在相应的椎体上而不是椎体间,不参与垂直载荷;从T10~12L1关节突关节的关节面的倾斜则发生很大变化,即左右旋转和左右侧屈的ROM大大降低,而前后屈曲ROM较胸椎明显增大;正常情况下,该部脊柱前方的垂直载荷分担率远远大于后方。在T11及T12胸椎,上关节突表现为胸椎上关节突的形态特征,而下关节突的形态特征却与腰椎相近,其前、后方无胸肋关节和肋横突关节的加强,且仅与一个椎体相关节,这些均构成了胸腰椎容易损伤的解剖学基础〔5〕。因此,脊柱的压缩性或爆裂性骨折常发生在胸腰段,从而造成胸腰段后凸畸形。从胸腰椎至腰骶椎,前后屈曲ROM逐渐增大,腰骶椎髂腰韧带的存在使该部位的运动和稳定性与L4、5以上有所不同〔6〕。

Abumi等〔7〕通过人尸体腰椎节段的破坏模型证实,棘上韧带、棘间韧带损伤甚至双侧关节突关节内侧半部分切除难以造成腰椎失稳,而单侧或双侧关节突关节完全切除则可导致椎间旋转和屈曲的失稳。椎间孔部的减压易导致关节突间(峡部)的分离。单侧时由于有椎弓的存在,两侧关节突关节还可发挥其功能。

2 目前利用动物脊柱标本进行的生物力学研究

王新伟等〔8〕利用出生1周以内的小牛胸腰椎新鲜标本,研究了小牛胸腰椎前路模型中的相关解剖,并与人体相关数据进行比较,发现:与人体相比,小牛脊柱椎体及椎间盘更接近圆柱状,椎间盘高度占脊柱高度的比例更大。又进行了生物力学实验,测试屈曲、伸展及侧屈状态下的载荷-应变、载荷-位移关系、最大载荷时的应力强度及屈曲、伸展、侧屈及扭转状态下的轴向刚度,最后进行极限力学性能测试。发现出生1周内的小牛胸腰椎标本在人生理载荷范围内,呈线形变化,与人体一致。

王向阳等〔9〕收集12具新鲜猪T10~L4节段胸腰椎脊柱标本,制造不同程度前中柱骨折模型,分为2组,分别安放椎弓根螺钉内固定器和内固定加前路植骨重建,每种状态依次在CMT4104多功能力学试验机上进行轴向压缩和前屈压缩测试,分别计算每组的完整标本、骨折内固定标本和植骨内固定标本的轴向压缩刚度和前屈压缩刚度。发现:胸腰椎前中柱骨折后经椎弓根螺钉系统固定不能使其恢复至原来的力学性能,椎体骨折累及范围越大,固定后力学性能越差;前中柱重建是减少后路内固定器械承载的关键。

周有礼等〔10〕利用羊的整条脊柱标本,对胸腰椎爆裂骨折后的局部载荷进行了研究。发现:在胸腰椎结合区域有较大的应变值表示该区域局部所承受的力量较大,在实验上脊柱承受牵引时,在胸腰椎接合之区域会承受较大的拉力。

3 利用在体动物模型进行的研究

Oda等〔11〕利用在体羊脊柱腰段后凸畸形模型,研究脊柱损伤和后凸畸形对相邻运动节段的影响,他们将活体羊分为对照组、L3~5原位融合组及L3~5Cobbs角为30°的后凸畸形融合组,进行了影像学、生物力学及组织学的研究分析,结果证实:脊柱后凸畸形导致头侧邻近节段的后方韧带复合结构的前凸性挛缩;L2椎板在屈伸活动下所承受的应力在后凸畸形组更为明显,提示更多的载荷转移向后柱;后凸畸形组邻近的头侧关节突关节有明显的退变性骨关节病改变,邻近的尾侧关节突关节亦有轻微的退变性骨关节病改变,而在原位融合组退变轻微。

Nielsen LW等〔12〕利用幼年猪制作了Scheuermanns病的脊柱后凸畸形模型,利用病理学、放射影像学、血液生化等方法进行研究,发现猪的Scheuermanns病胸腰段后凸畸形模型,与人Scheuermanns病导致的胸腰段脊柱后凸畸形有可比性。

