首页 > 文章中心 > 生物力学与医学工程

生物力学与医学工程

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物力学与医学工程范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物力学与医学工程范文第1篇

关键词:案例教学法 生物制药工艺学 教学方法

中图分类号:G64 文献标识码:A 文章编号:1673-9795(2014)01(a)-0020-02

生物制药工艺学是生物工程专业学生的一门必修课,也是生物工程技术实践应用的重要分支。课程以生物化学、微生物学、生物工艺原理、下游提取分离技术、生物工程分析、基因工程和免疫学为基础, 研究生物药物生产原理、工业生产过程、制定生产工艺规程、制药生产过程优化,实现安全、经济、高效生产药物的一门学科[1]。

1 生物制药工艺学案例教学改革实施的必要性

生物制药工艺学内容主要涵括微生物药物、生化药物及生物制品三大类药物的制备工艺。在具体药物生产工艺的学习过程中就是将前期学习的理论知识应用于实际药物的生产,例青霉素的生产工艺,主要从菌种的活化、种子扩大培养、发酵的控制、发酵液的预处理、青霉素的提取纯化精制等方面来分析青霉素的生产工艺流程及工艺参数的控制。学生在以前的基础课中已经掌握了各种工艺控制方法、产物分离技术等理论,如果采用传统的讲述式教学方式,老师讲,学生只是听,一方面学生不重视,抓不住重点,觉得老师是重复以前的知识,枯燥无味,没有积极性;另一方面,学生不能将原来所学的基础理论,具体分析生物药物的生产工艺,理论指导实践,从而使教学效果大打折扣。

案例教学法最早于19世纪70年代由哈佛法学院在大学课程中开始使用。它以教学案例为基础,以学生在课堂内外对真实事件和情境的分析、思辨为重点,以提升学生应用理论创新性解决实际问题的能力为目标的教学方法[2]。该方法主要根据教学目标的需要,采取一些与教材内容相关的具体案例进行讲解及组织学生进行研讨,从实际案例中学习、理解、分析和掌握案例的一般规律、原则、方法及操作技能,从而使学生的感性认识上升到理性认识[3~4]。

在生物制药工艺学教学中,结合三大类药物的典型药物生产工艺,建立案例库,在该课程部分章节教学中应用案例教学模式。在新课讲授之前,从案例库中选择相关的典型案例交给学生,并提出问题,然后让学生分组进行资料搜集并讨论,授课时由学生占主体地位,把小组讨论的结果带到课堂上讲解分析,其他学生发表不同意见,最后由教师归纳分析总结并引出新课。从而实现由案例具体分析到新内容理论知识的讲解,使学生通过对具体药物在不同案例中具体生产问题进行深入的思考,培养学生分析和解决问题的能力。例如,在讲解“青霉素生产工艺”这一章节时,在教学中先通过讲解认识青霉素这种药物的结构特点,然后以案例库中各个工厂具体青霉素生产工艺为案例,组织学生对各种工艺进行研讨,要求学生从菌种、代谢控制、分离纯化方式以及收率、能耗、环保、安全及关键设备使用等方面对各厂工艺进行总结、分析比较,并从中自行设计最佳工艺。通过应用案例法教学方式,有效解决了生物制药工艺学课程内容枯燥、理论和实践缺少联系的弊端,从而提高了学生对知识的掌握和应用能力。

2 生物制药工艺学案例教学的课程改革的实施

2.1 精选教学案例

在保证案例选择典型性、时效性的前提下,根据生物制药工艺学中微生物药物、生化药物及生物制品三大类药物的典型药物生产,每类药物选择3~5种,例微生物药物从初级代谢和次级代谢产物两方面考虑,选择谷氨酸、青霉素、链霉素的发酵生产作为典型案例,通过结合生产实习、毕业实习及校友提供组建案例库,使每种药物各种生产工艺达到5~8个,在进行到此部分内容时与传统的讲授法相结合,在课程进行到适时开展案例教学,使学生好像亲身立足于企业实际中,运用所学到的知识,解决企业中存在的问题。

2.2 精心设计问题

根据案例库中的各种药物生产工艺准备问题。问题设计是案例教学方法中引领学生探究问题、开阔思维的关键因素。问题的设计要符合学生的认知程度和认知心理,具有对专业基础知识应用的指向性。因此,所设计问题主要根据学生的学习情况和学科知识的积累情况,每个工艺提出8~10个不同层次的问题,以利于课堂讲解中的引导和开阔学生的思路。

2.3 案例教学的实施

课外讨论小组以4人为一组,指定组长。将相关的案例、问题及要求查阅的参考资料范围提前一周交给组长。要求每个学生根据问题,查阅基础知识及最新研究资料,最后小组内进行分析、讨论、总结。在案例教学时,教师首先讲解这类药物的基本特点,然后引出这种药物的生产工艺,分别要求各组根据准备的案例,派一名代表进行具体企业案例的讲解,分析工艺控制点及存在的问题。同组其他同学可进行补充完善,各组之间可互相提问、争论。课堂讨论学生的积极性能够在很大程度上反映出教师案例选择的恰当性、教学引导的科学合理性,以及教师是否创造了良好的课堂讨论氛围。

