首页 > 文章中心 > 审计风险现状

审计风险现状

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇审计风险现状范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

审计风险现状

审计风险现状范文第1篇

关键词:内部审计 独立性 审计风险 对策

1995年全国审计定义研讨会将简明审计定义概括为:“审计是独立检查会计账目,监督财政、财务收支真实、合法、效益的行为。”可见独立性是审计的灵魂,是审计工作质量的保证,如果不能有效保证审计机构和人员在组织上的独立性及其在业务工作中的自主性和权威性,就不能保证审计质量和规避审计风险。本文将从分析我国内部审计的独立性现状出发,揭示其对内部审计风险的影响,并提出可行性的对策。

一、我国内部审计的独立性现状分析

(一)内部审计方面的法律、法规不健全,直接制约了内部审计的独立性。

我国企业的内部审计工作没有专门、具体的法律规范,没有统一的内部审计准则。目前,我国已颁发了针对国家审计的《审计法》,针对社会审计的《注册会计师法》,而针对内部审计的只有审计署颁发的《审计署关于内部审计工作的规定》(2003年2月10日审计署审计长会议通过的新条例,自2003年5月1日起施行,审计署于1995年7月14日的《审计署关于内部审计工作的规定》同时废止),并未上升到法律的高度。而酝酿很久的《内部审计法》迟迟未能出台。这导致内部审计与国家审计、社会审计地位上的巨大差异,在根本上制约了内部审计的独立性。

(二)内部审计机构设置不独立,具有很强的依附性。

我国的内部审计机构,大多数由本部门、本单位负责人直接领导,并接受国家审计机关和上级主管部门内部审计机构的指导和监督。由于企业的内部审计机构是企业的一个职能部门,是在本单位主要负责人的直接领导下开展工作,其人员配置、职务升迁、工作地位及经济待遇等都由本单位领导决定,与国家审计和社会审计相比,内部审计在组织、工作、经济上依附于本单位,独立性不够。

(三)内部审计人员缺少完整的独立性。

根据《审计署关于内部审计工作的规定》和当前的实际状况,内部审计部门一般由本单位的主要负责人或副职领导,内部审计人员切身利益直接受所在单位控制,内部审计人员的人事调派权、工资管理权、奖惩权等由所在单位掌握。即内部审计在本单位主要负责人直接领导下并对其负责和报告工作,使得内部审计人员执纪执法的程度直接受单位领导的影响,严重制约了内部审计的独立性。

(四)企业领导对内部审计工作不够重视,使得内部审计人员素质相对较低。

由于一些企业的领导对内部审计人员重视不够,他们在配备内部审计人员时,主观上不愿将精通业务的人员安排在内部审计岗位上,客观上也没有给予其学习和培训机会,使其业务能力得不到提高,综合素质相对较低。从而使得审计工作质量难以保证。

综上所述,我国当前内部审计的独立性是相对的,受限制的,欠缺的。这样的独立性现状必将给内部审计业务带来较高的审计风险。

二、我国内部审计的独立性现状对内部审计风险的影响

结合我国目前实际,笔者认为内部审计风险,是指内部审计组织或审计人员在实施审计过程中,对存在重大错报或漏报的会计报表以及具有重大影响的经营活动审计后发表了不恰当的审计结论,造成审计对象和与之相关方面遭受损失或损害,并由此引起审计主体承担这种责任的风险。

(一)内部审计机构的独立性和权威性欠缺直接带来审计风险。

内部审计机构是单位内部设置的机构,在本单位负责人的领导下开展工作,为本单位实现经营目标服务。因此,内部审计的独立性和权威性不如外部审计,在审计过程中,不可避免地受本单位的利益限制,并且内部审计也只是单位内部的管理手段之一。鉴于此,单位内部审计就很难客观、公允地对所进行的审计事项发表准确、公正的审计意见,进而不能保证审计质量,直接带来审计风险。

(二)内部审计法律法规体系不健全,作业标准不规范,增大了审计风险。

虽然现在有国家审计署颁布的《关于内部审计工作的规定》,但法律级次明显偏低,可操作性不足,并且对于具体作业标准未有明确规定。内部审计法律依据不充分,不健全,使得内部审计人员地位得不到应有的重视,其合法权益得不到有效保护,并且由于没有具体可操作的部门、行业规章制度,缺乏相关配套指导措施,内部审计人员在实际审计工作中往往无章可循,无法可依,只有依据经验和知识进行分析判断,在一定程度上影响了审计结论的正确性,增大了审计风险。

(三)业务工作的“外向型”与行政待遇的“内靠型”,使内部审计人员很难进入角色,从而加大审计风险。

业务工作的“外向型”与行政待遇的“内靠型”,使内审人员很难进入角色。审计人员长期处于一个固定的审计环境中,与被审计对象产生了错综复杂的利益关系,再加上审计人员的工资福利及晋升等都需由本单位解决,很难保持应有的独立性,谈不上自主地开展工作,所作出的审计结论也因此受到置疑,处理决定有时也得不到有效地贯彻执行,从而加大了审计风险。

(四)内部审计人员自身素质较低,直接影响审计质量,从而加大审计风险。

由于传统审计基本是财务审计,审计人员大都是从财务战线转型,对经营管理、工程预算、信息技术等方面的知识知之甚少。而现代企业制度下,内部审计工作要向事前、事中转移,要求审计人员具有综合性管理知识,深入到企业经营的过程中去向管理要效益,知识结构单一则面临审计风险。

三、提高内部审计的独立性,规避和控制内部审计风险的对策

(一)内部审计外部化,从组织形式上有效保证内部审计机构和人员在组织上和业务上的实质性独立,规避和控制内部审计风险。

内部审计外部化亦称内部审计,是指企业从外部聘请专业审计人员执行审计工作,履行内部审计职能。将内部审计外部化,委托给企业外部的独立机构与人员执行,可以较好地解决内部审计独立性缺乏问题,提高内部审计质量,确保内部审计质量与效果。注册会计师等外部人员相对企业内部人员而言有较高独立性,他们与企业管理层无上下级领导关系,只是业务合同关系,他们与管理层在内部审计工作中是平等的,因此能够站在一个客观公正的立场上来对企业的财务活动进行审计,从而使企业内部审计人员具有较高的独立性,从根本上保证了审计工作质量,降低了审计风险。

(二)内部审计职业化,从提高内部审计人员的职业意识、职业道德和职业技能入手,提高内部审计人员的综合素质,规避和控制内部审计风险。

内部审计职业化是将内部审计工作作为一种职业看待,无论是内部审计组织、人员资格认定、审计业务的取得、审计程序的执行、审计证据搜集、审计评价意见的发表等一系列工作,都必须按职业化标准加以要求。内部审计职业化,首先要对内审人员进行职业道德教育,提高其道德修养和政策水平,牢固掌握国家财经法纪和企业规章制度,对企业财务收支和经营管理活动进行有效审计和客观、公正的评价,为企业经营管理者提供生产经营决策的科学依据;其次要对内部审计人员进行职业技能培训,使其熟悉会计、审计、法律、税务、外贸、金融、基建、企业管理等方面的知识,提高内部审计人员的综合素质。这样内部审计人员实施审计时,就可以按规范的审计程序,选用恰当的审计方法,周密详细地编制审计计划,保证审计证据的充分,可靠和相关性,保持应有的职业谨慎,细致严谨,客观公正地出具审计报告,表述审计建议和意见,把审计风险控制在审计过程中的每一个环节,达到理想的效果。

综上所述,当前,我国内部审计的独立性较缺乏,直接导致了内部审计业务中较高的审计风险,只有真正提高内部审计的独立性地位,才能切实降低内部审计风险,提高审计工作质量,达到理想的审计效果。

参考文献:

[1]刘实.企业内部审计论[M].中国时代经济出版社,2005.

