首页 > 文章中心 > 卫星通信的基本原理

卫星通信的基本原理

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇卫星通信的基本原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

卫星通信的基本原理

卫星通信的基本原理范文第1篇

关键词:卫星通信;消防救援;技术手段

1引言

中国是一个灾难频发的国家。自然灾害时有发生,并且随着当今社会日益增多的大型活动,突发的紧急灾害事故及社会公共安全事故越来越频繁的发生,给人民生命财产和国民经济造成了很大的损失。这使得人们进一步意识到完善应急通信体系的重要性。

卫星应急通信系统是为满足各类紧急情况下的通信需求而产生的,而自然灾害,尤其是社会事件等突发公共安全事件发生的规模和地点都无法提前预知和准备。这些通信设备在发生灾害的时候就需要临时组装,来接收现场的图片视频影音资料,这些信息对于处理突发事件,有十分重要的作用。通过卫星通信来建立临时或应急的通信能力几乎都是预案中的首选,并且发挥着至关重要的作用。

随着科技发展,卫星通信显示出了更加重要的作用,在文章介绍了卫星通信的基本原理和组成,在消防应急中的应用等等。

2卫星通信在消防应急中的应用

2.1卫星通信的基本原理、组成及优势

卫星通信的原理就是利用人造地球卫星作为中继站转发或反射无线电信号,在多个地球站之间进行的通信。地球站是指设在地球表面的无线电通信站。

卫星通信系统是由地面部分和空间部分两部分构成的。通信卫星实际上就足一个悬挂在空中的通信中继站。它居高临下,视野开阔,只要在它的覆盖照射区以内,不论距离远近都可以通信,通过它转发和反射电报、电视、广播和数据等无线信号。

卫星通信与其他通信方式相比较,有以下的特点:(1)通信距离可以达到远,且费用与通信距离无关。(2)通信容量大,适用多种业务传输。卫星通信使用微波频段,可以使用的频带很宽。(3)广播方式工作,可以进行多址通信。通常,其他类型的通信手段只能实现点对点通信,而卫星是以广播方式进行工作的,只要是卫星覆盖的区域,都可以进行通信,这些地球站可共用同一颗通信卫星来实现多边通信,即进行多址通信。(4)可以自发自收进行监测。发信端地球站同样可以接收到自己发出的信号,从而可以判断传输质量好坏。(5)无缝覆盖能力。利用卫星移动通信,可以不受气候条件、地理环境和时间的限制,建立覆盖全球性的海、陆、空一体化通信系统。(6)安全可靠性。与其他方式相比,卫星通信所受的约束和障碍更加少,所以其安全可靠性很好。

主要缺点是:传输时延大。以300000km/s的速度传播的电波,要经过240ms~260ms的延时,加上终端设备对数字信号的处理时间等,延时还要增加很多,根据国际电报电话咨询委员会建议,单程传输不要超过400ms;在南纬75°以上和北纬75。以上的高纬度地区,由于同步卫星的仰角低于5°难以实现卫星通信;同步轨道的位置有限,不能无限度地增加卫星数量和减小星间间隔;每年有天文现象发生,十分影响通信。例如存在不可避免的日凌中断和星食发生;卫星寿命一般为几年至十几年,要做长远的部署和计划,故要做好承担一定风险的准备。

2.2卫星通信在消防应急中的具体应用

2.2.1消防指挥VAS卫星通信的组成

一般来说,具体到消防方面,其应急指挥通信系统由应急指挥中心(中心站)和事故现场侧设备组成,两者通过地球同步轨道卫星建立通信连接。事故现场侧由应急通信车(车载站)和现场采集设备(编写站)组成。

(1)地面固定主站。主站的作用:通过卫星对车载站进行管理控制,并且提供地面固定网络和卫星移动网络的互联转接。

(2)应急通信中的指挥车。应急通信车组成是由车辆、VSAT车载、设备无线局域网设备等。通信车经VSAT卫星实现远程通信,并且对应急现场进行最基本的信息采集、车载视频监控、信息处理、指挥控制、多业务作业终、端通信保障、综合保障。

(3)便携站。由主设备箱、天线箱、辅助设备箱以及便携发电机构成。在公共交通(民航、铁路)系统可用的情况下,便携站的应用灵活,既可以通过别的运输工具将便携站运抵现场,作为远端移动站使用,也可以放置在前线指挥部作为卫星地面站使用。

2.2.2消防应急卫星的应用

(1)卫星通信系统中的业务实现方式概述。为了保证灾难救援现场和应急指挥部的通信,需要的最基础的业务就是语音、视频及数据业务,下文简单的介绍一下这3种业务的实现方式。在抢险救灾现场,语音通话是最基本、最重要的业务需求,语音业务包含2个方面:一是解决现场工作人员之间的通话;另一个是解决现场人员拨打和接听系统电话或公网电话的问题。现场工作人员之间的语音通话通过车载集群设备来解决,这可以满足救援人员之间互相通话。现场人员拨打电话的方法是利用海事卫星电话,海事卫星电话的特点是不受天气限制,特别是海事卫星车载设备可以实现动中通,但是海事卫星电话也存在的问题,这就是话路少、资费高。在抢险救灾过程中,视频业务的互通既可以使后方的领导和指挥人员直观地了解现场的情况,实现直接交流。视频业务主要是采用VSAT卫星通道完成的。在国网主站配置基于H.323协议的MCU(MultipointControl Unit,多点控制单元),主站的MCU接入应急救灾指挥中心电视系统;在车载站和便携站配置会议电视终端,会议电视终端通过VSAT卫星通道接入主站的MCU,这样,就相当于一个远端会场,实现视频回传及参加电视会议。抢险救灾现场的视频图像可以通过无线图像传输设备(单兵)、车顶可升降摄像头及车内摄像头采集获得。