Lowe TG〔13〕等利用未成年羊的Scheuermanns病模型,进行了一项在体实验,他将羊的胸腰段至下腰椎用椎弓根钉和聚乙烯绳在后面进行拴系,不融合,进行了13个月的观察后,处死羊,取其脊柱进行生物力学研究,发现模型矢状面上的非融合调整,能有效地减少椎体楔形变的程度,此方法可能成为治疗青少年Scheuermanns病的一种可行办法。

4 利用人的尸体新鲜脊柱标本进行的研究

Birnbaum等〔14〕利用11具新鲜尸体躯干标本(含胸廓),制造了胸椎后凸畸形模型,对前路松解前、后的矢状面矫形效果进行了解剖学及生物力学研究,结果发现:单纯前路松解(开放或经胸腔镜辅助)矫形效果良好,且能有效地改善矢状面平衡。

赵必增等〔15〕利用新鲜尸体胸腰椎标本,探讨了椎体成形强化后对邻近椎间盘、椎体的力学影响,发现强化椎体后,对邻近椎体造成的应力集中很小,而对邻近椎间盘有一定的影响。

5 利用三维有限元分析进行胸腰段后突畸形研究

有限元素法(FEM)是一个求偏微分方程式的数值方法。随着个人计算机功能的完善,有限元素法的使用也越来越简单,在医用生物力学方面应用更是越来越普遍〔16〕。

Liebschner MA等〔17〕对19例人的尸体胸腰段椎体标本进行CT扫描,建立三维有限元模型,进行有限元分析;同时对标本实体进行解剖学测量以及生物力学试验分析,最后将二者测得的数据进行对比研究,进行统计学分析,发现:用恒定0.35层厚和457 MPa有效模量,结合CT重建的椎体几何模型与骨小梁特性,进行椎体外壳的建模,能精确的预测整个椎体的生物力学特性。

程立明等〔18〕就胸腰段后突畸形对相邻椎间盘力学影响进行了三维有限元分析研究。他们选取结构正常的脊柱作为实验材料,通过CT扫描获取脊柱的二维图像,然后进行三维重建,转化为有限元模型(FEM),利用Free Form成形软件构建胸椎后凸畸形模型,分别对正常结构和胸椎后凸的脊柱有限元模型进行载荷试验,分别比较椎间盘和小关节应力分布情况,总结出以下结论:脊柱胸腰段后凸畸形改变了相应椎间盘的载荷应力应变分布,这可能加快椎间盘退变及使后方纤维环易受损破坏。

6 利用影像学进行的临床研究

Seel EH等〔19〕使用Oxford Cobbometer对椎体骨折导致胸腰段后凸畸形的Cobbs角进行测量,发现与传统的测量方法相比,其测量的结果更简便、准确、可行。

吉立新等〔20〕收集12例具备胸腰椎和腰骶椎正侧位X线片的胸腰段后凸畸形病例,与20例正常对照组进行相应比较,进行分析研究。发现患病组平均腰椎前凸角度与正常对照组相比有极显著性差异。患病组单节段腰椎前凸角度以上腰椎变化更为明显。从而认为:胸腰段的后凸畸形,使病损平面以上躯体的重心更趋前移,增加了致畸负荷,必将进一步加重后凸畸形。为维持直立下躯干重心的平衡,就需要调整头、颈、胸和腰部的曲度甚至髋部和膝部的位置使重心后移,其中最主要是通过腰椎的前凸加大来实现这一目的。腰段所发生的代偿性改变比腰骶段更为明显,而腰段的代偿性改变又更多地集中在上腰椎,而且椎体的后滑移也发生在上腰椎,表明胸腰段后凸畸形对上腰椎有更大的影响。

陈仲强等〔21〕测量14例后凸畸形截骨手术治疗前后的胸腰段后凸角和腰椎的前凸角以及椎体滑移情况,对所得结果与正常组进行对比分析。发现:胸腰段后凸畸形可导致腰椎过度前凸及椎体向后方滑移,尤其在上腰椎更为明显,可能是引发腰背疼痛的重要原因之一:矫正胸腰段后凸畸形可减小腰椎的过度前凸和椎体滑移倾向,可明显减轻患者的腰背疼痛;前后方联合截骨更安全,矫正后凸畸形效果更好。