教师最后做恰当的点评和总结。教师的总结应从全方位、多角度对学生的讲解、提出的问题及讨论分析进行总结,关注学生对具体案例中工艺的流程、工艺控制参数的分析是否全面、正确,以便学生从案例教学法的过程中学到正确处理和解决药物生产中存在的问题。其次,教师通过对具体中案例所包含的理论知识进行总结和归纳,进一步巩固学生对知识的记忆和理解。最后,教师在评价时应对有创新的观点应给予鼓励;同时指出还存在的不足,并适当提出一些自己的看法和意见。通过总结,让学生根据自己的问题在课后写出心得报告。

2.4 设计性实验的实施

生物力学与医学工程范文第2篇

英文名称:Biomedical Engineering and Clinical Medicine

主管单位:天津市卫生局

主办单位:天津市生物医学工程学会;天津医科大学第三中心医院

出版周期:双月刊

出版地址:天津市

种:中文

本:大16开

国际刊号:1009-7090

国内刊号:12-1329/R

邮发代号:6-147

发行范围:

创刊时间:1997

期刊收录:

CA 化学文摘(美)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

核心期刊:

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

生物力学与医学工程范文第3篇

理工类院校生物医学工程专业的教育,主要体现于理学、工学及二者有机结合的特色和优势,如理工类院校在数学、生物、材料、机械、电子、计算机、自动控制、组织工程等学科,具有坚实的教学基础、丰富的教学经验、良好的教学资源与条件。研究和解决生命科学及医学中的重要问题,是生物医学工程学科教育与发展的宗旨,因此,利用理工科院校的教学资源优势,培养能利用工程学手段,解决人类生命及健康问题的研究和应用型人才,是理工科院校生物医学工程专业教育的重要目标。因教学资源与条件的不同,理工科院校与医科院校、综合性大学的人才培养目标亦相异。理工科院校侧重于培养学生具备扎实的基础知识,包括数学、物理、电子、机械、生物等学科;熟悉医学电子仪器、生物医学信息、计算机、生物材料等相关学科专业知识;善于利用工程学方法与手段,解决专业相关领域的问题。培养目标具有准确的定位与时代性,即一方面能充分利用理工科院校的优势,体现其在工程学科方面的特色,另一方面,根据学科的交叉性与涉及领域的广泛性,密切跟踪学科的发展与社会需求变化,从而培养高素质的复合型高级专业科技人才。

根据教学与科研条件、研究方向的不同,国内理工类院校关于生物医学工程专业人才的培养目标既具有上述共性,又各有侧重与特色。如清华大学提出旨在培养能将现代电子、信息技术、物理、化学、数学和其它工程学原理,应用于研究生命科学的基本问题,能利用工程技术方法解决疾病预防、诊治及改善健康、提高生活质量等的高级专业人才;浙江大学则明确培养具有生命科学、电子技术、计算机技术及信息科学等理论知识、医学知识和工程技术紧密结合的科学研究和技术开发能力,能在生物医学电子、医疗仪器、计算机技术、信息产业等部门从事研究、开发、教学及管理的高层次创新型人才;东南大学强调以电子、信息技术生物学、化学和材料学为知识基础,使学生具备开展与人类健康相关的科学研究及应用开发能力,重点培养学生的研究能力和创新能力,培养具备宽阔视野、思维活跃的精英人才和领军人才;上海交通大学依托其强大且基础雄厚的工科和医学背景,重点培养在生物、医学和工程技术领域中具有开展交叉研究能力的有创新精神的,能应用物理、化学、材料、电子信息和工程等领域的技术解决生命科学问题的创新型交叉学科人才。华中科技大学生物医学工程专业培养具备生命科学与光、电、计算机等信息科学有关的基础理论知识,以及医学与工程技术相结合的科学研究能力,能在医疗器械、电子技术、计算机技术、信息等产业部门从事研究、开发、教学及管理的高级工程技术人才。

华南理工大学生物医学工程专业,始于从硕士研究生人才的培养,我校于1993年获生物力学硕士学位授予权,1998年,将生物力学硕士点(生物科学与工程学院)与生物电子学硕士点(电子与信息学院)整合为生物医学工程一级学科专业硕士学位授权点,并开始正式招收硕士生,2002年招收生物医学工程专业本科生,2004成立生物医学工程系,2006年获生物医学工程一级学科博士点。根据我校生物、电子、材料等学科在科研教学方面的多年积累的与优势,结合广东省生物医学工程产业的发展与需求,将生物医学工程专业本科培养目标,按要求掌握的知识与具体的能力确定为:

目标1(扎实的基础知识):培养掌握扎实的专业基本原理、方法和手段等方面的基础知识,包括生物医学、电子技术、信息科学、计算机技术、生物材料、生物信息等相关学科基本知识、基本理论和基本技能的复合型高级科技人才。