抢险救灾现场的数据业务包括内网数据和外网数据。内网数据可分为现现场指挥办公的邮件、Web浏览等;外网数据主要包括浏览Internet、收发外网邮件等。在通信车,现场使用无线局域网设备的无线数据访问办公室工作人员。内部网数据通过VSAT卫星频道、网站访问防火墙安全认证后救援指挥中心。卫星数据传输格式的IP包和支持TCP/IP协议,所以数据服务访问实现比较简单,通过将一个卫星设备和救援指挥中心信息网络路由器连接可以实现。

(2)卫星通信系统可以通过卫星通信指挥车装载,实现移动式处理消防救援。应急通信指挥车是卫星通信系统中的一个地面站,它可以十分迅速的在火灾现场或者各类别的应急现场建立小型移动指挥站,这样可以实施对消防部队的直接指挥和对火灾现场的事故紧急处理。通信指挥车可以通过卫星信道进行指挥,与此同时可以直接与消防中心进行语音图片等信息的双向交流,接收消防中心所下达的有效指令;利用指挥车上的350MHz车载台与消防调度中心保持实时通信与联络;利用GPS进行定位,随时发送指挥车所在的位置以及行车方向和所在环境等;车顶上的摄像设备可以随时收集灾难现场的情况,然后传送回消防调度站,有利于消防人员及时布置消防设施和消防力量;车上工作人员可以携带小型摄像机深入应急现场,将最新最真实的前方情况传送出来。这样就实现了移动式作战,更有利于救援方案的实施。

(3)卫星通信系统可以有效的帮助消防中心对仓库、生产厂房等监控点实时监控,预防火灾的发生。卫星通信系统是一个巨大的宽带网络,可以通过信道对监控点进行实时监控,一旦有危险发生,比如说仓库着火等,系统便会发出警报,这样消防中心就会收到报警信息,然后根据消防指挥中心中关于失火地点的资料和商家的信息确定救援方案。消防中心还可以远程控制摄像机进行有效的处警指挥。

(4)32星通信可以实现报警和处警一体化。在卫星通信系统中空间信息平台可以提供空间数据的采集、处理、存储、显示、应用和管理功能,包括GIS/GPS/RS空间基础数据,基础地理数据及关键区域空间数据。这些既可以及时的发现发生火灾的地址等详细情况,也可以及时的估测所需消防力量,派出消防队伍,集中调度重要应急资源,而且实时的更新现场的信息,有利于随时调整消防方案,实现了报警和处警一体化,更加快速有效率的完成救援活动。

2.3卫星通信在消防中应用的需要改进的地方

(1)目前,我国应急救援通信系统均是局域性设置,需要形成社会联动的通信体系,这样才利于适于应对重大灾害事件;(2)各部门均建有独立的指挥中心,造成重复投资,资源浪费,接处警和效率难以提高;(3)现有各救灾部门应急救援通信网络融合性差,难以保证有效协调运作;(4)现有通信装备的集成效能不能满足重大灾害事件作战要求,利用率较低,互通性能差;(5)没有法定的通信技术、管理方式,以指导未来规划性建设。

卫星通信的基本原理范文第2篇

【关键词】 便携式卫星通信站 卫星天线 终端单元 卫星通信网络

一、引言

随着应急通信指挥系统的应用领域逐渐扩大,便携式卫星通信站已成为应急通信的一种重要通信组成部分。便携式卫星通信站通过与地球同步轨道卫星组网形成卫星通信网络,可以实现话音、数据、音视频和广域网接入功能的多媒体通信业务,实现如电话、传真、电传、电报、图像、可视电话、话带数据、计算机数据、复用数据、电话会议等功能,广泛应用于交通运输、抢险救灾、新闻采访、科考探险、公安、军事等应急和特殊通信领域。

二、技术方案

2.1 系统组成及功能

便携式卫星通信站主要由便携式卫星天线单元(含天线、伺服、BUC、LNB)和终端单元(含卫星调制解调器、交换机、视频会议终端、VOIP、矩阵、显示器、3G图传、单兵图传接收机等)组成。整套系统可由2人完成操作使用,总质量不大于60Kg。便携式卫星通信站基于VSAT卫星通信网,通过便携天线,可与后方指挥中心建立基于IP的透明链路。主要特点是简单、方便,易于运输,适应应急性指挥通信的要求,能够在较短时间内迅速搭建一个卫星通信平台,并建立起与主站的通信连接。便携式卫星通信站原理框图如图1所示,该系统具备卫星通信、视频会议、VOIP语音通话等功能。在执行任务时,通过单兵式微波图像传输系统将野外现场的声音、图像等相关资料实时传输到便携站,再通过VSAT卫星系统和专业视频会议系统将其传送到国家、省、市级指挥中心,为领导总揽全局,果断决策,正确指挥提供直接的现场信息。本文设计的便携式卫星站具备“一键式”对星功能,同时采用双跟踪寻星模式,寻星时间小于3分钟,跟踪精度小于0.2度。为满足不同场合不同业务量的需求,天线单元可选用等效口径1m或1.2m天线面,功放选用20W~40W功率功放,组合配置,用于提供传输不低于2Mbps的通信业务。

2.2 便携式卫星天线单元

便携式卫星天线单元分为天线分系统、伺服控制系统和远程监控系统三部分。便携式卫星天线原理图如图2所示。

天线是卫星通信系统的重要组成部分,是便携站射频信号的输入和输出通道,天线系统性能的优劣直接影响到整个通信系统的性能。便携式卫星天线采用格里高利双反射偏馈型天线设计,天线单元包括主反射面、副反射面、馈源及其支架、高频头及双工器等。天线面的材质主要有铝合金、玻璃钢以及碳纤维等,考虑到高增益、低噪声温度,展开、收藏、携带方便,天线设计为碳纤维复合材料的双反射面天线。该天线面在+130℃中温压固化成型,可在-50℃~+80℃环境中使用,具有强度高、重量轻、耐腐蚀、膨胀系数几乎为零的特性。当天线对准目标卫星时,地面用户发出的基带信号经过地面通信网络传送到便携站,便携站通信设备对基带信号进行处理,使其成为射频载波后发送到卫星转发器。卫星转发器接收地球站上行频率发送来的射频载波,经过放大和变频处理后,再转发到地球站,由地球站天线接收。天线分系统的馈源、高频头将天线面接收的射频载波处理为中频信号,中频信号经过功分器后一路信号解调处理后给基带处理器,通过地面网络传送给用户,另一路信号经信标接收机和DVB-S载波跟踪接收机输出AGC电平给天线控制器,为伺服控制提供信号电平指示。