7 问题与展望

综上所述,对于胸腰段后凸畸形,国内外学者从解剖、动物标本模型、在体模型、人尸体标本模型、有限元分析模型及影像学临床等不同角度出发,进行了生物力学及其他方面的研究。研究更多的是解剖、标本模型、有限元分析及影像学方面。解剖学属于形态学范畴,研究历史较长;动物标本易于取材,但与人的生物力学特性还是有差异的;相对实验分析而言,有限元分析的优点在于它对分析参数控制的绝对性和简易性,及完整多样的结果数据。现阶段有限元素分析,必须要配合恰当的实验数据或临床现象比对,结合有经验的临床及力学人员,有限元素分析才能发挥它最大的功效。而由于受各方面条件的限制,在体动物生物力学模型与人新鲜尸体生物力学模型的研究,国内外报道的很少,尤其是利用人新鲜尸体对胸腰段后凸畸形影响腰椎诸节段矢状面稳定性进行生物力学的研究,目前国内外尚是一个空白,这方面还有很大的研究空间。 【参考文献】

〔1〕 Betz RR.Kyphosis of the thoracic and thoracolumbar spine in the pediatric patient:normal sagittal parameters and scope of the problem[J].Instl Course Lect,2004,53(2):479484.

〔2〕 Misra SN,Morgan HW.Thoracolumbar spinal deformity in achondroplasia[J].Neurosurg Focus,2003,14(1):4.

〔3〕 Loon PJ,Raissadat K,Loon CJ,et al.Transient kyphotic deformity of the thoracolumbar junction resulting from a large abdominal cyst:a case report[J].Spine J,2005,5(3):329331.

〔4〕 吉立新,陈仲强,宋样平,等.胸腰段压缩骨折腰椎前凸角度及病变椎体倾斜角度的变化特点[J].山东医药,1999,39(22):910.

〔5〕 戴力扬.胸腰椎爆裂性骨折的生物力学[J].中国临床解剖杂志,2001,19(3):280281.

〔6〕 于滨生,刘少喻,李佛保.脊柱稳定重建的解剖及生物力学特点[J].脊柱外科杂志,2005,3(1):4042.

〔7〕 Abumi K,Panjabi MM,Kramer KM,et al.Biomechanical evaluation of lumbar spinal stability after graded facetectomies[J].Spine,1990,15(11):11421147.

〔8〕 王新伟,陈德玉,鲍达,等.小牛胸腰椎解剖、生物力学研究及其临床意义[J].脊柱外科杂志,2003,1(4):223225.

〔9〕 王向阳,戴力扬,徐华梓,等.胸腰椎不同程度前中柱骨折内固定后的生物力学特征及前路重建的意义[J].中华创伤杂志,2006,22(3):214217.

〔10〕 周有礼,周伯禧,李宗修,等.脊柱破裂骨折之生物力学实验分析[J].医用生物力学,1999,14(1):15.

〔11〕 Oda I,Cunningham BW,Buckley RA,et al.Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model[J].Spine,1999,24(20):21392146.

〔12〕 Nielsen LW.Juvenile kyphosis in pigs.A spontaneous model of scheuermanns kyphosis[J].APMIS,2005,113(10):702707.

〔13〕 Lowe TG,Wilson L,Chien JT,et al.A posterior tether for fusionless modulaion of sagittal plane growth in a sheep model[J].Spine,2005,30(17):6974.

〔14〕 Birnbaum,KCH,Siebert,et al.Correction of kyphotic deformity before and after transection of the anterior longitudinal ligamenta cadaver sudy[J].Arch Orhop Trauma Surg,2001,121(3):142147.

〔15〕 赵必增,王以进,李家顺,等.椎体成形术后邻近椎间盘、椎体的力学性质变化[J].医用生物力学,2002,17(4):215219.

〔16〕 王志杰,丁自海,钟世镇.有限元法在骨应力分析及骨科内外固定系统研究中的应用[J].中国临床解剖学杂志,2006,24(1):107110.

〔17〕 Liebschner MA,Kopperdahl DL,Rosenberg WS,et al.Finite element modeling of the human thoracolumbar spine[J].Spine,2003,28(6):559565.