[2]刘力云.审计风险与控制[M].中国审计出版社.

审计风险现状范文第2篇

关键词 现代风险导向审计 审计风险 风险评估 优化策略

一、概述

针对风险导向审计的概述主要从以下三个方面进行阐述:

(一)风险导向审计的含义

主要有三部分构成,即以系统观和战略观为指导思想,通过分析评价企业保持和加强其竞争优势的战略,来对审计取证的重点、范围、目标和程序予以指导,从而从系统上改进了审计方法在新社会经济环境中的科学性和有效性。以运用“自上而下”和“自下而上”相结合的审计思路作为研究主体,结合重要性的判断,“自一下而上”地归纳和判断整个财务报表的风险并形成最终的审计意见。以继承和发展传统审计方法作为基本路线。通过战略分析,过程分析以及数值对比得出风险值。

(二)现代风险导向审计与传统审计的区别于联系

传统风险导向审计和现代风险导向审计是风险导向审计模式发展的两个不同阶段。传统风险导向审计和现代风险导向审计均以风险评估为起点,同时都将风险分析与控制方法贯穿运用于审计全过程。但是,现代风险导向审计针对传统风险导向审计风险评估不到位,未能有效发现高风险审计领域,造成审计过量或审计不足的缺点,大大加强了风险评估程序,做到了以风险评估中心,真正体现了风险导向审计的理念。

(三)实行现代风险导向审计的必要性

传统风险导向审计的基本模型不合理,不符合系统理论,在审计资源上分配不合理。

二、现代风险导向审计运用中存在的问题分析

现代风险导向审计在实际运用中也存在一部分问题,主要概括为以下几个方面:

(一)注册会计师综合知识体系不完善导致现代风险导向审计相关问题

审计风险评估体系的设计虽然有其可行性的分析,但是一定程度上仍然存在大量需要解决的问题。

(1)在指标体系设计中,应该包括非财务指标,多设计出新的非财务指标,并要注意财务指标与非财务指标的相互协调。新的评估指标体系还应同时兼顾企业经营过程和结果,应包括反映企业人力资源素质变化及人员周转的指标,应与企业竞争策略相结合,应该做到短期效益与长期效益相结合,尤其应该注重设计反映长期效益的指标。

(2)尽管非财务指标很重要,但为了避免非财务指标主观性和易于操纵的特点,企业应该考虑加强这些非量化的财务性指标的可行性。

(3)根据权变理论,当企业的竞争策略、经营环境改变时,指标体系也会随之变化,即应随时评价指标体系的适用性,所以所建立的新的评估体系应该有一定的灵活性。

(4)风险导向审计在我国还刚起步,我国当前事务所法律风险普遍很低,审计人员缺乏运用风险审计技术提高审计质量的动力,加之比较完善的风险审计运用方法尚未形成,短期内还很难提供高质量的风险审计技术。

(二)缺乏也有效的管理层约束机制导致审计效果受到影响

注册会计师内在原因业务层面审计证据不足,审计工作底稿不规范,审计人员业务专业水平不足。注册会计师与被审计单位之间存在经济利益关系,审计工作存在收费混乱的现象。注册会计师自身以外的原因国家、社会监督层审计制度不完善,社会公众对审计缺乏监督,媒体监督力度不够,被审计单位内部审计制度不完善。

(三)国内相关风险导向审计的法律法规体系尚未完善

我国现有的应用现代风险导向审计的对策主要包括:提高审计人员的专业判断能力。现代风险导向审计过程实质上就是专业判断的过程,注册会计师只有很好地运用专业判断能力,才能有效提高审计质量,避免形式审计。处理好会计师事务所审计成本与效益问题。健全法律法规制度。针对现代风险导向审计的新形势,适时修改相应的一些不合时宜的法律法规,以适应新形势的需要。

三、现代风险导向审计运用的优化策略

针对现代风险导向审计的运用方面存在的问题,我们提出了相对应的优化方法及策略,主要包含以下三个方面:

(一)在业内建立审计风险资源库,优化现代风险审计分析方法

首先,应该建立健全事业单位内部财务审计的规章制度。建立和健全事业单位内部财务审计规章制度,要做到有章可循,有法可依。内部审计机构和人员应加强培训,熟练地掌握内部审计有关法律法规。应建立健全内部审计的控制制度和激励机制及责任制度,规范内部审计机构和人员的行为,还应将该规章制度同本单位的绩效考核制度充分的结合。其次,要提高内部财务审计队伍的综合素质。要一切从实际出发,制定和完善事业单位内部财务审计人员的管理办法,要严把事业单位内部审计人员质量关,提升审计人员的职业道德,部门和单位领导要重视审计工作和审计人才,增强他们发现问题、分析问题、解决问题的能力,要明确内部财务审计人员职责,严肃财务审计纪律。最后还要深化对事业单位内部财务审计的认识。要适时调整内部审计机构的人员组成,定期研究、考核、部署。要完善内部审计工作制度,摒除对立观念,树立和谐的服务观,加强沟通。

(二)完善注册会计师综合知识体系,培养高素质的审计人员

大力提高注册会计师职业的判断能力,做好新的审计风险准则的衔接和培训,通过参加职业责任保险抵御审计风险。

(三)完善与注册会计师法律责任相关法律法规体系

会计师事务所是一个营利性的经济组织,业务拓展状况关系到一个会计师事务所今后的发展和未来,会计师事务所为了维持原有客户资源,为了生存和发展而丧失审计原则,妥协被审计单位错误的会计意见。独立、客观地出具审计意见是注册会计师职业道德的基本原则。例如,世界原五大会计师事务所之一的安达信会计师事务所因“安然事件”而在公众视线中消失,安达信会计师事务所帮助安然公司直接或间接地执行会计业务,又出具具有公信力的审计报告,对于社会公众来说,这样的审计报告又能有多少真实性和依赖性?注册会计师执行此类型业务时必须提高警惕,风险评估为高水平。所以注册会计师必须苦练“内功”,不但要精通审计、会计、税务等专业知识,而且还需熟练掌握企业管理和其他方面的知识,不断加强后续教育,不断总结经验和提高自身专业素质。

四、小结

风险导向审计是在审计人员充分了解被审单位信息的基础上,分析风险的大小,进而确定实际性程序的性质、时间和范围的一种新型审计模式,帮助和督促职能部门(单位)及时发现、科研、资产等方面存在的管理缺陷和漏洞,不断提高管理水平、经济效益和投资效益。

(作者单位为华南农业大学)

参考文献

[1] 张连起,丁勇.现代审计风险模型分析探讨[J].中国注册会计师,2004(10).