伺服控制系统是整个系统的核心部分,用于控制天线准确对准目标卫星。包括:伺服控制器、电子罗盘、GPS接收机、信标接收机、DVB-S载波跟踪接收机、执行电机及驱动部分。伺服控制系统工作原理为:在系统上电后开始搜索卫星信号,通过GPS接收机获取接收天线所在地的经度、纬度和高度,结合控制器存储的被搜索卫星的在轨经度,将这些角度信息送入控制器进行计算,获得天线对准卫星所需要的理论方位角、俯仰角和极化角。然后通过姿态测量传感器得到天线实时的方位角、俯仰角和极化角,与计算所得的理论角度进行比较,若不等,则驱动伺服电机转动天线逐步减小差值,完成天线的搜索与初始对准。随后进入步进跟踪模式,在方位、俯仰方向上按一定步进小角度运动,同时与信标接收机或DVB-S载波接收机配合使用将天线锁定在最佳跟踪位置,完成卫星信号的跟踪。伺服控制设计基于Microchip公司的dsPIC处理器方案,它是一种具有单片机和DSP综合功能的16位CPU,不但具有丰富的模块,I/O接口,支持多种电机控制,强大的中断功能,同时还兼具DSP高速运算能力,是嵌入式系统的一种高性价比解决方案。为了满足高精度控制,做到精确对准,本系统通过将GPS、数字罗盘、天线控制器、执行电机结合AGC电馈形成系统大闭环的方式,完成天线对卫星的稳定跟踪。对于DVB载波跟踪方式,由于数字高频头的解调过程需要几秒钟时间,所以存在对卫星信号反馈较慢的缺点,但是载波有带宽较宽,比较容易捕获,数据通信稳定的优点。信标是一个单载波,存在难捕获,易受干扰的缺点,但是信标接收机能快速反馈卫星信号的强弱。本系统采用了DVB载波和信标跟踪并存的方式,当一种方式无法对星时,可自动切换到另一种对星方式,从而确保了天线指向有效对准卫星。伺服转台采用俯仰、方位型天线架座,同时极化可调,执行电机通过驱动器电流的32细分,在减小噪声和震动的同时,提高了控制精度。通过安装限位开关对零点与限位位置进行定位。

远程监控系统主要由手持终端控制设备或笔记本组成,向伺服控制系统输入要对准目标卫星的位置信息、步进指令(步数以及方向)、开始运行指令、复位指令以及停止指令等,同时也可以在监控计算机上显示天线的实时状态信息以及角度波动情况,提供良好的人机对话功能。

2.3 终端单元

终端单元集VOIP语音、传真、视频采集及编解码传输、视频显示回放、网络互联等多种功能于一体,预留与各种非卫星通讯终端设备(如计算机)的接口,具备与卫星通讯网络间的实时双向通讯功能。终端单元集成于手提箱内,防尘、防震、体积小、重量轻、携带方便,采用积木式结构,可根据用户需要选择不同卫星通信体制设备终端单元,并根据具体需要,对功能模块进行选配。终端单元原理框图如图3所示。

终端单元的核心设备是卫星调制解调器,其主要功能是完成基带信号的编/解码、调制/解调等信号处理,且自身带有IP路由功能,通过设置网关,局域网内的网络设备能够连入卫星网络,实现与其他卫星站之间的网络通信、视频会议、数据通信等。

三、结构方案

便携式卫星通信站结构设计的核心部件是电/手动二维转台,它的结构形式直接关系到整个便携式卫星通信站的外形、重量、体积等。该转台分为上、下腔体两个部分,方位和俯仰驱动机构均布置在上腔体中,下腔体布置支撑结构和接插件。俯仰驱动机构采用双轴伸步进电机加成品减速器的方式:俯仰电机一端与减速器相连,一端与手动手柄相连,减速器一端与电机相连,一端与天线组件相连,带动天线组件做俯仰方向的转动;方位驱动机构采用双轴伸步进电机加自制减速机构(蜗轮蜗杆加圆柱齿轮)的方式:方位电机一端与手动手柄相连,一端与蜗杆相连,通过自制减速机构驱动上腔体和天线组件做方位方向的转动,上、下腔体的结合处加密封圈,能有效防尘、防雨。方位驱动机构中有蜗轮蜗杆,能有效自锁,可防止大风对天线面在方位方向上的吹移,俯仰驱动机构外加锁紧装置,可防止大风对天线面在俯仰方向上的吹移;极化装置所需的驱动力矩很小,采用单轴伸步进电机加成品减速器和同步带驱动的结构方式。

天线面采用可拆卸的剖分结构形式,共分为六瓣,除主瓣与转台固定连接外,其余五瓣可拆卸,通过专门的快装机构拆装。整个控制系统模块装在一个腔体内,该腔体采用碳纤维开模加镶嵌散热金属块的方式制造,盖板采用倒扣结构形式,配合碳纤维腔体边缘的密封橡胶条,和转台配合使用,能有效散热且能密封防雨。

四、软件设计

便携式卫星通信站实现一键对星功能采用程序跟踪与步进跟踪相结合的跟踪方式,即:先利用程序跟踪实现天线的粗对准,再采用步进跟踪实现天线的精对准,可以提高系统跟踪的速度与精度。