〔18〕 程立明,陈仲强,张美超,等.胸腰段后凸畸形对相邻椎间盘力学影响的三维有限元分析[J].中国临床解剖学杂志,2003,21(3):273276.

〔19〕 Seel EH,Verrill CL,Mehta RL,et al.Measurement of fracture kyphosis with the Oxford Cobbometer:intraand interobserver reliabilities and comparison with other techniques[J].Spine,2005,30(8):964968.

生物力学测试方法范文第4篇

【摘要】 [目的]研究CT扫描三维重建技术对于骶髂关节骨折进行闭合手术治疗的术前指导作用。[方法]选择30个骶髂关节,均行X线片和螺旋CT三维重建后,随机分为3组,每组10个关节。A组:根据CT数据资料于Minics软件指导下行骨折克氏针固定;B组:于电视X线机下行骨折克氏针固定,根据X线片和螺旋CT资料行骨折克氏针固定。固定后通过生物力学和大体剖面观察,评价不同组间生物力学和解剖学效果。[结果]A、B 2组在力学强度和解剖位置方面均优于C组,差异均有统计学意义(P0.05)。[结论]Minics软件及三维重建技术可以很好的指导骶髂骨折的手术操作。

【关键词】 骨盆骨折; 骶髂关节; 生物力学

现代社会高能、高速损伤日益增多,骨盆骨折发病率逐年增多,目前已占骨折总例数的1%~3%,尽管医疗技术已有很大提高,严重骨盆骨折病死率仍在20%左右,致残率约50%~60%[1]。尤以骶髂关节骨折,由于受伤部位较深,涉及组织及器官较多,手术治疗时由于操作不当极易造成不必要的手术并发症,甚至导致手术失败。本实验通过使用Minics软件对试验标本个体化CT数据资料进行处理和研究,探讨该方法在闭合条件下对经皮治疗骶髂关节骨折固定手术的术前设计及指导作用。

1 材料和方法

1.1 材料

15具尸体骨盆,男12具,女3具,年龄23~45岁,平均34岁,不含软组织(南方医科大学人体解剖学教研室提供);X线机(TU3000/DR1000X,Hitachi日本),64排螺旋CT(Philips/Brilliance 64,飞利浦公司,荷兰),生物力学机(MTS生物力学试验机),电视X线机(Tridoros Optimatic 1000 mA,西门子,日本),Minics 10.01软件,冲击电钻(中国上海),8 mm克氏针。

1.2 方法

各骨盆均行正侧位、双斜位X线片和螺旋CT三维重建。30个关节随机分为3组,每组10个关节。A组:将CT数据输入电脑后,利用Minics软件进行三维重建处理,分析骨折裂缝的大小、位置和周围骨性结构的比邻。并利用软件中画笔工具模拟出2根8 mm“克氏针”,垂直骨折线行跨关节骨折固定(图1),调节“克氏针”位置,消除针道对周围血管、神经和脏器穿过损伤后,显示穿针部位在体表的投影和进针(三维)角度,然后于尸体骨盆按照软件模拟的部位和路径进行克氏针固定。B组:在电视X线机指导下,行骨折部位克氏针固定。C组:根据X线片和CT片行克氏针。

1.3 试验步骤

1.3.1 生物力学分析 有学者认为显著增加螺钉轴向拔出力的因素与增大螺钉外径和加大进钉深度有关;骨密度也是影响螺钉固定强度的重要因素,骨密度越大,螺钉的拔出力也就越大[2]。按文献3方法进行操作,具体方法:标本置于MTS858生物力学测试机平台,呈人体垂直直立位牢固固定,钉尾施加摆动拔出力,预载100 N,后以10 nm/min分级加载,两侧放置高精度摄像仪,每加载50 N记录1次,在摆动度数1°~5°时分别记录相应的拔出力,所有标本均重复上述操作。

图1 利用Minics软件进行三维重建模拟图(略)

1.3.2 大体观察 生物力学测试后各组随机选取4个标本,沿穿针方向剖开,观察针道与骶髂关节界面以及周围组织关系。统计标准为“2针均于中部穿越骨折线计为0,有1根于中部穿越骨折线计为3,2只均未穿过骨折线计为5;针道不穿越任何脏器的计为“O”,针道穿入骶管的计为A,穿破骶骨向后侧穿出计为B,穿破骶骨穿入盆腔的计为C。