审计风险现状范文第3篇

在风险特征的描述部分,采用了度量尾部风险的极值分布,较为合理的反映了沪深300股指期货的尾部风险,并较为精确的测度了其风险值,克服了以往采用正态分布假设的不足;接下来利用Copula函数讨论了沪深300股指期货的非线性相依模式,在极值分布的基础上,以极值分布为边缘分布,对四种常用的Copula函数进行了拟合,发现FrankCopula的拟合效果最好,其次为ClaytonCopula。据此,对不同组合的VaR和CvaR进行测度,发现投资组合比例与风险之间呈现“U”型特征,这也为套期保值提供了一种新的研究范式。

由风险特征、非线性关联模式过度到在引入套期保值比率的概念之后,本文试图克服以往静态套期保值率的不足,对股指期货的动态最优套期保值率和效率评价进行了系统性的研究。先后探讨t分布下的四种MVGARCH模型,并在此基础上推导了动态套期保值率,实证结果表明,基于动态套期保值比传统静态套期保值的效率有了较大程度的提高。描述动态相关的DCC模型套期保值后的效率最高,而基于CCC模型套期保值后的风险值最小。

关键词:极值分布;Copula函数;VaR;CvaR;套期保值

第一章引言

1.1问题提出与选题背景

沪深300指数是沪深证券交易所第一次联合的反映A股市场整体走势的指数。它的推出,丰富了市场现有的指数体系,增加了一项用于观察市场走势的指标,有利于投资者全面把握市场运行状况,也进一步为指数投资产品的创新和发展提供了基础条件。由于其市值覆盖率高,代表性强,沪深300指数得到市场高度认同。正因为如此,许多基金已经把沪深300作为业绩衡量基准,沪深300已成为即将推出的中国股指期货的标的物。由此可见,今后,沪深300指数必将在股票套期保值,金融衍生品开发,基金运作上产生越来越重要的作用。

股指期货在中国生存的土壤已经具备,资本市场对股指期货的推出早是翘首以待,股指期货是一种基于股票指数的金融衍生产品,不仅可以作为风险管理工具,有效分散和转移企业的金融风险,而且还可以充当套期保值的职能,为投资者赢得利润。从国外成熟市场的经验来看,在股指期货的众多功能中,套期保值仍是多数投资者进行交易的主要目的,尤其是对大型的机构投资者来说,运用股指期货对现货资产进行套期保值已经成为风险管理中的重要手段[1]。

但股指现货和期货之间特殊的关联关系使得杠杆值进一步增加,它为风险的传播提供了便捷的渠道,使之在与其相关联的金融产品中间肆意蔓延,不断的积累能量并触发新的风险以至于金融风波,如美国的次贷危机所引发的全球经济动荡。因此,在股指期货推出之前,考察期货和现货的动态相关关系,分析其风险特征并进行套期保值的研究是具有一定的学术价值和实际意义的。

基于此,本文主要讨论和重点解决的两个问题主要是:

1、沪深300股指期货的风险特征和关联模式

2、建立在这种关联上的动态套期保值模式的推导和测算

1.2研究文献及评述

如何度量金融资产的相关性历来为学者所关注,因为,风险来自于相关。目前对金融资产收益序列的风险的研究众多,估计方法主要包括历史模拟法、参数方法和非参数方法。历史模拟是利用收益序列的经验分布来近似真实分布,该方法虽然简单,但不能对过去观察不到的数据进行外推,在运用中受到限制;参数方法假定资产收益服从某一特定过程,基于某一特定分布,得出的风险值多是对金融资产收益的总体风险的度量,并未很好的考虑到极端风险。由于金融市场上的收益率存在尖峰厚尾的特征,极端事件的发生虽然稀少,损失却很巨大,人们最为关注的风

险就是这种极端风险。极值分布作为一种非参数方法,不须设定模型,而是让数据去选择,相对于一般的椭圆分布,它更能捕捉到市场的极端风险[2];而极端风险间的相关是一种非线性相关,由于金融收益率具有的“波动丛集性”的特征,使得一般的线性相关无法准确描述金融资产间的关联关系[3],Copula作为一种数学函数可以用来度量金融市场上的非线性相关,正确设定研究对象的边缘分布是构造Copula函数的关键。Copula这一概念最早是由SKlar[4](1959)提出,最近几年才发现它能应用在金融风险管理中,对这一方法比较系统的理论和介绍可以参见Joe(1997)、Nelsen(1999)和Embrechts等(1999)[5][6][7]首先将这一方法应用到金融领域。Longi(2000)[8]应用Copulas方法对信用风险及信用衍生产品定价进行研究。Frey和McNeil(2003)[9]使用Copula方法来分析尾部相关性,采用比较一般化的相关系数进行定义。近年来使用Copula方法对组合风险进行度量的研究还有Bouye,Gaussel和Salmon(2002)[10],Longi和Solink(2001)[11],Glasserman[12]等(2002),Embrechts等[13](2003),Rosenberg和Schuermann(2005)[14]等。Embrechts等(2003)[15]和Cherubini等(2004)对Copula在金融中的相关应用给出了比较全面的综述。

另外,对于套期保值比率而言,研究众多。套期保值率的计算最早由Ederington(1979)提出,以投资组合理论为基础[16][17],在投资者持有投资组合的方差最小的情况下得出最优套期保值比率[18]。其计算模型主要有三种:风险最小化套期保值、给定风险水平下收益最大化套期保值和目标收益下风险最小化套期保值。对于基于方差最小的风险最小化套期保值比率主要常用方法是简单最小二乘法回归模型(OLS)。在具体计算中,使用OLS方法对期货价格的变化量和现货的收益率进行线性拟合,由于该值在整个套期保值过程中是一个常数,一般称之为静态最优套期保值比率。BellandKrasker(1986)证明假如期货的期望价格变化依赖于新的信息集,那么传统的回归方法得到的最优套期保值比率将是有偏估计;Ghosh(1993)与Chou、Fan&Lee(1996)也都得出了类似的结论[19][20]。受市场极端事件的影响,收益率间的相关关系往往会发生结构性的变化,最优套期保值率不可能是恒定的参数,并且静态套期保值反映的只是样本期间内平均意义上的套期保值行为,实际指导意义不强,因此有必要从动态的角度去研究最优套期保值率。

1.3选题研究思路及主要内容

本文在综合前人研究的基础上,以极值分布作为构造Copula的边缘分布,合理刻画沪深300股指现货和期货收益率的极端风险,找出能够精确度量极端风险的相依结构,并对相依关系做出了合理解释。同时,受市场极端事件的影响,收益率间的相关关系往往会发生结构性的变化,最优套期保值率不可能是恒定的参数,并且静态套期保值反映的只是样本期间内平均意义上的套期保值行为,实际指导意义不强,因此有必要从动态的角度去研究最优套期保值率。本文的结构安排如下:

第二章是对沪深300股指期货的统计描述,对要研究的沪深股指有个较为清晰的图景;第三章是在第二章统计特征的基础上,提出了描述尾部特征的极值分布,较为精确的测度了沪深300股指期货的尾部风险值;第四章,是相依风险的度量,在第三章的基础上,以极值分布为边缘分布,建模Coplua联结函数,刻画沪深300股指期货和现货的相依性及关联风险;第五章,是在前面几章的基础上,在动态相依的基础上提出了利用多元GRACH模型来最优动态套期保值率的思想;第六章,是四种多元GRACH模型的理论介绍,推导并测算了该模型与最优动态套期保值率的换算关系式;第七章,是对前面几章的总结和基本结论;第八章是在第七章基础上的进一步分析和政策建议;第九章,是论文不足、模型改进及后续研究。

图1-1文章结构导读图

1.4本文假定

由于目前,中国的股指期货尚未正式推出,学者们一般是以沪深300股指期货合约的仿真数据作为沪深300股指期货数据进行研究。进行套期保值交易需支付一定交易费用,本文计算的最优动态套期保值率是在忽略交易费用时,所进行的套期保值。为了使研究方法和手段更加简介和具有科学性,我们不妨做如下假定,以简化我们所要研究的问题:

1.4.1关于研究前提的假定

假定:沪深300股指期货数据具有高度的仿真性,中国金融期货交易所公布的仿真数据基本上可以反映股指期货的运行规律。

1.4.2关于交易费用的假定

假定:进行动态套期保值时,每次对冲交易中的交易费用很低,以至于可以忽略不计。

1.4.3关于模型估计的假定

假定:在四种多元GARCH模型的基础上推算动态套期保值率的时候,我们假定沪深300股指期货的收益率服从T分布(一般的研究中通常假定了正态分布,但沪深300股指期货收益率具有厚尾特征,为了更贴近实际,我们假设收益率服从T分布)。

1.4.4关于交易者操作策略和技巧的假定

假定:交易者在进行套期保值时,手中的资金足以配置金融资产,且交易者能够严格按照最优套期保值率进行资金配比,并能在适当的时机和点位进行对冲。

1.4.5关于交易环节的假定

假定:不存在保证金不足的风险以及交割风险。

1.5选题意义

作为国内股票市场最具权威和影响力的重要指标之一,沪深300指数已成为众多基金的业绩衡量基准,跟踪资产在国内股票指数中居首位,也被国内首只股指期货选为标的指数。随着沪深300指数的广泛应用和市场关注程度的日益提高,投资者迫切需要多层次多角度地解剖、分析和评判指数运行状况。

本文不仅测度了沪深300股指期货的尾部极值风险值,而且还精确刻画了两者的相依模式,廓清了关联模式和风险特征,这有利于投资者、研究者或者监管者理性认识沪深300股指期货的风险特征,合理配置投资组合,有效监控运行风险,同时也有助于投资者更深入地掌握沪深300指数运行动态,对沪深300指数作为业绩衡量基准和投资标的以及股指期货等衍生品的市场应用与投资研究,都具有积极作用。本文提出的最优动态套期保值率模型,克服了以往静态套期保值的诸多不足,极大地提高了套期保值的效率,并且给出的动态套期保值率具有可预测性,另外,模型具有稳定性和可推广性,这也使我们的选题和研究具有一定的理论意义和现实指导意义。

第二章沪深300股指期货的统计特征

本文拟系统研究沪深300股指期货的风险特征和套期保值问题,一个合理的前提就是先找出沪深300股指期货的统计特征。第二章主要是运用统计分析软件SPSS16.0和统计分析软件OxMetrics5.0对沪深300股指期货的收益率序列进行分析。

2.1指标说明与样本选取

沪深300指数期货是以沪深300指数作为标的物,由上海证券交易所和深圳证券交易所联合编制。沪深300指数于2004年12月31日为基日,以该日300只成份股的调整市值为基期,基期指数定为1000点,自2005年4月8日起正式。2005年4月8日正式。沪深300指数以2004年12月31日为基日,基日点位1000点。沪深300指数是由上海和深圳证券市场中选取300只A股作为样本,其中沪市有179只,深市121只。样本选择标准为规模大,流动性好的股票。中国金融期货交易所沪深300期货标准合约请见附表2-1。

本文选取了2007年1月4日到2008年9月26日间期现指数收盘价作为分析对象,这一时期的数据较有特点,沪深300指数从07年1月的2000多点,只用了9个月左右的时间,就攀升到6000点,股指期货指数甚至接近7000点,主要受受金融危机的影响,到08年的9月份沪深300指数从最高点又滑落到2000点。为了研究数据收益率特征,将其定义为:,用表示第t日指数收盘价,为了凸显研究对象的数字特征,不妨做个单调变换,把收益率定义为。沪深300指数的代码为HS300,期货合约的英文代码为IF,因此沪深300股指现货和期货收益率分别用是S和F表示。数据来源于中国金融期货交易所。见Excel附表数据1。

图2-1沪深300股指期货与现货指数走势图

(注:该图由统计分析软件SPSS16.0绘制)

2.2样本描述统计

首先对沪深股指300现货和期货收益率进行了描述统计,结果表明沪深股指300现货收益率的标准差2.711,明显的低于仿真股指期货收益率的标准差3.801,期货收益为的峰度为4.578,现货收益率的峰度仅为0.942,这说明期货收益率的整体波动要大一些。从J-B正态检验来看,无论是期货还是现货的收益率都显著的拒绝原正态分布的假设。虽然现货收益率的均值和中位数都大于期货所收益率,但现货收益率的偏度为-0.3590,期货的为1.171。由K-S和S-W检验(见附表2-2)以及图2-2的正态性QQ检验可知,沪深300股指期货收益率的在5%的显著水平下拒绝正态性的原假设。

表2-1沪深300股指期货收益率的统计描述

样本量极差极小值极大值均值标准误偏度峰度

期货收益率42330.165-10.94419.221-0.0073.8011.1714.578

现货收益率42318.626-9.6958.9310.0192.711-0.3590.942

图2-2沪深300股指期货、现货收益率的正态性检验QQ图

(注:该图由统计分析软件SPSS16.0绘出)

2.3基于DCC-GARCH模型收益率条件相关的动态描述

从图2-1我们可以看出,沪深300股指期货、现货收益率之间存在着极为重要的关联性,且关联程度是随着时间变化而变化的,要度量这种时变相关可以用到DCC-GARCH模型。该模型是有Engle(2002)提出,是在Bollerslev(1990)提出的常相关模型的基础上发展出来的。设为具有零均值的收益序列,则DCC-GARCH的具体模型为:

(1)

其中是一个对角矩阵,对角线的元素即为各变量的条件方差,为标准化残差的条件协方差矩阵,S为标准化残差的无条件协方差矩阵,为条件相关系数矩阵,符号“。”代表Hadamard乘积,即两矩阵对应元素相乘,为所要估计的参数。

采用DCC-GARCH模型对沪深300股指现货和期货收益率序列进行拟合,图1显示两个收益率序列动态相关的特征示例,其中纵坐标为动态时变相关系数。两指数收益序列动态相关性非常强,相关系数最小为0.0293,最高为0.8909,平均为0.7077,标准差为0.0751。

图2-3:基于DCC-GARCH模型收益率条件相关的动态描述

(注:该图由统计分析软件OxMetrics5.0绘制)