目标2(解决问题能力):培养学生能够创造性地利用生物医学与工程技术相结合的研究开发能力,以服务于国内外生物医学工程产业快速发展的需求。

目标3(团队合作与领导能力):培养学生在团队中的沟通和合作能力,学会按分工要求在团队中从事具体工作,完成指定任务,进行组织协调,进而能够具备生物医学工程领域的领导能力。

目标4(工程系统认知能力):让学生认识生物医学工程的多学科交叉特性,从系统的角度认识与领会生物医学工程学科的核心与特点。要求从工程系统的角度,运用多种工程技术手段与方法,寻求解决实际问题的方案。

目标5(专业的社会影响评价能力):培养学生正确理解生物医学工程对人们日常生活、人类健康所产生的重要影响。

目标6(全球意识能力):培养学生能够在全球化的环境里保持清晰意识,积极跟踪新理论方法、技术的发展,在全球化的背景下认识与把握生物医学工程学科的现状与发展。

目标7(终身学习能力):生物医学工程毕业生在职业生涯中,需要根据学科、行业发展与岗位要求,不断更新知识,提升自己的综合素质,并具备终身学习的能力。

综观理工科院校生物医学工程专业本科生的培养目标,既反映了各校的学科优势、特色与定位,又具明显的共性,即强调学科的交叉复合特性,培养能将工程技术和医学、生物等基础理论相结合,解决人类生命健康中的问题、提高生活质量的综合性人才,尤其注重学生的实践能力与创新能力。

理工类院校的生物医学工程专业培养特色

在专业特色建设方面,各高校依托各自的学科建设与教学资源优势,逐渐形成自己的办学特色。如清华大学持之以恒地进行教学建设与改革,形成了"注重质量,强调实践,紧密结合科研"的教学特色,清华大学生物医学工程学科2001年被评为全国重点学科,2006年被评为国家重点一级学科;浙江大学则强调系统掌握计算机技术、信息处理技术、电子技术、仪器技术和生命科学相关的基础理论知识具有多学科交叉应用能力和国际竞争力的复合型人才培养,为国家级生物医学工程特色专业建设点;东南大学从1988年开始与南京医科大学合作,进行7年制工医双学位人才培养,2000年开始进行生物医学工程专业(七年制)本硕连读人才培养。2007年建立医工结合生物医学工程长学制创新人才培养国家人才培养模式创新实验区,2008年成为生物医学工程国家特色专业建设点,形成了工医复合型人才培养的特色,并形成了生物医学电子学和现代生物技术两个重要的特色方向;上海交通大学则充分利用附属医院的临床资源,建立与基础课程相适应的实践教学体系,强化学生实践训练,培养动手操作与创新研发能力,大力推进医工(理)交叉学科人才培养,积极推进国际合作与交流;华中科技大学华中科技大学自1997年起系统地开展了生物医学光子学特色方向本科教学体系建设的探索与实践。基于生物医学工程学科的特点,借鉴国内外最新教学成果,建立了一套具有生物医学光子学特色方向的本科教学体系。2011年开始招收“医疗器械”卓越工程师实验班,按照全新的教育大纲和创新的实验模式培养面向医疗器械产业发展需要的高端领军型人才。

华南理工大学生物医学工程专业经过近10年的本科教育实践,以电子技术为基础,以生物医学电子仪器与生物医学信息为主,兼顾生物医学材料、分子生物学及生物信息学,基本形成了多学科方向交叉的知识体系。尤其注重学生基础知识、实践能力和创新能力的培养,根据广东地区生物医学工程产业的优势与市场需求,着力培养具有生物医学工程专业基本素养、基础扎实、专业知识面广的复合型高级技术和专业管理人才。近年来,积极与广东省生物医学工程领域领军企业、医疗、科研机构开展联合培养人才的改革,如自2009年开始,华南理工大学与深圳华大基因研究院共同成立了华南理工大学-深圳华大基因研究院,并开设基因组科学创新班,生物医学工程专业部分优秀学生从大学三年级开始,即有机会进入深圳华大基因研究院从事生命学科的学习与科学研究;2011年,华南理工大学携手中国科学院广州生物医药与健康研究院,共建“华南干细胞与再生医学英才班”,实行“2.5+1.5”的培养模式,“英才班”将根据学生所属专业本科培养计划和干细胞与再生医学的专业培养要求,为学生制订个性化的培养方案,将专业理论知识与实践、学习和科学研究相结合。此外,生物医学工程专业与深圳迈瑞电子有限公司、汕头超声仪器研究所、广州总院、南方医院、广东省人民医院、中山大学附属肿瘤医院和广州医学院附属肿瘤医院等单位建立了密切的联系,为学生的实践、实习提供优越的资源和条件,同时,为学生的就业不断开拓新的渠道;从大学二年级开始,学生即有机会加入“学生研究计划SRP(StudentResearchProject)”,参与老师指导的科研实践,进入实验室与研究生共同学习研究。学习、研究期间,取得优异成绩或成果的学生,推荐参加“挑战杯”大学生课外学术科技作品竞赛。华南理工大学生物医学工程专业,近年来进行各种新的人才培养模式的有益探索与实践,进一步扩宽学生的知识面,显著提高学生的实践能力,激发学生学习热情,培养学生的创新能力。