统计学分析,所有数量表示为资料±s,SPSS 12.0统计软件进行统计学处理,组间比较采用方差分析,检验水准为α=0.05。

2 结果

2.1 生物力学实验

A、B组方法指导下固定的克氏针在抗拔出力方面明显优于C组,拔针过程中产生的位移明显少于C组,2组差异具有统计学意义(Pa0.05)(表1)。

表1 不同手术方法克氏针拔出力和相对位移(略)

2.2 大体观察

A、B 2组大部分标本显示,克氏针能够顺利穿过骶髂关节界面,且不穿入椎管或由关节前后穿出,很好的起到局部固定或避免组织损伤的效果,C组标本均出现固定不确切,和针道偏斜的表现(表2)。

表2 大体观察结果(略)

3 讨论

骶髂关节骨折属垂直不稳定性骨盆骨折[4],随着医生及患者康复意识和诊断技术的不断提高,闭合手术治疗的效果越来越受到医生和患者的重视。骶髂关节,也称为骶髂复合体(sacroiliac complex),影响头侧的腰骶关节及尾侧的髋关节,占整个骨盆功能的60%[5]左右,治疗效果对骨盆功能的恢复具有重要意义。骶髂关节骨折,手术显露困难,术野暴露面积大,加之骶骨内和骶髂关节前方有硬脊膜囊、骶神经根、骶丛及重要大血管通过,操作难度大,处理不好会引起很多并发症,极易误伤脏器、神经、血管,造成创伤性关节炎。

目前处理此类骨折的较常规的方法是:(1)保守治疗牵引:过程长,患者长期卧床,护理麻烦,且易引起诸多并发症[6];(2)闭合复位,凭经验行克氏针或螺钉内固定:手术风险大,易造成重要组织和器官的损伤[7];(3)切开复位内固定:损伤复杂,一般医生掌握困难[8];(4)电视X线机指导下闭合穿针:操作安全简单,对术者解剖和立体定向水平要求较高[9]。

Minics软件是SWUGN公司于2002年开发的一种3D软件,可以录入CT等影像学数据,并进行重建,并可以随意旋转,成像,还可以利用工具软件,在图像中绘制立体的螺钉、钢板或克氏针进行固定,并通过三维数据进行位置调节。

本研究采用螺旋CT对骨盆标本的扫描数据录入Minics软件,通过软件自带的三维成像功能,进行图形重建,绘制出模拟真实的骨盆模型。利用软件中的旋转工具可以从任意角度观察骨盆构象,了解复合关节的解剖关系。更重要的是,利用软件中的绘图工具还可以在图像资料中添加模拟的螺钉或克氏针,并可以随意调节进针部位和角度,还可通过延展工具在组织表面进行投影,进行术前手术实施模拟,进而指导真实手术操作。本组数据显示:采用三维重建指导的克氏针固定在力学强度和进针部位和准确度等方面与电视X线机指导下的克氏针固定效果相当,甚至略好,明显优于单凭X线片和CT资料的经验性“盲穿”。

该方法操作简单,易于掌握,尤其适于刚刚从业的初学者,且避免了电视X线机下对患者和术者的射线照射。该方法的三维重建功能还具有很好的诊断价值(将另文论述),具有良好的应用前景。

参考文献

[1] 庄颜峰,吕琦,陈学明,等.严重骨盆骨折的初期救治体会[J].中华创伤骨科杂志,2004,6(5):582-583.

[2] Hackenberg L, Clahsen H, Halm H. Factor influencing the anchoring stability of spinal bone screwan experimental study[J]. Z Orthop Ihre Grenzged,1998,136(5):451-456.

[3]王利民,郭润栋,廖文胜,等.新型与常规骶骨螺钉摆动力学稳定性的生物力学评价[J].实用诊断与治疗杂志,2004,18(6):507-509.

[4] 丁真奇,练克俭,杨立民.骨盆环损伤的分类及治疗[J]. 临床骨科杂志,3(3):224-226.