程序跟踪将需要搜索的卫星的轨道信息(卫星的在轨经度、极化方式、下行频率、符号率)预存入天线控制器中(在管理员权限下同时支持手动输入卫星的在轨信息),读取GPS、数字罗盘、倾角仪等传感器数据,计算出天线俯仰、极化、方位的指向,向俯仰、方位、极化电机控制驱动器发出命令,俯仰、方位、极化电机转到指定位置实现对卫星的搜索与跟踪。程序跟踪的关键是通过两点GPS位置信息计算天线的指向角度,主要涉及到大地坐标系到载体坐标系的矩阵变换算法。

步进跟踪是在程序跟踪后,在天线方位角±10°、俯仰角±2°范围内以“Z”字型方式扫描空域,精密调整天线指向,在信标信号或载波信号锁定后,微调天线找出信号的最大值指向角度,此时锁定卫星。

五、结论

我公司设计、生产的便携式卫星通信站具备全自动“一键对星”能力,设备从展开、跟踪、对星、调整、收藏均可全自动完成,安装简单,无须较准,快速对星,通过VSAT通信网,可在较短时间内迅速搭建一个高品质的卫星通信网络。目前该系统已在四川省人防办、绵阳市人防办、雅安市人防办、南充市人防办投入使用,客户反映良好。

参 考 文 献

[1] 胡正飞,访继东. 便携式卫星通信地球站结构及其控制系统设计[J]. 机电产品开发与创新,2006,19(3):4~6

卫星通信的基本原理范文第3篇

雨衰的机理及影响

1、雨衰的产生

当电波穿过降雨的区域时,雨不仅吸收电渡能量,而且对电波产生散射。这种吸收和散射共同形成电波衰减?散射还能导致大范围无线电干扰,并对电波存在去极化效应,称这些衰减和干扰为雨衰。

这种衰减呈现非选择性能和缓慢的时变特性,是导致信号劣化,影响系统可用性的主要因素。因此,雨衰问题也就成为系统设计过程中必须考虑的重要问题。雨衰的大小与雨滴直径与波长的比值有着密切的关系,当信号的波长比雨滴大时,散射衰减起决定作用。当电磁波的波长比雨滴小时,吸收损耗起决定作用。无论是吸收或散射作用,其效果都使电波在传播方向遭受衰减;当电磁波的波长和雨滴直径越接近时衰减越大,一般情况下(比如中短波)电磁波的波长远大于雨滴直径,故衰减很小,C波段信号受雨衰的影响也可以忽略。对于10GHz以上的电磁波,雨衰的影响就非常明显了,在链路计算中必须考虑雨衰的影响。频率越高,雨衰的影响越大,大雨和暴雨对电磁波的衰减要比小雨大得多。图1是国际无线电咨询委员会(CCIR)(现为国际电联(ITU))提供的雨衰与频率和降雨大小的关系图,从图1中可以很清楚地看出Ku波段信号受雨衰的影响。如图1所示,降雨对电波的衰耗为实线,而云、雾引起的衰减为虚线。Ku波段频率较高[(12-18)GHz],波长与雨滴的大小可比拟,受雨衰的影响比较严重。由图1和图2可看出,在Ku波段,中雨(雨量为4mm/h)以上的降雨引起的衰耗相当严重。若电波穿过雨区路径长度为10km时,对于Ku波段上行线路,衰耗为2dB左右,下行线路的衰耗为1dB左右;在暴雨(雨量为100 mm/h)情况下,每公里的损耗强度较大,但雨区高度一般小于2km,暴雨引起的衰耗将超过10dB以上。随着降雨强度的加大,在Ku波段降雨衰减系数也急剧增加,其降雨衰减量与降雨强度几乎成正比。而对于C波段[(4-6)GHz]来说,雨衰的影响就不是很明显,中雨区上行线路的衰耗为1dB左右,下行衰耗仅为0.4dB左右,即使是暴雨区上行线路总衰耗值也仅为1dB左右。

2、降雨噪声

降雨引起的对电磁波吸收衰减也会对地球站产生热噪声影响,这种降雨噪声折合到接收天线输入端就等效为天线热噪声,对接收信号的载噪比有很大的影响,这种影响与衰减量的大小和天线结构有关。

根据经验,每衰减0.1dB,噪声温度增加约57K。一般情况下,天线的仰角越高,降雨噪声的影响越小。这是因为电磁波穿过降雨路径较短,衰减量就小一些。 在没有雨衰时,噪声温度不增加;在没有波导损耗时,噪声温度只和降雨衰减量有关。由于噪声温度的增加直接影响到接收系统的G/T值,也就是直接影响到接收信号的载噪比,对信号可用度的影响甚至比降雨衰减更明显,在链路计算时必须考虑其影响。

3、去极化现象

降雨不仅会使电波衰减,还会产生去极化作用,所以降雨对电波的吸收和散射特性也与入射波的极化波面有关。由于空气阻力使雨滴变成略微扁平的形状,在雨滴的两个轴向引起的衰减称为微分衰减,相位移称为微分相移。这种现象对单极化传输系统影响并不大,但对于正交极化复用的双极化传输系统,会造成极化隔离度降低,导致正交极化的信号互相干扰加大。这种降雨引起的去极化现象,对线极化和圆极化都有影响。我们常使用交叉极化鉴别度来表示极化纯度。一般情况下,当天线仰角大于15°时,交叉极化鉴别度在超过年平均时间的0.1%时,可望达到27dB,0.01%时为20dB,0.001%时为15dB。如图3所示。暴雨区Ku波段的微分衰减可达2dB左右(雨区高度按2km计算)。对于正交极化复用的卫星系统,降雨引起的去极化作用会使极化隔离度降低,产生极化误差,导致干扰增加。

降低雨衰影响的措施

考虑Ku频段抗雨衰策略时,首先应准确得到某一特定区域的降雨衰减。它要求进行长期的观察测量,得到长期连续的降雨实测数据(如连续多年的每分钟降雨率),获取该区域精确的降雨统计特性,并通过实测数据,计算该区域的降雨衰减。通过迭代,补充完善降雨统计特性,以获取该区域在各种条件下降雨衰减的真实情况。在此基础上可以采取如下抗雨衰策略:

1、链路的备余量

它是传统通信链路设计中常用的方法。如C频段卫星通信链路通常留3dB余量,Ku频段卫星通信链路通常留6dB余量。在一些降雨较少的地区(如沙漠地区),完全可通过链路余量来满足系统可用度要求;在高降雨地区,完全靠这种方法不现实,应在具备适当链路余量的基础上,综合考虑其他方法。但这种方式将会占用过多的卫星资源,在晴空时造成资源浪费,下大雨时,可能又不够用。

2、功率控制

对于Ku波段的卫星通信系统,建议在地球站设置上行链路自适应功率控制(AUPC),或者进一步采用以网络管理为基础的全网自动功率控制(APC)或动态功率控制(DPC)系统,才能有效地对抗降雨衰耗的影响。

(1)上行链路自适应功率控制(AUPC)。如果系统设计采用传统的功率余量方法,将严重影响系统的通信容量,而且降雨的时间比例较小。因此,必须采用自适应功率控制技术以提高系统通信容量并保证链路的可靠性。其基本原理是:各地球站在监测来自卫星的信号强度的同时,计算链路降雨衰耗,然后自适应调整地球站的发射功率,从而动态地补偿链路的雨衰,使信号保持在一个合适的工作电平,从而使卫星转发器接收到地球站发射的信号电平与晴空时基本相同。在更先进的卫星系统中还能做到卫星转发器进行自适应功率控制,这样能更好地克服雨衰对Ku波段卫星通信的影响。上行功率控制又分成开环上行功率控制和闭环上行功率控制两种。

设备的开环上行功率控制是地球站利用接收卫星信标信号电平的变化量测出下行线路的雨衰值,进而去控制地球站发送设备的中频衰耗器或射频衰耗器,使衰减器减小的数值与上行线路雨衰值大体相同。开环上行功率控制工作原理比较简单,所用设备较少,投资较小,但精度较低。

闭环上行功率控制是地球站将接收来的卫星信标信号,与通过卫星转发器环回信号或某一特定信道的通信业务信号的C/N(或S/N)值进行比较,然后去控制地球站的上行功率。这样一来,上行信号的雨衰值和上行功率控制的控制量有较高的准确度。因此在闭环上行功率控制中必须将控制信道与通信信道分开,所用设备较多,费用较高。

(2)自动功率控制(APC)。上行功率控制是针对卫星通信上行线路的降雨衰耗所采取的技术措施,但对于卫星通信的下行线路也要充分考虑降雨衰耗。为了解决这一问题,己成功研制了同时控制上行线路和下行线路降雨衰耗的自动功率控制系统(APC),这种动态功率控制是以卫星通信的网管系统为基准的。该网管系统能实时地测出各个地球站的接收电平值,将该值与基准电平(晴天时的正常接收电平值)进行比较,将比较结果通过网管信息传输通道传送给相应的地球站,控制该地球站的发信设备的输出功率。因此,采用自动功率控制能使卫星通信系统的稳定性和可靠性大大提高,也使卫星通信得到了广泛的应用,大大地节约卫星通信的资源。

3、采用编码及降速率技术

在雨衰较大时,可以采用前向纠错编码技术(FEC)来减小传输的误码率。通过减小编码率来获得编码增益的提高,如编码率为1/2的卷积码,当采用维特比译码时,其编码增益可达5dB。当然减小编码率也必须有个限度,一方面当编码率减小到一定程度时,若再进一步减小编码率,多获得的编码增益将改善很小;另一方面减小编码率会导致系统容量的减小。此外,还可以通过自适应速率降低技术(ARP)来克服雨衰的影响,通过减少衰减信道的数据速率来增加信道容量,降低速率所带来的增益与速率减少成正比,例如速率减少至1/4时,增益为5dB。使用纠错编码和降速率技术,可以补偿不同程度的雨衰;但随着深度的增加,有效可用容量减少。

4、空间分集技术

在多雨或卫星仰角很低的地区,由于Ku波段的特点,降雨衰减非常大,采用空间分集技术(也称站分集技术)是一种很有效的办法。其原理是基于降雨的空间分布不均匀性,在相隔一定距离的两个地点设置地球站,通过两个地球站进行信号的分集接收,类似于地面蜂窝移动通信的空间分集技术,也可以单独切换到雨衰较小的地球站进行单链路通信。主要从分集改善因子和分集增益两个指标来衡量分集改善的质量,其分集改善的效果随两站间距离的增大而增大。但超过一定距离后,其改善程度就非常小。在空间分集带来增益好处的同时,也是需要付出代价的。网络投资成本大幅上涨,而且需要非常复杂的网络控制技术。需要指出的是空间分集技术不仅仅局限于两个站址,可以采用多个站址同时分集接收,当然其代价就更高了。

5、极化方式的选择和天线的选择

不同雨滴形状对信号的衰减也不相同。随着雨滴的体积的增大,雨滴在水平方向的直径也逐渐增大。

此时,雨滴对水平极化波的衰减比对垂直极化波的衰减大,这也意味着在10GHz以上频率,垂直极化波比水平极化波的抗雨衰性能要好。接收天线的增益与接收天线的口径有着直接的关系,因此适当加大接收天线的口径,可以较明显地提高天线增益。口径越大,其增益越高,系统覆盖范围越大。当然,其成本也会明显增加。

6、采用低噪声高增益的优质高频头(LNB)现用于接收Ku频段卫星信号的LNB,一般噪声系数为0.8dB,噪声系数在0.6dB便是十分低的噪声,如使用噪声系数为0.7dB的,其增益可达到60dB。如果受某些因素的制约,而不想或无法去增大接收天线的口径,可首先考虑使用低噪声高增益的优质LNB,而且这要比增大天线口径的成本低。