生物医学工程专业人才培养模式

我国高等工程教育强化主动服务国家战略需求、主动服务行业企业需求的意识,确立以德为先、能力为重、全面发展的人才培养观念,创新高校与行业企业联合培养人才的机制,改革工程教育人才培养模式,提升学生的工程实践能力、创新能力和国际竞争力。主要体现于四个方面:(1)工程教育服务国家发展战略;(2)加强与工业界的密切合作;(2)重视学生综合素质和社会责任感的培养;(4)注重工程人才培养国际化。近年来,各高校都在进行专业人才培养模式的改革、探索和实践,主要包括(1)重基础、宽口径、强能力、高素质的大类培养模式。如上海交通大学实行按院系招生、学生入校两年后再分专业的培养模式,从而有利于学生根据个性、特长选择专业,增强学生的竞争意识,有利于资源的优化整合;中国科技大学秉承“基础与创新并重”的办学理念,实行重基础、“轻”专业,注重基础“宽、厚、实”,专业“精、新、活”的宽口径个性化培养模式。浙江大学提出“以人为本、整合培养、求实创新、追求卓越”的教育理念,确立的人才培养模式是以3M(多规格、多通道、模块化)和“宽、专、交”为特征的KAQ(知识、能力、素质)并重,将本科专业分成若干学科大类,实行前期按大类培养,实施通识教育,后期实行宽口径专业教育的新模式。华南理工大学的培养模式与浙江大学既具相似性,又各有侧重。华南理工大学以注重精英人才与个性化人才的创新能力培养为特色,如按大类分电子、机械、化工、材料、经贸等各大类专业精英班,“基因组科学创新班”和"华南干细胞与再生医学英才班"等。

(2)注重创新与实践能力培养,如卓越人才培养、产学研相结合人才培养、交叉复合型人才培养。近几年,各高校均十分注重学生的创新能力和实践能力的培养,通过卓越人才计划旨在提高学生的科研能力与解决实际问题的能力。卓越工程师教育培养计划的遵循“行业指导、校企合作、分类实施、形式多样”的原则,其特点包括:行业企业深度参与培养过程;学校按通用标准和行业标准培养工程人才;强化培养学生的工程能力和创新能力。其中,首批“卓越工程师教育培养计划”高校包括清华大学、浙江大学、上海交通大学、华中科技大学、东南大学和华南理工大学等61所高校,第二批共有133所年高校加入“卓越工程师教育培养计划”。

(3)国际化人才培养,通过与国外知名高校建立人才培养合作项目,进行联合培养。如教育部中国教育国际交流协会(CEAIE),中教国际教育交流中心(CCIEE)和美国州立大学与学院协会(AASCU)共同合作的“1+2+1中美人才培养计划”,积极推动中美高校学分学历互认,促进中美高校师生双向交流、共同制定大学本科专业教学计划等。此外,近年来,各校纷纷与欧美、澳洲著名大学建立了各种灵活的本科人才联合培养机制,推进教师双向交流,专业课程实行双语教学或全英教学等。

(4)个性化人才培养,华南理工大学生物医学工程专业培养学生过程中,根据学生知识结构与特长,注重个性化培养,如,一方面鼓励生物医学工程专业学生修读“双学位”,另一方面,也接受其它专业学生修读生物医学工程专业“双学位”;通过“学生研究计划(SRP)”,“百步梯攀登计划”、“挑战杯全国大学生课外学术科技作品竞赛和创业计划大赛”等,培养学生的创新、创业、科研能力。

课程建设

生物医学工程专业教学指导委员会,为生物医学工程学科人才培养的规范化提供重要的指导性意见。根据生物医学工程学科的发展趋势与社会需求、以及各高校的教学和科研优势,理工科院校设置的生物医学工程专业本科的课程体系,既存在共性,又各具特色。其中,理论教学部分,主要包括公共基础课、学科基础课和专业领域课,实践部分,包括实验课程、课程设计、认识实习、工程实习、生产实习和毕业实习等。各理工院校生物医学工程专业本科培养计划中的公共基础课颇为相似,主要有政治类课程、大学英语、大学物理、大学化学、数学(微积分、线性代数、概率论与数理统计)、工程制图、大学体育,以及人文、社会和技术类通识教育课程;学科基础课程,大多数高校以生物医学电子与信息为主,包括电路、数字电子技术、模拟电子技术、信号与系统、数字信号处理等主干课程,并设置解剖生理学、临床医学概论、普通生物学、生物化学与分子生物学等重要基础课程;各校的生物医学工程专业本科课程的差别,主要体现在专业领域课,同时也最能体现其专业特色。一般以其优势学科方向开设不同的专业必修或选修课程,如浙江大学按数字医学信息、生物传感器与医学仪器、定量与系统生理学三个方向设置专业课程,东南大学则分生物传感与生物电子学、生物信息学、生物医学材料与纳米技术、医学信息工程等四个方向,上海交通大学包括生物医疗仪器、神经科学与神经工程、医学成像与图像处理、生物材料与纳米生物医学等几个方向课程;清华大学按学科方向分为医疗仪器、神经工程、医学影像和微纳医学等四个主要方向,分别设置不同的专业课程。