2.4本章小结

在第二章,主要阐述了指标数据的选取,并利用SPSS16.0软件和OxMetrics5.0统计分析软件对沪深300股指期货的收益率序列进行统计描述分析,发现沪深300股指期货、现货收益率的具有厚尾的特性,通过K-S、S-W以及QQ图正态性检验,在5%的显著水平下,两者的收益率不服从正态分布;由DCC-GARCH模型测度了沪深300股指现货和期货收益率具有时变的动态相关关系。

厚尾特征是第三章建立极值分布度量尾部风险的主要依据,动态关联的特征是第四章以极值分布为边缘分布,建立Coplua连接函数度量相依结构的基础,同时也是第五、六章建立动态套期保值比率模型的基础。

第三章沪深300股指期货和现货的极值风险测度

极值理论作为度量极端风险的一种方法,具有超越样本数据的估计能力,并可以准确地描述分布尾部的分位数。它主要包括两类模型:BMM模型和POT模型。其中BMM模型是一种传统的极值分析方法,主要用于处理具有明显季节性数据的极值问题上,POT模型是一种新型的模型,对数据要求的数量比较少,是目前经常使用的一类极值模型[21]。本文将采用POT模型进行估计。本章的计算结果主要由统计分析软件Splus8.0运算得出。

3.1POT模型的理论基础

(2)

根据条件概率公式我们可以得到:

(3)

定理1:(Pickands(1975)):对于一大类分布(几乎包括所有的常用分布)条件超限分布函数,存在一个使得:

(4)

当时,;当时,。函数称广义帕累托分布,也即其概率密度函数。

3.2POT模型中阈值的确定

基于极值理论中的POT模型,我们需要利确定恰当的的阈值对超限分布进行GPD拟合。Dupuis(1998)给出了对阈值的估计方法,一般有两种:根据Hill图、根据样本的超限期望图,本文采用样本的超限期望图确定阈值,令,样本的超限期望函数定义为:

(5)

超限期望图为点构成的曲线,选取充分大的作为阈值,使得当时为近似线性函数:

(6)

DuMouchel(1983)的研究表明,在允许的情况下选取10%左右的数据作为极值数据组是比较合适的选择,否则可能会出现样本内过度拟合,样本外不适用[22]。首先描绘出沪深300股指现货和期货收益率下尾和上尾以及各自的阈值变动范围(见附图3-1,3-2),以现货收益率下尾分布为例:样本的平均超限函数图在-3.3附近近似直线,具有明显的帕累托分布特征,并且我们结合阈值平缓变动的范围,经过多次试验,最终确定当,时能够较好的刻画下尾特征。

3.3模型估计及结果

当确定以后,利用的值,进行最大似然估计得到和。同时,我们得到的值中比阈值大的个数,记为,根据公式(4)用频率代替的值,可以得到的表达式:

(7)

根据选取的阈值,进行极大似然估计,进行尾部的拟合,得到以下参数,由尾部拟合优度图(图3-1)可以看出下尾尾部的大部分点基本都落在图中的曲线上。由于数据分布的原因,上尾拟合不可避免的存在一些偏差,总体来看极值分布的拟合效果是比较理想的。

表3-1极值分布参数估计结果

尾部阈值超出样本xibeta

现货收益率上尾3.349320.021660041.439442

下尾-3.629430.053883881.319256

期货收益率上尾4.39937-0.19749174.916466

下尾-4.296370.11569573.253238

图3-1:沪深300股指现货收益率上尾和下尾拟合图

(注:图3-1由统计分析软件Splus8.0绘制)

图3-2:沪深300股指期货收益率上尾和下尾拟合图

(注:图3-2由统计分析软件Splus8.0绘制)

3.4基于极值分布的VaR估计

由上式取反函数(Invert)可以得出VaR的估计式,对于给定某个置信水平,可以由的分布函数公式(7)可以得到

(8)

根据GPD的条件分布函数公式(4)可以得到:

(9)

为了凸现极值分布对极端风险的刻画能力,下表同时给出了基于正态分布和极值分布的VaR和CVaR估计值,由下表不难看出:期货收益率的风险要明显的大于现货收益率的风险,极值分布下的期货风险值大概是现货的两倍;在0.975和0.99的置信水平下,基于极值分布的风险估计值要大于正态分布下的风险值,说明越是在高分位数,极值分布越能捕捉到尾部风险。

表3-2基于极值分布的VaR和CVaR估计

方法基于正态的Var和CVaR基于极值分布的Var和CVaR

分位数现货S期货F现货S期货F

VarCVaRVarCVaRVarCVaRVarCVaR

0.954.48065.61326.21627.79723.95115.43587.012610.6872

0.9755.33476.35897.40858.83814.96556.47269.863113.0676

0.996.32797.24648.794810.0766.33007.867413.079415.7535

3.5本章小结

根据文章第二章的统计特征:厚尾以及非正态性,第三章主要利用统计分析软件Splus8.0,建立极值分布,详尽地讨论了基于极值分布建立的Var和CVaR模型,较为准确的测度了沪深300股指期货和现货的尾部风险,并用极值分布的风险值同正态分布下的风险值作比较,说明了极值分布更能捕捉到沪深300股指的尾部风险。

然而,建立在极值分布之上的风险是单一风险,没有考虑因期货和现货收益率之间的相关性而造成的联动风险,接下来的第四章就在极值分布的基础上,利用Coplua连接函数对沪深300股指期货和现货收益率之间的相依风险进行测度。

第四章沪深300股指期货和现货的相依风险测度

Juri(2002)提出的Copula函数包含了变量尾部相关的全部信息,可以使分析者更加全面的了解变量之间的尾部相关关系。为了对变量之间的尾部相依关系进行刻画,我们在对沪深300股指现货和期货相依关系的研究中使用了4种Copula函数,分别是Gumbel、Guass、Clayton和Frank函数。本章计算结果主要由Splus8.0运算得出。

4.1四种Copula函数

4.1.1GaussCopula函数

(10)

为一元标准正态分布,。事实上是边际分布为标准正态分布。诸多研究表明,在数据的中间部分,模拟与实际数据吻合较好,但在尾部差别相当明显,当要度量尾部风险相依性时,椭圆族的高斯Copula是无能为力的。

4.1.2GumbelCopula函数

GumbelCopula的密度函数具有非对称性,上尾高下尾低,其密度分布呈“J”字型。GumbelCopula函数上尾的相关性较强,可用于描述在上尾处具有较强相关关系的现象。收益率呈左偏分布时,多用ClaytonCopula去描述相关关系。GumbelCopula函数的分布函数和密度函数分别为:

(11)

(12)

其中。当时,,即随机变量、独立;当时,随机变量、趋向于完全相关,且,即当时,GumbelCopula函数趋向于Fréchet上界。

4.1.3ClaytonCopula函数

ClaytonCopula函数的分布函数与密度函数分别为:

(13)

(14)