卫星通信的基本原理范文第4篇

通信技术正以前所未有的速度得以发展和应用,它与计算机技术相互融合和渗透形成现代通信技术,如卫星通信、微波通信、移动通信、光纤通信等都属于现代通信技术,它与我们息息相关,给我们的工作和生活带来了日新月异的变化。因此,《现代通信技术》课程不仅要在通信工程专业开设,同时还有必要在非通信工程专业开设。

1 现代通信技术课程的目标与内容

《现代通信技术》作为一门为非通信工程专业本科学生开设的课程,是通过知识的加工和优化,在原《现代通信系统》与《通信原理》等课程基础上整合而成,并向应用性方向拓展[1]。由于非通信工程专业的学生没有学习过《现代通信系统》和《通信原理》课程,所以课程目标是“轻理论,重应用”,使学生初步了解关于通信系统的基本概念、数字通信系统的组成;了解现代通信系统中的电信交换、卫星通信、微波通信、移动通信、光纤通信等通信系统的基本原理、组成框架和最新应用内容。

现代通信技术课程由通信网基础技术、电信交换、无线通信、移动通信和光传输网五大主要组成部分[2],详见图1。

图1 现代通信技术课程主要内容

通信网基础技术包括模拟通信和数字通信(强调数字通信系统)、数字通信系统设计的技术如信源编码技术、信道复用技术等、数字信号的基带传输、调制技术和差错控制技术等;电信交换包括常用的交换方式如电路交换和分组交换、数字程控交换、isdn(综合业务数字网)和智能网;无线通信包括无线传播的基本特性、无线通信的关键技术、典型的无线通信微波通信系统、卫星通信系统的组成和应用;移动通信包括移动通信的关键技术、典型的移动通信系统gsm、cdma和3g系统的原理、技术体制及应用发展;光传输网包括管传输系统的组成和原理、sdh光传输网技术、光波分复用技术等。WWw.133229.COm

2 传统的现代通信技术教学方式的特点

传统的教学方法是以知识学科体系为中心,先讲述理论,在进行一些验证性的实验。《现代通信技术》课程的教学方式一致沿袭本科教育中学科体系的教学模式,从通信网基础技术到无线通信、移动通信等,都过于侧重理论,偏重知识的积累,内容丰富,公式与性质多,抽象难懂,这种教学方式的主要特点和弊端如下:

2.1 学生对学习感到枯燥,无法进行创新能力培养。对于现代通信技术课程来说,知识抽象、枯燥,特别是讲到通信原理等摸不着看不见的知识时,学生更是不知所云。很多学生仅仅是被动地在学习,没有主动参与的热情,体会不到学习的乐趣,更谈不上创新能力了。

2.2 教学过程中以原理知识为核心,而忽略了学生的数学功底和理论推导能力,使其缺乏学习的积极性;教学方法也是以传授知识为主,忽视了学生的能力培养和工程设计锻炼,导致知识与能力不协调。

2.3 理论和实际没有很好地联系起来,对知识的实际应用只作点缀,学生动手环节较少,更缺乏现场操作的经验,无法满足岗位需求。

3 现代通信技术课程的教学思路和教学模式

考虑到非通信工程专业的学生基本上没有学习过包括通信原理、信号与系统、随机过程等课程,在教学中必须从实际出发,因材施教,遵循深入浅出、易于理解的原则,力求简洁明了,突出科普性,激发学习兴趣[3]。采取“多挖坑少钻井”的方法,对现代通信技术课程中较深的知识进行必要的删减,比如通信网基础技术中的调制技术、语音编码,电信交换中的数字交换单元的工作原理、信令系统,无线信道特性分析、扩频技术等知识点,只能进行简单的讲解,使学生明白这些知识的基本概念。

3.1 教学内容模块化。

本课程对理论知识不要求过度深入,避免复杂的数学推导,建立模块化的教学模式,参考图1的课程内容,将现代通信技术作为一个整体任务,并按主要内容将这一任务分解成任务模块:通信网基础技术模块、电信交换模块、无线通信模块、移动通信模块和光传输模块,每个模块又分解为几个子模块。每个教学模块都以具体的项目案例引出教学内容,将枯燥的理论教学完全融入到一个个具体的任务中,抽象的知识就得到了具体的体现。这种教学方案不仅可以激发学生的学习兴趣,还可以培养学生分析问题和解决问题的能力。

3.2 教学方法多样化。

课堂教学质量的好坏直接影响到教学效果。“满堂灌”的传统教学方法已经不适应现在以“学生为主体”的课堂,而采用类比引证等深入浅出的方法进行多维立体教学,则可事半功倍,大大提高教学质量。

3.2.1 多维立体教学。

随着多媒体技术的应用,课堂上老师大都使用ppt进行教学,不停地播放幻灯片,授课信息量大,内容多,但这种教学方法很容易忽视学生对内容的理解和接受程度。多维立体教学,就是灵活使用现代教学手段,使用“多媒体+网络+板书”的教学模式,采用多种方法展现抽象的知识点,在图、文、声、像等方面为学生提供直观感受,让他们在短时间内理解和接受大量的最新信息[4]。课堂上,可以充分利用多媒体放映ppt、图片、动画和视频等,课后学生可以登录教学网站下载学习资料,通过网络、论坛与老师进行互动交流。例如,在学习卫星通信时,可以插入卫星通信系统的图片,播放最新卫星通信的相关视频等,让学生直观地理解相关内容。

3.2.2 善于类比。

本课程设计很多的原理、概念,若只是将这些抽象的知识叙述出来则显得枯燥无味,学生不易理

转贴于

解,而将这些知识与现实生活中我们常接触的事物做类比则可以很好地理解[6]。例如,在讲解无线通信中电磁波按照传播方向的分类时可以将其与台球的运动做类比,如图2所示,这样将抽象的看不见摸不着的电磁波也可以很容易的知道它包括直射波、反射波、绕射波和散射波等。