华中科技大学则包括按生物医学光子学、医学影像学、生物信息学、纳米生物材料和组织工程等方向的专业课程;华南理工大学生物医学工程专业的本科课程,主要涵盖了医学电子仪器、医学影像、医学信息、生物力学和生物医学材料等五个方向,分别开设了医学传感器、医疗仪器设计、生物医学测量、医学超声学、生物医学信号处理、医学成像技术、医学图像处理、医院信息系统、远程医疗、生理系统仿真建模、生物力学、生物医学材料等重要课程。

实践环节主要包括综合实验、课程设计、临床实习、金工实习、电子工艺实习和毕业实习等。其中综实验包括工程生理学、生物医学工程、医学仪器与信息工程3门综合实验课程,设置了数字电路、微机原理与应用、医学仪器等3门课程设计。由于广东省医学资源和生物医学工程产业具有较强的特色和优势,尤其在医疗仪器行业拥有一批实力雄厚的企业,华南理工大学充分利用这种地域的产业优势,知名企业联合建立了本科实习基地,和具优越医疗资源的医院建立了良好合作关系,为本科生的临床实习与毕业实习提供强有力的支持。此外,华南理工大学积极鼓励学生参与“暑期实习计划”,即由老师或学生自行联系实习单位,经院系和老师推荐,学生有机会在暑期到相关高校或科研院所实验室、企事业单位实习。

在双语课程、全英语课程、新型课程和特色课程方面,华南理工大学生物医学工程专业也正在积极进行建设,如《医学图像处理》和《医院信息系统》已经实行双语教学,正在为全英文授课做准备;不定期地邀请国内外有影响的专家和企业负责人进行专题讲座或创业教育;为新生开设《生物医学工程概论》课程,计划进一步开展新生研讨课、系列专题研讨课。

总结

生物医学工程学科具有鲜明的交叉与复合特性,它对解决人类生命与健康中的问题具有十分重要的作用,生物医学工程学科与相关产业发展亦极为迅速,如何培养适应学科发展需求和符合社会需要的专业人才,是各高校生物医学专业面临的重要问题。理工科院校在电子、计算机、信息、生物、材料、制造等学科具有一定的优势,充分利用理工科的资源优势,培养研究与应用兼顾的高级专业人才,亦是理工科院校本科教学的重要目标。

华南理工大学生物医学工程本科专业,经过近十年的教学实践,逐渐形成以生物医学电子、医学信息工程、生物力学为主导的培养体系,十分注重学生的实验能力和创新能力的培养,并充分利用广东省的医学资源和生物医学工程产业的地域优势,努力培养适应社会需求的专业人才。近年来,华南理工大学生物医学材料方向发展迅速,先后成立了国家人体组织工程重建工程中心、特种功能材料教育部重点实验室、广东省生物医学工程实验室,在生物医学材料方面取得了一系列成果。为此,华南理工大学正在为利用生物医学材料方面的优势,加强生物医学材料方向的本科专业人才的培养,积极地进行探索。

生物力学与医学工程范文第4篇

关键词:有限元法;手部;建模;生物力学

1 有限元法的发展历史及在人体生物力学中的运用

1.1有限元法的发展历史 有限元法(finite elementsmethods,FEM)即有限元素法[1],是一种在工程科学技术中广泛应用的数学物理方法,用于模拟并解决各种工程力学、热学、电磁学、生物力学等问题。其基本思想是把一个由无限个质点和有无限个自由度构成的连续体划分为有限个小单元体组成的集合体,用离散化的有限单元模型代替原有物体。通过对每个单元的力学分析,获得整个连续体的力学性质。有限元法最早可上溯到20世纪40年代。现代有限法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时成功应用有限元法求解。1960年,Clough第一次提出了"有限元法"概念,使人们认识到它的功效。我国河海大学教授徐芝纶院士首次将有限元法引入我国,对它的应用起了很大的推动作用。

1.2有限元法运用于人体生物力学研究 1972年,Brekelmans[2]等首次报道将有限元分析方法应用于生物力学方面研究。80年代后,应用范围逐步扩展到颅面骨、颌骨、股骨、牙齿、关节、颈椎、腰椎及其附属结构等生物力学研究中。随着计算机技术的发展、分析工具的完善以及实践的增多,有限元方法显示了极大的优越性并已逐渐成为研究人体生物力学的重要手段。人体力学行为研究基本无法采用传统的力学实验方式来进行,因而有限元建模愈来愈成为深化人体认识的有效措施。基于有限元软件日益完善的建模功能及兼融其它计算机辅助设计(Computer Aided Design,CAD)软件特性,真实再现三维人体骨骼、肌肉、血管、器官等组织成为可能,并在虚拟现实实验中,通过材料赋值、几何约束、固定载荷等过程,对挤压、拉伸、弯曲、扭转、三点弯、抗疲劳等力学实验进行模拟,能求解获得给定实验条件下模型任意部位变形、内部能量变化、应力/应变分布、极限破坏等数据[3]。