其中。当时,,即随机变量、趋向于独立,当时,随机变量、趋向于完全相关,且,即当时,ClaytonCopula函数趋向于Fréchet上界。

ClaytonCopula的密度函数同样具有非对称性,上尾低下尾高,其密度分布呈“L”字型。ClaytonCopula函数下尾的相关性较强,可用于描述在下尾处具有较强相关关系的现象。收益率呈右偏分布时,多用ClaytonCopula去描述相关关系。

4.1.4FrankCopula函数

FrankCopula函数的分布函数和密度函数分别为:

(15)

(16)

其中。时,随机变量、正相关,时随机变量、趋向于独立,时随机变量、负相关。FrankCopula的密度函数具有对称性,其密度分布呈“U”型。

4.2Copula模型的估计

Copula模型的参数估计采用两阶段的极大似然估计方法。极大似然方程为:

(17)

为联合密度函数,是边际分布的参数,是Copula分布密度函数的参数,所有的参数集为:

(18)

第一步,估计边缘分布函数参数:

第二步,在已知第一步参数的情况下,对进行估计:

(19)

以上方法又称边际推断函数法(IFM),参数的估计称为边际推断估计(IFME),IFME和MLE的效率是非常接近的,具有一致性和渐进正态性。

4.3Copula函数建模和相依风险测度

4.3.1经验Copula函数

经验Copula函数由Deheuvels(1984)提出,Nelsen在1999年做了进一步的阐述,它是基于非参数建模的方法对金融时间序列的真实分布做出较为精确的拟合,这种估计能够比其他方法更接近数据的实际分布,因此,在将沪深300股指现货和期货收益率的边际分布(极值分布)转化为均匀分布进行不同的Copula函数估计之前,有必要考察经验Copula函数的一些性状。

由于GumbelCopula在上尾有着较高的相关性,即主要反映市场交易活跃时的相关,不妨称之为“牛式相关”[23];ClaytonCopula在下尾有着较高的相关性,即主要反映市场交易不活跃时的相关,称之为“熊式相关”;FrankCopula是对称分布,属于“对称相关”。由图4-1经验Copula概率密度的等高线可以看出,该分布的两端概率的密集程度大体相当或下尾比上尾处的概率稍微密集了些,因此有理由猜想利用对称分布的FrankCopula或ClaytonCopula可以较为真实的反映这一相关结构。

图4-1:经验Copula密度函数和概率密度的等高线

(注:上图由统计分析软件Splus8.0绘制)

4.3.2Copula函数的估计

我们选取Gumbel、Gaussian、Frank和Clayton四种Copula函数,根据边际推断函数法进行估计,其结果如下:

表4-1Copula函数的估计结果

GumbelGaussFrankClayton

delta1.944120.702346.772261.75568

Kendalls.tau0.485630.49570.55200.46747

Spearmans.rho0.66580.68530.75220.6451

loglike135.3727143.7926158.4203149.3260

AIC-268.7454-285.5851-314.8407-296.6520

BIC-264.7004-281.5401-310.7957-292.6070

由上表可以看出FrankCopula的极大似然值最大,并且AIC和BIC是最小的,因此选取FrankCopula是比较恰当的。根据以上估计结果对函数进行拟合,图4-2给出经验Copula和四种Copula的拟合图的等高线进行对比,不难看出,FrankCopula的拟合效果最好,其次为ClaytonCopula。为了进一步验证这一结论的可靠性,利用FrankCopula函数对沪深300股指现货和期货收益率序列进行模拟,对照真实收益率,可以推知基于FrankCopula对收益率分布的拟合非常理想。见图4-3。

图4-2:四种Copula函数与经验Copula函数的拟合比较。左上为GumbelCopula,右上为GaussCopula,左下为FrankCopula,右下为ClaytonCopula

(注:上图由统计分析软件Splus8.0绘制)

图4-3:真实收益率与基于FrankCopula模拟收益率

(注:上图由统计分析软件Splus8.0绘制)

4.3.3基于FrankCopula的VaR和CVaR估计结果

结合前面的极值分布,测定VaR的算法主要步骤如下:

第一步,估计沪深300股指现货和期货收益率的极值分布参数;

第二步,以GPD为边际分布,估计四种Copula函数的参数;

第三步,根据一定准则选取拟合最优的Copula函数;

第三步,使用恰当的运算法则从最优的Copula函数产生pseudo随机数;

第四步,用蒙特卡罗模拟,产生10000组模拟的资产组合估计VaR。

现在考虑极端事件的相依风险的测度问题,s和f分别表示沪深300股指现货和期货的收益率,设和分别为股指现货和期货的投资比例,这两种资产的组合投资的对数收益率可以表示为[24]:

(20)

选取极值分布作为边际分布,FrankCopula为连接函数,模拟出联合分布F的随机数,对于给定的组合投资收益率R,在给定的置信水平q下,用蒙特卡罗模拟,产生10000组模拟的资产组合估计VaR。下表给出了五种不同组合比例之下的风险值。

表4-2不同组合比例的VaR和CVaR估计

组合比例

4.44865.70695.61326.64716.60647.5190

4.09415.12595.14856.10085.82136.8273

4.04535.16824.90146.08696.04406.9047

4.05315.16824.88196.00255.91176.8118

4.21285.34475.16086.23306.11947.0764

4.4本章小结

根据第二章统计特征:动态相依性,本章在第三章的基础上,主要运用统计分析软件Splus8.0运算得出。以极值分布为边缘分布,建立Coplua连接函数,重点介绍、尝试和讨论了四种Coplua连接函数,用来测度沪深300股指期货和现货间的相依模式,并据此给出了风险值Var和CvaR的估计。

由表4可以看出,随着现货投资比例的增加,风险值不断降低,然后又随之增加,大致呈现“U”型特征。以上面数据为例,在0.975和0.99的置信水平下,现货的投资比例为0.7,期货的投资比例为0.3时风险值最低,不断的缩短步长,总可以找到风险最低的投资组合,该思路可以运用到套利上面去,从而为研究股指期货的最优套期保值提供了新的范式。

从下一章开始,第五章和第六章将重点介绍动态套期保值率的测算,这也是建立在动态相依性的基础之上的。

第五章沪深300股指期货套期保值比率的提出

股票指数期货套期保值交易策略的基本思路是在投资者的资产配置中同时拥有股票组合和股指期货的相反头寸,按照适当比例配置后,将其中一方所产生的盈利与另一方所产生的亏损全部或者部分抵消,从而化解和降低市场的系统性风险[25]。套期保值策略最关键的问题是怎样确定套期保值率,使投资者的资产在面临波动时能够获得最大收益或最小损失。

期货套期保值,是指为锁定现货购买成本或利润而在期货市场上建立一定数量的与现货头寸方向相反的期货头寸,利用期货交易的盈亏来弥补或抵消现货交易上的盈亏,从有效的化解和降低市场的系统性风险[26]。在制定套期保值交易策略时,核心问题是确定最优套期保值比率,使投资者的资产头寸在面对基差波动风险的情况下能够获得最大化的收益或者最小化的损失。

5.1静态的套期保值比率模型

套期保值组合的收益与风险考虑一包含单位的现货多头头寸和单位的期货空头头寸的组合,记和分别为t时刻现货和期货的对数收盘价,则投资组合为:

(21)

套期保值组合的风险为:

(22)