图2 台球的运动

再如,在讲解移动通信中的切换技术时,切换包括软切换和硬切换,什么是切换?什么是软切换?什么是硬切换呢?同样也可以采取类比的方法。假设你在一个工作岗位呆久了,由于这样或那样的原因,想调整一下,但你不能终端工作,直接变成空闲状态,因为你很在乎工作所带来的收益,你不希望这个收益中断(切换的目的就是为了提供无中断的数据传输)。根据岗位变动时,交接工作地开展方式不同可以把岗位变动分为温柔换岗(类似于软切换)和强行换岗(类似于硬切换)。温柔换岗就是在和新的工作岗位进行联系时,旧岗位的工作也不已下载中断,而是进行相应的交接工作;强行换岗就是和旧岗位彻底中断,然后建立和新岗位的联系。根据类比引出软切换和硬切换的概念,学生就很容易理解了。

这种类比的方法不仅可以调节课堂气氛,还可以深入浅出地将抽象难懂的知识让学生在轻松地气氛中理解并掌握。

卫星通信的基本原理范文第5篇

关键词: 极化分离; 单脉冲; 低噪声放大器; 船载卫通站

中图分类号: TN927?34 文献标识码: A 文章编号: 1004?373X(2014)15?0055?03

Design of tracking and communication polarization separation device

in shipborne satellite communication station

ZHOU Jian?feng, BAI Yong?bo, HUANG Kun

(China Satellite Maritime Tracking and Control Department, Jiangyin 214431, China)

Abstract: The monopluse tracking mode is usually adopted in large?aperture shipborne satellite communication station. The output error signal is composed of the difference signals coupled with high?order mode and the sum signals from communication network through sum?difference network synthesis for demodulating and tracking. This mode required same tracking polarization and communication polarization, so it limits the application of satellite communication station. The basic structure of feed source network and the working principle of monopluse tracking are analyzed in this paper. The 2:1 low?noise redundancy control system was adopted instead of 1:1 low?noise redundancy control system. It can realize the tracking and communication polarization separation, and can track the A polarization beacon. The flexibility of shipborne satellite communication station was improved by flexible selection of A or B polarization transponder.

Keywords: polarization separation; monopulse; low noise amplifier; shipborne satellite communication station

0 引 言

现代通信卫星为了提高频谱利用率,一般均采取了极化频谱复用技术,即通信卫星可以在两个信道采用同一频率而互不干扰地传输两组独立的信息,两组信道在极化方式上不相同,可以避免互相干扰。电波的极化有两种类型,电场矢量在直线方向来回振荡的电磁波称为线极化波,固定振幅的电场矢量作圆周旋转的电磁波称为圆极化波,其中线极化波根据矢量直线运动方向又区分为垂直极化和水平极化,而圆极化波根据两个分量的相位关系又区分为左旋圆极化和右旋圆极化[1]。

卫星通信中一般发射和接收极化方式不相同,例如发射极化为垂直极化,则接收极化一般为水平极化,而通信卫星的转发器通常都具有A、B两种极化方式,所谓A极化,对于线极化卫星而言,是指发射水平极化接收垂直极化,对于圆极化卫星而言,是指发射右旋极化接收左旋极化;所谓B极化,对于线极化卫星而言,是指发射垂直极化接收水平极化,对于圆极化卫星而言,是指发射左旋极化接收右旋极化,用于跟踪的卫星信标信号也有两种极化方式。相应的卫星通信地球站的定义则相反。

在某船载卫通站中,为了适应与不同卫星通信的需要,天线具有双线双圆极化方式,可以根据需要灵活选择,但是由于船载卫通站在运动载体上工作,其对跟踪精度有着较高的要求,一般大口径天线均采用单脉冲跟踪方式,而单脉冲跟踪方式需要在静态环境下对跟踪接收机的相位进行校准,且同时只能对一种极化方式进行校相,一旦需要在海上从A极化方式切换为B极化方式工作时,就需要重新校相,但在动态条件下校相,目前还存在一定的困难,这样就给海上通信带来风险,本文分析船载卫通站跟踪的基本原理和馈源网络的结构组成,提出一种将跟踪极化与通信极化方式分离的方法,可以提高系统工作的灵活性。

1 基本结构与原理

某船载卫通站采用双线双圆极化方式,采用单通道单脉冲跟踪方式,其馈源网络的基本结构如图1所示,网络由TE21模耦合器、差模合成网络以及频谱复用网络组成,差模耦合器由2个正交的TE21模分耦合器组成,4根耦合臂Ⅰ和4根耦合臂Ⅱ组成2个在极化上正交的TE21模分耦合器,分别输出左旋极化信号和右旋极化信号,该信号称为差信号,经低噪声放大器(该低噪称为跟踪低噪,也称差低噪)放大后送入和差网络。

在频谱复用网络中,主要包括收发线圆转换器、极化面旋转关节、正交模变换器以及双工器等器件,其主要作用是进行线圆转换、极化角转换以及收发信号的隔离。网络可以同时输出两种极化方式的信号,对于发送端口而言,其接收来自高功率放大器的信号,经网络后通过天线将上行信号发送至卫星,对于接收端口而言,其信号从网络输出后经低噪声放大器(该低噪称为通信低噪,也称和低噪)放大后,送入和差网络与差信号进行合成后,耦合成一路跟踪信号送跟踪接收机,一路下行通信信号送下变频器等设备进行通信。

跟踪接收机系统主要作用是将天线馈源网络中生成的方位误差信号和俯仰误差信号对和信号进行归一化并转换成直流信号,此信号送到天线伺服系统,由伺服系统驱动天线朝误差减小的方向运动,从而确保天线始终对准卫星。

跟踪接收机系统包括低噪放大器、和差网络和跟踪接收机,其中和差网络安装在天线上,其功能是完成和差信号的单通道合成。差低噪输出的信号经过隔离器后由0~π调制器调制为抑制载波的差信号,在合成网络内与和信号合成一路跟踪信号送到接收机。和低噪输出的信号在合成网络内耦合出一路作为跟踪信号与误差信号合成单通道,主信号经过隔离后输出至下变频器用于通信[2]。跟踪接收机系统工作原理如图2所示。