[5] Tile M. Acute pelvic fractures: Ⅰ.Caution and classification[J]. JAAOS,1996,4:143-151.

[6] 戴力扬.骶骨骨折与骨盆骨折[J].中国矫形外科杂志,2002,9(5):427-429.

[7] 罗从风.骨盆损伤的处理[J].国外医学骨科学分册,2002,23:58-59.

[8] 贾健.骨盆骨折的分类及内固定治疗[J]. 中华骨科杂志,2002,22:695-698.

生物力学测试方法范文第5篇

[关键词]兔;肋软骨;软骨膜;生物力学

[中图分类号]R622 R332 [文献标识码]A [文章编号]1008-6455(2012)04-0579-03

Effect of costal perichondrium on biomechanics of transplanted costicartilage in rabbits

JIANG Shan,CHEN Zhen-yu,ZHU Yue-hua,LENG Xiang-feng,ZHANG Wei-na

(Department of Plastic Surgery,Affiliated Hospital of Medical College,Qingdao University,Qingdao 266000,Shandong,China)

Abstract: Objective To study the differences of the cartilage with and without the perichondrium after autologous ectopic transplantation in healthy rabbits,in order to offer theory reference for clinic to make the best use of cartilage. Methods 6 rabbits at the age of six weeks.Each of them the sixth,seventh,and eighth costal cartilages with perichondrium were removed,and divided into two segments at the even length,one segment with perichondrium and the other non-perichondrium.They were buried under the skin of the back at bilaterally symmetrical parts.Two different groups of cartilages were took out after 12 weeks and removed the perichondrium of the cartilages that had it previously. Tensile,compressive and flexural tests were conducted by using SHIMADZU material testing machine. Results The average maximum strength and the strain of tension,compression and flexion of the perichondrium group were higher than those in the non- perichondrium group(P

Key words:rabbit;costicartilage;perichondrium;biomechanics

肋软骨是一种透明软骨,组织具有弹性,移植后易成活,与其他组织相比不易变形,是理想的填充、塑形以及支持材料。自体肋软骨因与机体组织生物相容性佳,无排斥反应,抗感染能力强等优点而被广泛应用于多种整形外科手术,如耳再造、隆鼻等[1]。

肋软骨的生物力学性能对手术效果具有十分重要的影响,具有良好生物力学性能的肋软骨可更好地对抗各种外力作用,取得并维持更为理想的手术效果。现阶段,国内外已有不少对软骨生物力学性能的研究,但大多数以其它部位的软骨为研究对象,如关节软骨等。即使有少量研究肋软骨生物力学性能的,也未能系统阐述肋软骨膜对其的影响[2-3]。已有大量研究表明,肋软骨膜能够促进肋软骨的生长并有利于其塑形[4],但其对肋软骨生物力学性能的直接影响仍不确定。本研究正是针对上述不足,通过实验研究兔健康肋软骨的极限抗拉强度,最大抗压强度,最大弯曲强度等各项生物力学性能,探讨肋软骨膜对肋软骨的生物力学性能的影响,以期为利用肋软骨行整形手术时选取最佳移植物提供理论参考。

1 材料和方法

1.1.1 实验动物:健康新西兰大白兔幼兔6只,平均体重1.5~2kg,平均周龄6周。

1.1.2 手术方法:地西泮5mg/kg,盐酸氯胺酮30mg/kg肌注麻醉成功后,背部术区备皮,胸腹部备皮,消毒,铺巾。沿左侧肋弓作斜形切口,连软骨膜一起,取出第6、7、8肋肋软骨。胸腹壁切口用5-0丝线逐层拉拢间断缝合。背部两侧对称部位各做三处约0.5cm长纵行切口,同侧切口间隔约1cm,剪刀横向钝性分离皮下至合适长度。将取出的肋软骨从中间切断,形成等长两段,其中一段保留软骨膜,另一段则去除。将各组带软骨膜与不带软骨膜的软骨于背部对称部位埋植于皮下,带软骨膜的埋于一侧,不带软骨膜的埋于另一侧。麻醉苏醒后将兔放入观察室,分笼饲养,术后3日内,每日肌注青霉素40万IU。术后12周取出埋植肋软骨,观察各标本均无明显吸收变形现象,各软骨及软骨膜完整,将埋植前带软骨膜者的软骨膜剥去,埋植前不带软骨膜者不作处理,两组均制成试件以备测量。