1.3有限元法在人体生物力学研究中的建模思路 有限元建模即建立为数值计算提供原始数据的计算模型,需要通过建立几何模型、材料赋值、网格划分、施加约束与载荷,最后进行求解等步骤实现,是有限元法仿真试验最关键环节。摸型的几何相拟性直接影响计算的结果,医学有限元模型的建立首先需要获得人体特定部位的几何数据,数据可以从几何参数设定、激光扫描、标本切片和磨片以及医学影像图像获得。其中医学影像法最为以无创的方式提供了高精度的人体解剖结构形态,基于医学影像技术建模是目前人体有限元建模的主要手段,可以实现人体解剖结构的可视化乃至生物力学仿真的有限元模型。包括X射线、超声、CT、MRI等途径,其中CT扫描是主流方式,CT结合MRI是新亮点。

通过X射线照片方式建模是指利用不同方位的多幅X射线照片获得几何数据重建三维模型,是一种经济、可行的方式。但因信息获取不完整,建模过程复杂,对研究者经验要求较高,现行医学有限元建模中应用较少。还有研究者基于超声影像技术建模,如赵婷婷[4]等基于超声建立了乳腺有限元模型;张桂敏[5]等在研究二尖瓣狭窄患者二尖瓣下游湍流剪应力变化方面,运用超声影像图像建立了二维有限元模型,为心瓣流体力学研究探索新的方法学途径。目前基于超声的有限元分析研究多集中在机械制造、土木工程等领域,并多采用二维有限元法分析,还没有注意到与医学相关的基本超声影像技术的三维有限元研究相关报道。这或许是因为基于超声影像技术的力学研究本就较少,三维、四维超声的概念提出较晚,与重点应用在工程技术方面的有限元法结合运用更是鲜有。相较X线与超声而言,CT/MRI图像法在医学有限元建模中应用更为普遍。MRI技术具有很高的组织对比分辨率、解析高以及无离子化辐射等特点,能清晰显示人体结构的组织学差异和生化变化。基于MRI图像能获得细致的几何模型。但MRI偏向于对肌腱、韧带等软组织的分辨,对骨的分辨不如CT清晰。此外,目前国内常用的核磁共振机扫描层厚和扫描间距一般都在2mm以上,无法获得更详细的几何数据,影响到重建图像的清晰度精确性。基于CT扫描获得几何数据的建模的方法目前应用最为广泛。CT根据密度不同来确定信号的强弱,可以通过调节扫描条件,使任何复杂形态和各种密度的组织都有较高的分辨率,适用于任何复杂形态和各种密度的三维结构。可清晰显示骨与软组织的边界,通过医学成像系统能获得骨骼比较准确的几何数据,其不足之处在于对软组织的分辨率相对较低,无法从医学成像系统获得准确的肌肉、韧带、腔等组织几何数据,须参考相关解剖资料。CT/MRI数据重建的三维模型,能够真实的再现被扫描对象的表面特征及内部结构,CT的空间分辨率高于MRI,CT对骨组织与软组织边界显示更为清晰,而MRI的对比分辨率高于CT,特别是软组织对比明显优于CT。通过CT结合MRI法将能融合二者优势,但对研究者图像处理技术有更高的要求。通过文献检索发现,目前CT提取骨组织结合MRI提取软组织方法的研究报道较少。徐志才[6]等基于CT影像数据构建了包含股骨、胫骨和腓骨的实体模型,并基于MRI影像数据构建了包含股骨软骨、胫骨软骨、内外侧半月板和内外侧副韧带的三维实体模型。将CT和MRI影像数据进行配准融合,获得包含骨性和非骨性结构的膝关节三维实体模型。

2 有限元建模的常用软件

人体生物力学有限元模型的精确性对有限元分析结果的合理性有直接影响。三维重建技术与有限元方法及其他虚拟现实技术的结合是未来发展的方向,这有赖于这些集成强大图像处理功能的有限元软件的发展。常用的建模辅助软件有:MIMlCS、MATLAB、CAD、Geomagic Studio等软件。其中最常用的是MIMlCS软件,它的FEA模块可以将扫描输入的数据进行快速处理建立3D模型,然后对表面进行网格划分以应用在有限元分析中。它还可基于扫描数据的亨氏单位对体网格进行材质分配。MIMICS的网格重划功能能方便地将不规则三角片转化成趋近于等边的三角片,显著提高STL模型的质量和处理速度,对输入数据进行最大限度的优化,目前版本已发展到MIMICS17.0。现常用有限元软件有:Ansys、ABAQUS、NASTRAN、COSMOS等。其中最常用的是Ansys软件,目前版本已发展到Ansys15.0。