2 存在问题

在工程实际中,为了提高系统可靠性,跟踪低噪和通信低噪均采用1∶1热备份方式工作,通过低噪控制器选择一路低噪工作,而低噪信号输入端一般固定接入在某一极化方式的端口上,例如,一般情况下,通信使用A极化信号,则和信号与差信号都接入右旋极化端口,这样跟踪A极化信标,通信使用A极化转发器,由于采用单脉冲跟踪方式,在使用前需在码头静态条件下进行校相。系统连接关系如图3所示。

图3 1∶1低噪冗余倒换系统连接示意图

但是这种连接方式存在的问题是使用不灵活,通信与跟踪的极化方式必须相同,也就是说输入和差网络的两路信号极化方式必须相同,因为通信低噪输出的信号需送入合成网络耦合出两路信号分别用于跟踪和通信,当需要从A极化转发器更换为B极化转发器时,就必须要更换天线上的线缆,将跟踪低噪和通信低噪的输入信号从右旋极化端口更换为左旋极化端口,更换电缆后,由于电缆接口紧固程度不相同,会导致和差通道相位发生变化,必须要重新进行校相,这样就限制了B极化转发器的使用范围,即要进行A/B极化方式切换,必须要在码头静态条件下进行,否则无法进行跟踪,但在实际工作中,由于卫星转发器资源有限,经常会出现A极化转发器难以租用的情况,需在动态环境下切换到B极化方式工作,但由于无法进行静态的校相,更换为B极化后天线无法跟踪卫星,从而无法使用,这样就给船舶通信带来困难。

3 优化设计

从A极化通信方式改为B极化通信方式,对于上行链路而言,只需要对高功率放大器输出的信号进行切换即可,不存在限制,但对下行链路而言,现有的连接方式要求通信与跟踪极化方式必须相同,需要更换和差通道线缆,从而导致更换B极化后需要重新校相,限制了B极化转发器的使用。因此,为了解决该问题,可以考虑将通信与跟踪极化方式分离,即允许跟踪和通信采用不同的极化,这样会避免更换通信极化方式后对跟踪方式的影响。当跟踪与通信均采用A极化时,仍采用现有连接关系不变,当需要B极化通信时,跟踪仍采用A极化方式,但通信使用B极化方式,即采用A极化跟踪B极化通信方式工作,其连接关系如图4所示。

图4 2∶1低噪冗余倒换系统示意图

与原有系统相比,跟踪低噪仍采用1∶1系统,但通信低噪改用2∶1系统,通信网络两个极化的信号均输入到低噪中,输出两路极化信号分别至和差网络和下变频器设备,在这种方式下,跟踪接收机可以固定跟踪A极化信标,而通信设备则可根据需要采用A极化或B极化方式通信,若采用A极化方式,则采用和差网络输出的下行信号接入下变频器,若使用B极化方式,则采用通信低噪直接输出至下边频器的信号,切换时只需要更换下行线缆即可,无需重新校相,可以大大提高卫通站使用的灵活性。采用2∶1系统后,备份的低噪同时作为在线两路低噪的备份,任意一路低噪故障时可以切换到备用低噪工作,可以提高系统可靠性。

要实现跟踪与通信极化的分离,除了使用2∶1冗余低噪系统外,还可以采用两套1∶1冗余低噪系统,即跟踪使用一套1∶1冗余低噪系统,通信采用两套1∶1冗余低噪系统,采用这种方式后系统可靠性更高,通信所使用的A极化信号与B极化信号是完全独立的,但是这种方式带来的问题是安装所需要的空间较大,由于船载卫通站为了实现全过顶无盲区跟踪,一般采用A?E?C三轴结构,其高频箱尺寸相对较小,通信网络及低噪放大器均安装于高频箱内,低噪放大器由于采用波导连接且中间有转换关节,因此尺寸较大,对安装空间有一定的要求,而采用2∶1系统的优势在于其安装尺寸与1∶1系统相比增加不多,但是可实现两路极化信号的输入,可能的影响是A、B两路极化信号之间相互干扰对通信带来影响,下面对该问题进行分析。

A、B极化信号之间相互干扰带来的影响就是对交叉极化隔离度指标的影响,船载卫通站交叉极化隔离度的指标要求一般为大于30 dB,采用2∶1系统时,A极化信号和B极化信号分别采用不同的波导倒换开关输入输出,而普通射频倒换开关的隔离度可以达到大于40 dB,可以满足极化隔离度的要求。因此,采用2∶1低噪冗余倒换系统可以满足使用要求。

4 结 语

船载卫通站相比一般固定卫通站而言,其组成更为复杂,工作方式更为灵活,采用1∶1低噪冗余倒换系统时,跟踪极化方式与通信极化方式必需相同,而单脉冲跟踪方式又要求船载卫通站更换信标后需要在静态条件下重新校相,因此这就限制了船载卫通站在动态条件下进行通信极化转换,通过分析船载卫通站的馈源网络结构以及系统工作原理,本文分析了限制动态进行极化转换的原因,提出了将跟踪极化与通信极化相分离的方案,采用2∶1冗余低噪倒换系统可以实现跟踪与通信极化的分离,从而解决了动态条件下进行通信极化转换后无法跟踪的难题,并结合工程实际分析采用两套1∶1系统与采用2∶1系统的优缺点,以及采用2∶1系统后对通信性能的影响,为工程实现提供了解决方案。

参考文献

[1] 沈民宜,蔡镇远.卫星通信天线、馈源、跟踪系统[M].北京:人民邮电出版社,1993.

[2] 李靖.TE21模单脉冲自跟踪系统[J].无线电通信技术,2005,31(6):42?44.

[3] 谢俊好,熊卫明.传统单脉冲方法的数学原理及工程实现[J].系统工程与电子技术,2004,26(4):468?470.

[4] 柯树人.圆波导线极化TE11模和圆极化TE21模自跟踪体制[J].通信与测控,2003,27(1):260?265.