1.2 实验仪器及测试条件:在SHIMADZU(日本,AGS-X型)材料试验机上对肋软骨试件进行拉伸、压缩及弯曲试验。实验在室温(18℃~25℃)下进行,且用超声波加湿器保持一定的湿度,实验中过程中用Ringer's液滴注试件,以防试件干燥。用游标卡尺测量试件的长、宽、厚或直径,并以此计算材料的横截面积,同一试验中各试件形状及大小一致。实验采用100N传感器,机器可自动测量变形,各实验均经过预调处理。

1.3 实验过程

1.3.1 拉伸试验:将试件沿肋软骨长轴方向固定于机器上、下夹头间,以5mm/min的速度均匀拉伸直至试件被拉断。为使试件在中间较细部位断裂,将其制成长15mm,厚2mm,两端宽4mm,中间宽2mm的沙漏状。分别测试各标本,记录下各最大拉伸强度值及最大应变。

1.3.2 压缩试验:将标本制成长1mm,直径4mm的圆柱形试件, 沿肋软骨长轴方向放置于试验仪托盘上, 以5mm/min的速度均匀压缩至破坏。分别测试各标本, 记录各最大压缩强度值及最大应变。

1.3.3 弯曲试验:将标本制作成长15mm,直径4mm的圆柱形试件,水平放置于弯曲试验的支点上,跨距15mm,作三点弯曲试验。分别测试各标本, 记录各最大弯曲强度值及弯曲破坏时间。

1.4 统计学处理:采用SPSS18.0行数据统计学处理,所有数据均采用(均数±标准差)表示,采用两独立样本t检验作统计学分析,P

2 结果

2.1 拉伸试验:两组试件拉伸试验应力-应变曲线见图1。从该曲线可以看出埋植前带软骨膜组破坏应力明显大于不带软骨膜组,后者抗拉能力明显减弱。相同的应力作用时, 不带软骨膜组发生的应变更大。对两组的各标本进行计算, 结果表明带软骨膜组的平均极限抗拉强度为(3.38±0.17)MPa,平均最大应变为(8.04±0.33)%;不带软骨膜组的平均极限抗拉强度为(2.12±0.15)MPa,平均最大应变为(5.12±0.68)%, 两者相比差异有显著性意义(P

2.2 压缩试验:两组试件压缩试验应力-应变曲线见图2。从图中可以看出不带软骨膜组破坏应力明显小于带软骨膜组。对两组的各标本进行计算, 结果表明带软骨膜组的平均最大压缩强度为(8.31±0.61)MPa,平均最大应变为(6.42±0.43)%;不带软骨膜组的平均最大压缩强度为(4.29±0.69)MPa, 平均最大应变为(4.01±0.31)%,两者相比差异有显著性意义(P

2.3弯曲试验:两组试件弯曲试验应力-时间曲线见图3。从该图可以看出, 虽然两组曲线近似, 但带软骨膜组发生破坏的时间为(36.01±3.88)s,明显长于不带软骨膜组的(23.50±3.56)s。对两组的各标本进行计算, 结果表明带软骨膜组的平均最大弯曲强度为(7.80±0.51)MPa,不带软骨膜组的平均最大弯曲强度为(4.52±0.30)MPa,两者相比差异有显著性意义(P

3 讨论

3.1 自体肋软骨由于前述各种优点,临床上应用广泛。然而,在取用肋软骨时,常面临着带不带软骨膜的选择。目前,国内外已有大量研究表明,肋软骨膜对肋软骨的生长和塑形有重要的影响作用。与不带软骨膜者相比,带软骨膜肋软骨移植后与周围组织黏连更为紧密,在长度、重量和体积方面的生长均优于同期不带软骨膜移植肋软骨,镜下亦可观察到软骨细胞更为活跃,胶原及蛋白多糖含量显著优于不带软骨膜者[4-5]。由于肋软骨的生物力学性能主要由其基质中的胶原纤维特别是Ⅱ型胶原纤维的数量、分布、空间排列及蛋白多糖的含量所决定[6],因此,肋软骨膜对肋软骨组织学方面的影响,势必导致肋软骨生物力学性能的改变,进而影响肋软骨作为填充、塑形及支持材料应用于整形手术的效果。