3 手部三维有限元的运用进展

手部因其解剖结构复杂、运动灵活精细、力学分析困难的周围组织对手部力学因素有重要影响等方面原因,研究较人体其它部位明显偏少。在工程领域方面,杨德伟[7]等基于CT扫描数据结合ABAQUS软件建立了手抓握模型。几何模型通过人手CT扫描后简化处理得到,建立的手模型简化为以皮肤、肌肉、神经、血管等软组织为整体的软组织模型和手部骨骼模型两部分,手部复杂的组织结构未曾细化。抓握功能通过参数约束、程序运动规划控制下实现,而并非基于神经肌电活动模拟,也非通过骨、肌肉施加荷载得到,本模型在工程领域有一定实用价值,但远不能满足医学研究的需要;陈志翔[8]等在研究机器人虚拟手过程中,通过参考手部解剖结构,建立手部肌肉模型,并以程序设计约束指间运动关系,通过控制肌肉收缩量来实现手指运动,较好的拟真了手指运动机理。但模型基于数学方程人为控制,而非通过人手实际解剖结构获得。在医学领域方面,Carrigan等[9]通过CT扫描,最先建立了包括韧带、软骨、8块骨骼在内的手腕关节复合模型;国外的Ko等和国内的郭欣等[10]都建立了腕管的三维有限元模型,为进一步探讨腕部结构的力学行为提供了一个可操作的平台;Anderson等[11]最早通过腕关节三维有限元模型模拟了创伤性关节炎病理改变;Bajuri MN[12]等通过CT扫描,参照诊断标准,建立了首例类风湿性关节炎患者腕关节三维有限元模型。国内其它学者也以解决临床问题为出发点,对手的部分结构三维有限元模型的建立进行了积极的探索,如孟立民[13]建立了第一、二掌骨和大多角骨三维有限元模型,并模拟Bennett骨折和微型外固定器外固定及克氏针内固定治疗情形,研究两种治疗方法优劣问题;董谢平等[14]以中国力学可视人原始资料为依据,构建带软组织的正常手腕和佩带腕保护器手腕的三维有限元模型,验证了腕保护器防护腕部骨折的有效性;颜冰珊等[15]建立了正常下尺桡关节三维有限元模型研究了前臂桡骨骨折的临床问题;张浩[16]等基于现有个人电脑平台,建立了腕关节有限元模型,进一步证明利用医学图像处理软件和三维重建软件准确、快捷地构建腕关节的三维有限元模型有可行性。

4 小结

手部建模是虚拟现实领域研究的热点之一,在工程领域主要是机器人手的拟真研究,尤重抓握功能,在医学领域更多涉及腕关节这一部分结构,囊括手部骨骼、关节、肌肉、韧带、筋膜、血管、神经、皮肤等组织结构较完整的手部有限元模型尚未见诸报道。手部的骨骼、关节数目较多、相互关联较复杂,是一个复合性的机械结构,在建模时要同时考虑到骨骼、关节面、韧带、肌腱及其它周围组织在生物力学中的作用。目前,手部有限元建模研究较人体其它部位少,还没有形成较完整、成熟的模型,更没有统一的建模标准。如何将三维可视化手建成物理手的有限元模型是现阶段研究难点,也是实现虚拟生理手模型建立的必然阶段,相信随着计算机技术的进步及多学科更好的融合,手部有限元模型研究将有更为广阔的前景。

参考文献:

[1]江见鲸,何放龙.有限元法及其应用[M].北京:机械工业出版社,2006:1.

[2]Brekelmans Wam,Rybicki EF,Burdeaux BD.A new method to analyze the mechanical behavior of skeletal parts[J].ACTa Ortho Scand,1972,43:301-305.

[3]Ibarz E, Herrera A,Mas Y, et al.Development and kinematic verification of a finite element model for the lumbar Spine:application to disc degeneration[J].Biomed Res Int,2013,7(5):185.

[4]赵婷婷,严碧歌.有限元仿真分析超声弹性成像[J].生物医学工程学杂志,2011,28(1):138-141.

[5]张桂敏,石应康.与多谱勒相结合的人体二尖瓣狭窄下游湍流剪应力二维有限元分析[J].医用生物力学,2001,16(4):203-209.

[6]徐志才,胡广洪.胫骨模型对膝关节有限元分析结果影响的探讨[J].数字医学研究与应用,2014,4(9):69-72.

[7]杨德伟.基于ABAQUS的三维有限元抓握手模型的建立与研究[J].机械设计与制造工程,2013,42(11):18-21.

[8]陈志翔.虚拟人食指肌肉控制及运动约束研究[J].计算机科学与探索,2013,11:1040-1047.

[9]Carrigan SD, Whiteside RA.Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture[J].Ann Biomed Eng,2003,31(6):718-725.

[10]郭欣,樊瑜波,李宗明.掌向拉伸力作用下腕管的三维有限元分析[J].中国生物医学工程学报,2007,26(4):561-566.

[11]Anderson DD,Deshpande BR,Daniel TE,et al.A three-dimensional finite element model of the radiocarpal joint:distal radius fraCTure step-off and stress transfer[J].Iowa Orthop J,2005,25:108-117.

[12]Bajuri MN,Kadir MR,Amin IM,Ochsner A. Biomechanical analysis of rheumatoid arthritis of the wrist joint [J].Proc Inst Mech Eng H,2012,226(7):510-20.

[13]孟立民,苏啸天,张银光.微型外固定支架和克氏针治疗Bennett骨折的三维有限元分析[J].中国组织工程研究,2012,16(9):1626-1630.

[14]董谢平,王冬梅,何剑颖.腕保护器抗冲击载荷的有限元分析[J].中国组织工程研究与临床康复,2011,15(30):5531-5534.

生物力学与医学工程范文第5篇

关键词:不同桩核材料;磨牙残根;桩核冠;生物力学

随着根管治疗的技术日益完善和口腔材料的不断发展,各种大范围牙体缺损的患牙,包括残冠和残根,基本可以通过桩核冠修复的方法得以保存。因此,作为口腔修复工作者在接触大范围牙体缺损的患牙时,在选择桩核冠修复,应该考虑如何增强患牙的抗折性能。现在桩核材料有金属类、全瓷材料和纤维树脂材料。其中弹性模量是衡量桩核材料最重要的生物力学性能之一[1],弹性模量大小会对牙本质上的应力分布及大小产生影响。通过了解材料选择对磨牙桩核冠修复体的应力大小及分布的影响。为临床实践选择合理的桩核修复设计提供参考依据。

1资料与方法

1.1建立有限元模型 建立磨牙残根桩核冠修复体三维有限元模型[2]。全冠为玻璃陶瓷,全冠和桩核与牙本质间的粘结剂为磷酸锌粘结剂,模型各部件的参数条件均同一实验,所有操作均有本人完成,保证实验的准确性。

1.2桩核材料 进行不同的属性设置,根据实验设计需要,将实验对象分为三组:第1组为金合金桩核材料,第2组为钛合金桩核材料,第3组为氧化锆全瓷桩核材料。

2结果

随着材料弹性模量的增加,桩核上应力、最大主应力、剪切应力的应力峰值呈现逐渐增大的趋势,见表1。金合金、钛合金、氧化锆全瓷桩核材料修复后,弹性模量逐渐增加,剩余牙本质上应力、最大主应力、剪切应力的应力峰值呈现轻微降低的趋势,见表2。

3讨论

对残冠、残根进行修复选择桩核材料时,考虑生物相容性和生物力学性能是首要因素,而弹性模量是衡量桩核材料最重要的生物力学性能之一。在临床中桩核材料有金属材料、全瓷材料和纤维树脂材料。本课题采用CT扫描获取影像数据,再通过软件处理,建立了下颌第一磨牙残根桩核冠修复体的三维有限元模型。在此模型上,对不同桩核材料修复下的下颌第一磨牙残根桩核冠修复体进行了受力分析包括应力、最大主应力、剪切应力峰值进行了探讨。

本实验研究发现,不同桩核材料对下颌第一磨牙剩余牙本质应力大小和分布有着不同的影响,随着桩核材料弹性模量的增加,剩余牙本质上的应力峰值呈现轻微降低的趋势。有的学者人为,高弹性模量的桩会承担较多的应力,减少向剩余牙体组织的应力转移,对剩余牙体组织有保护作用,而低弹性模量的桩将应力更多地转移给剩余的牙体组织,从而降低自身应力,这对桩有利,而增加了患牙的应力[3]。本实验发现的剩余牙本质上的应力变化趋势和上述研究结论一致。但是,从剩余牙本质上的应力峰值减小的绝对值来看,弹性模量由94 Gpa增加到198 Gpa,牙本质上的应力峰值降低的效果并不明显。因此,可以看出,磨牙残冠、残根在采用桩核冠材料修复时,桩核材料的弹性模量与剩余牙本质上的应力大小和分布与变化关系并不大。

本实验研究发现,随着桩核材料弹性模量的增加,桩核上的应力峰值呈现逐渐增大的趋势,虽然不同桩核材料会对下颌第一磨牙桩核应力大小和分布产生影响,但对桩核的抗折性影响不大,发生桩核折断的可能性很小。

综上所述,虽然桩核材料对剩余牙本质应力及桩核的应力产生一定的影响,但是本实验只是对下颌第一磨牙残冠、残根桩核冠修复体的三维有限元模型进行的静态受力分 析[4],而患者口腔中的磨牙残冠、残根桩核冠修复体的受力是循环反复、动态变化的。次外,所做的实验均是在假设剩余牙本质、桩核在受力后未发生折断,粘结剂未发生粘结分离等前提条件下进行的,而任何因素发生破坏,均会引起修复体整个应力重新分配。因此,在进行磨牙残根桩核冠修复时,临床医师应将力学分析和临床研究有机结合,为患者提供最佳的治疗方案。

参考文献:

[1]周峰,盛祖立,刘鹏飞.不同材料桩核修复后的牙本质应力分析[J].浙江医学,2004,(12).

[2]陈湘涛,李晓娜,关振群,等.桩核材料对牙本质应力分布的影响[J].中华口腔医学杂志, 2004,(04).