3.2 本实验首次采用SHIMADZU(日本,AGS-X型)试验机对埋植于兔背部皮下12周的两组肋软骨进行生物力学测试, 分别测试并记录材料在拉伸、压缩、弯曲时的应力-应变关系曲线及应力-时间关系曲线。拉伸试验的结果表明,两组肋软骨的拉伸应力-应变曲线形状相似,均呈非线性指数关系[7]。从图1可看出, 两组肋软骨的拉伸破坏为延性断裂,即先屈服后断裂,带软骨膜组破坏应力明显大于不带软骨膜组,后者抗拉能力明显减弱。相同的应力作用时, 带肋软骨膜组发生的应变较小。对两组各标本进行计算, 结果显示带肋软骨膜组的最大拉伸强度和最大拉伸应变均大于不带肋软骨膜组, 表明后者的抗拉能力有明显的下降。由于抗拉强度主要与软骨基质中胶原的含量、分布以及空间排列有关, 拉伸强度的降低也间接反映了不带软骨膜组肋软骨的胶原特性次于带软骨膜者,与前人的组织学研究结果相一致[8]。

3.3 压缩试验结果表明, 两组的应力-应变曲线均呈现近似线性关系, 带软骨膜组破坏应力大于不带软骨膜组,两者有明显差别。计算结果显示, 带软骨膜组的最大压缩强度和最大压缩应变均大于不带软骨膜组, 表明不带软骨膜组肋软骨抗压能力确有下降。已有研究表明,软骨的抗压能力与软骨基质中胶原和蛋白多糖的变化均有关系[9],不带肋软骨膜组肋软骨抗压能力的下降也从侧面反映了软骨基质中胶原及蛋白多糖的特性变化均不如带软骨膜者。

3.4 弯曲试验中,虽然两组肋软骨的弯曲应力-时间曲线相似,但带肋软骨膜组发生破坏的时间明显长于不带肋软骨膜组;计算结果表明带软骨膜组肋软骨的最大弯曲强度也明显大于不带软骨膜组, 说明不带肋软骨膜埋植肋软骨的抗弯曲的能力降低。

3.5 本研究结果表明,带肋软骨膜埋植肋软骨的极限抗拉强度、抗压强度、弯曲强度等各项生物力学指标均明显优于不带肋软骨膜者。据此,我们可以推测,带软骨膜移植肋软骨可更好地对抗各种外力作用,取得并维持更为理想的手术效果。综合以上各方面因素,利用肋软骨进行整形再造手术时,应优先考虑所取肋软骨保留适量软骨膜。

[参考文献]

[1]王炜.整形外科学[M].2版.杭州:浙江科学技术出版社,1999:1962- 2094.

[2]Qing-Hua Y,Yu-Peng S,Haiyue J,et al.The significance of the biomechanical properties of costal cartilage in the timing of ear reconstruction surgery[J].Plast Reconstr Aesthet Surg,2011,64(6):742-746.

[3]Guo BY,Liao DH,Li XY,et al. Age and gender related changes in biomechanical properties of healthy human costal cartilage[J].Clin Biomech,2007,22(3):292-297.

[4]徐志诚,胡廷泽,张银柱,等.肋软骨膜对肋软骨再生与塑形影响的实验研究[J].中国修复重建外科杂志,2001,15(6):363-365.

[5]张治家,章庆国,张娇.带骨膜软骨与不带骨膜软骨自体异位移植的实验研究[J].中国美容医学,2008,17(6):864-866.

[6]Williamson AK,Chen AC,Masuda K,et al.Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components[J].Orthop Res,2003,21(5):872-880.

[7]Jiexiong F,Tingze H,Wenying L,et a1.The biomechanical,morphologie,and histochemical properties of thecostal cartilage in children with pectus e'xeavatttm [J].Pedia Surg,2001, 36(12):1770-1776.

[8]Williamson AK,Masuda K,Thonar EJ,et al.Growth of immature articular cartilage in vitro: correlated variation in tensile biomechanical and collagen network properties[J].Tissue Eng,2003,9(4):625-634.