Johnson(1960)通过最小化套期保值组合的风险得到了最小方差套期保率:

(23)

上式是最小二乘估计的思想,可以写为

(24)

上式中,为回归方程的残差,为套期保值比率,

(25)

由于和是分别对数收盘价的差分,所以可以看做为t时刻现货和期货的对数收盘价。上式还可以记为:

(26)

但是这里存在一个问题,这样估算出的的值只是平均地反映样本期间内的风险,但由于在这一段时间内的都是固定不变的,因此,没有时效性,实际指导意义不强。在实际应用中,应该更多的反应最近市场的变化,从而取得更好的套期保值效果。

5.2动态的套期保值比率模型

如果将上述模型动态化,考虑一包含单位的现货多头头寸和单位的期货空头头寸的组合,该套期保值组合在第t期的收益率可以表示为:

(27)

上式中:为套期保值比率,和分别为现货和期货的对数收益率。

收益率的方差为:

(28)

为t-1时的信息集,对(8)式中的求一阶导数并令其等于零,可得最小方差套期保值比率为:

(29)

从上式中我们可以看出,随着现货和期货市场中新的信息的产生。信息集将发生变化,从而引起最优套期保值比率的变化,此时的最优套期保值比率不再是一常数[27]。

5.3本章小结

本章篇幅较短,主要介绍了套期保值的思想,在第一章的第二部分总结了已有研究的不足,并在在第二章统计特征:动态相依性的基础上提出了动态套期保值的构想以及测算公式,利用现货和期货收益率的协方差和期货的条件方差得出动态的最优套期保值比率,第六章将在第五章的思想上,引入四种常用多元的GARCH模型来计算最优套期保值比率。

第六章沪深300股指期货套期保值比率的测算

多变量GARCH模型不仅涵盖了单变量模型的波动特性,而且可以刻画不同变量间的相关关系。多变量GARCH模型是研究金融市场中不同变量、不同因素间的相互影响和相关关系的一个很好的工具[28]。本章主要是运用统计分析软件OxMetrics5.0计算得出。

6.1对角BEKK模型和数量型BEKK模型

为了保证条件方差矩阵的正定性,Engle(1995)提出了BEKK模型

在多元GARCH模型中,令

(30)

(31)

其中,A、、B为N维方阵,表示Kronecker积,则与多元GARCH(p,q)

模型相对应的BEKK模型为

(32)

若A和B都是对角矩阵,则称它为对角型BEKK模型(diagonalBEKK);若A和B都是数量矩阵,则称它为数量型BEKK模型(scalarBEKK)。该模型的优点在于它容易满足矩阵H的正定性,同时具有相对较少的模型参数。

6.2常相关GARCH模型和动态相关GARCH模型

Bol1erslev(1990)提出一个常相关多元GARCH模型(CCC一MGARCH),这个模型参数估计方便,经济意义明确。用,表示的第i和第j个分量,则二者在t时刻的相关系数为:

(33)

其中,是矩阵的第(i,j)个元素,表示和在t-1时刻的条件协方差;和分别为矩阵中对角线上的第i和第j个元素,分别表示和在t-1时刻的条件方差。

可以看出,相关系数是时变的,Bollerslev提出了常相关系数假设,假定为常数,则条件方差矩阵可以写作:

(34)

(35)

(36)

里的所有条件方差可以表示为GARCH(p,q)的形式,该形式如下:

(37)

两个零均值的随机变量和之间的常相关系数可以定义为:

(38)

如果在相关系数时变的基础进行算法探究,就是DCC模型。DCC-MVGARCH模型由Engle和Sheppar(2002)提出,用于研究多个时间序列的波动特性和相关关系。关于该模型,在第二部分已经详细阐述过,在此就不再赘述。DCC-MVGARCH模型不仅具有良好的计算优势,可以用来估计大规模的相关系数矩阵,而且可以很好地研究在不同时期的市场信息、政策导向等因素的影响下,多个市场之间或者同一市场多个资产之间的动态相关关系。

6.3动态套期保值率的测算

根据文章6.1和6.2节提出的四种多元GARCH模型,在学生t分布的假设下,利用极大似然函数方法估计其参数。这里采用BHHH算法,利用目标函数的梯度信息进行迭代和优化,再根据模型参数求得最优套期保值率。运用结果由统计分析软件OxMetrics5.0计算得出。四种模型最优动态套期保值率的具体计算结果详见Excel附表数据2。

6.3.1基于不同模型的动态套期保值率的统计描述

由下图不难看出,基于D-BEKK和S-BEKK模型测算出的动态最优套期保值率大体相近,最优套期保值率围绕均值波动剧烈,即在较短的时间内需要变换的投资比例,基于DCC和CCC计算出的动态最优套期保值率走势较为一致,最优套期保值率具有时间趋势且变动较为缓和,投资者的投资组合在较短的时间内不需有较大的变动,因此,用基于DCC和CCC计算出的动态最优套期保值率更具有现实指导意义。表6-1给出了动态套期保值率的统计描述。

图6-1:基于四种多元GARCH模型测算的最优套期保值率

(注:图6-1由统计分析软件OxMetrics5.0绘制)

表6-1基于不同模型的动态套期保值率的统计描述

均值中位数极大值极小值标准差偏度峰度

S-BEKK0.7070.7291.001-0.0350.127-2.67213.100

DBEKK0.7030.7450.926-0.0420.142-2.59411.040

DCC0.5660.5580.9890.0210.107-0.0106.288

CCC0.5640.5540.8110.4210.0800.4342.684

6.3.2最优套期保值效率检验——基于均值和标准差

所谓套期保值效率是指套期保值活动是否达到预先制定的目标以及实现的程度。为了较为合理的测度套期保值的效果,必须综合考虑收益和风险两个方面的因素。套期保值后的收益的均值体现了收益率的大小,标准差反映了风险的大小,均值越大,标准差越小,套期保值的效果越明显。因此可以用均值除以标准差,即标准化后的均值作为衡量套期保值优劣的指标。

由表6-2可以看出,未经套期保值的收益率(S)均值为0.025,标准差为2.711,因此标准化均值为0.0092,经过最优套期保值之后的产品相对于现货收益率的均值都有所提高,其标准差均有所下降,可见均达到套期保值的效果。其中基于DCC模型进行套期保值后的收益率标准化均值最大,为0.0190,其次为CCC模型。而基于S-BEKK模型进行的套期保值标准化均值最小,为0.0160,其次为D-BEKK模型。由DCC模型估算出最优套期保值效率最高,比未保值前的效率提高了107%。

表6-2基于四种多元GARCH模型套期保值后的收益率的统计描述

最小值1Q中位数3Q均值标准差标准化均值

S-9.695-1.3820.40301.6700.0252.7110.0092

F-10.944-1.841-0.0851.182-0.0073.797-0.0018

S-BEKK-14.327-0.7640.3201.2230.0382.3780.0160

D-BEKK-13.620-0.7690.3071.2230.0392.3680.0165

DCC-10.298-0.8790.2901.2240.0402.1070.0190

CCC-9.601-0.8720.2871.2240.0382.0670.0184

注:Q为四分位数

6.4本章小结:

第六章在第五章的基础上,详细推导了四种多元GARCH模型的动态相关系数与最优套期保值率的换算问题,克服了静态套期保值率的不可递推与预测性,为研究动态套期保值问题提供了一种新思路。本章以沪深300股指期货和现货收益率为例,在t分布下,利用统计分析软件OxMetrics5.0建立了四种多元GARCH模型,实证研究了最优动态套期保值率能够极大的提高套期保值的效果。

第七章基本结论

本文系统地研究了沪深300股指期货的风险特征和套期保值比率问题。首先采用了度量尾部风险的极值分布,较为合理的测度了沪深300股指期货的尾部风险,并以极值分布为边缘分布,对四种常用的Copula函数进行了拟合,较为合理地测度了相依性风险。在动态相依性的基础上,先后探讨t分布下的四种MVGARCH模型,在此基础上推导了动态套期保值率,克服了以往静态套期保值率的不足,并给出了动态最优套期保值的效率评价。得到的结论如下:

7.1关于风险特征的主要结论

第一,通过DCC-GARCH模型对股指仿真期货和现货收益率的条件相关的动态描述中可以看出,沪深300股指期货和现货收收益率的变动趋势大致相同,具有较强的动态相关关系,投资者可以利用现货和期货收益波动的相关性进行有效的套期保值,规避系统性风险;而监管者需要更加密切的关注证券市场的动态变化,防止股指期货推出后市场的恶意操纵。

第二,以极值分布为边际分布构造的Copula函数极大限度的捕捉到了极端风险的相依关系。进一步的实证表明:期货风险要明显的大于现货风险,极值分布下的期货风险值大概是现货的两倍;沪深300股指现货和期货收益率的尾部相关结构可以用Frank函进行描述,即无论市场疯狂上涨还是急剧下跌过程中股指现货和期货收益率之间存在着同时相互影响、相互加强的双边风险关联关系,同时,尾部相关结构也可以用Clayton函数进行刻画,这一结果意味着当资本市场出现处于持续下跌、剧烈波动等极端风险事件时,股指期货的风险关联性相互加强。因此,设定恰当的稳定机制,尽可能不干扰市场正常波动和交易情况。特别是它对于预防股灾等极端股市危机时,是极其必要的。

第三,在利用FrankCopula进行极端风险测度的同时,我们发现,在投资组合比例的步长为0.2时,随着现货的投资比例的增加,风险值先是不断降低后又逐渐增加,组合投资风险大致呈“U”型分布,缩短步长,可以得到风险最低时的投资组合,至少可以得到对应风险局部最小值的投资组合,其实这是一种风险对冲的思想,从而为最优套期保值比率的研究提供了一种新的思路。

7.2关于动态套期保值的主要结论

本文主要基于风险最小化的期货套期保值理论框架,先后采用了四种多元GARCH模型实证测算了沪深300指数期货的动态最优套期保值比率,得出的主要结论如下:

第一,沪深300股指期货和现货收收益率的变动趋势大致相同,具有较强的动态相关关系,投资者可以利用现货和期货收益波动的相关性进行有效的套期保值,规避系统性风险。基于四种多元GARCH模型测算的最优套期保值率的结果显示,较大的动态相关系数与较高的最优套期保值率相对应,较小的动态相关系数对应的最优套期保值率也较小,这符合套期保值的经济含义。以上模型由于较好地克服了金融时间序列数据的残差项自相关和方差时变性等特点,测算出的动态最优套期保值率具有时变性质。

第二,在测算出CCC模型和DCC模型估算出最优套期保值率的基础之上的套期保值的效率要明显高于在SBEKK模型和DBEKK模型的基础上的套期保值,基于DCC模型比为套期保值前效率提高了107%,CCC模型提高了100%,DBEKK模型提高了79%,SBEKK模型提高了74%。结合利用bootrap抽样得出的VaR值,而基于对角BEKK模型进行套期保值的产品并没有很好的转移风险,基于另外三种模型进行套期保值产品的VaR值要明显比现货收益率的的低,说明比较充分的分散了风险,且在CCC模型基础上进行套期保值风险最小。

第三,基于状DCC和CCC模型测算出的最优套期保值率在07年下半年都呈现“U”型,即07年6月到10月股市处于上涨时期,套期保值率较低,10月到08年初,股市处于下跌阶段,此时得出的最有套期保值率较高,这说明沪深300股指期货和现货之间的下尾相关性要大于上尾相关性,这又验证了论文第四章Copula函数度量非线性相关模式。

第八章政策建议

股指期货作为目前金融市场上新推出的重要衍生交易品种,必然存在诸多风险。目前应结合我国的实际国情,制定出适合我国股指期货风险管理需要的措施和对策。

8.1健全市场监管体系,进一步完善期货市场法律法规

股指期货是一把双刃剑,投资者不仅可以利用其套期保值的功能规避股票现货市场的系统性风险,也可以利用其杠杆效应进行过度投机。因此,证券监管机构必须加强监管力度,建立起严格的制度体系。在法规体系上,目前我国期货市场推出的相关法规主要有《期货交易管理条例》、《期货交易所管理办法》、《期货公司管理办法》和《期货从业人员资格管理办法》等,这在一定程度上规范着市场的制度体系。针对股指期货仿真交易的推出,管理部门先后出台了《期货公司金融期货结算业务实行办法》、《期货公司风险监管指标管理试行办法》等法律法规,虽然一系列有利于市场健康发展的制度措施相继出台,但应该看到我国的相关法律法规还不够完善。我国应该结合实际国情,尽快制定出一部涵盖面广的行业性法律《期货法》,制定股指期货的监管、交易、结算、风险控制等的具体法律规定,从而形成在统一期货法规下证监会依法监管与交易所自律管理的股指期货监管体系。

8.2加强股票现货和期货市场的协调与合作,防范复制风险

目前我国期货市场和现货市场互相隔离,这不利于股指期货的风险控制和运作效率的提高。我国应借鉴其他国家和地区发展股指期货的成功经验,不断加强现货市场和期货市场之间的信息共享的协调管理,打破两个市场间的行业壁垒,使期货市场与现货市场进行合作,对风险进行联合控制和管理。另外,通过本文分析,可以看出期货风险要明显的大于现货风险,极值分布下的期货风险值大概是现货的两倍。当资本市场出现处于持续下跌、剧烈波动等极端风险事件时,股指期货的风险关联性相互加强。因此,设定恰当的稳定机制,尽可能不干扰市场正常波动和交易情况。特别是它对于预防股灾等极端股市危机时,是极其必要的。

8.3建立突发风险的管理机制

由于政治、经济和社会等因素产生的风险变动,会影响投资者对价格的合理预期,特别是突发或偶然事件的发生会对金融市场造成严重的损失。中国的证券市场还很不健全,稳定性不高,所以为了防范突发事件造成的风险,应当建立突发风险管理机制。如政府的适度干预或者建立风险管理基金等。其中,政府的适度干预主要包括政策指导、修改法规、入市交易和出资救市等,严控操纵市场行为,预防突发的市场风险。

8.4加强股指期货的知识宣传和风险教育

股指期货属于新推出的衍生交易品种,我国的广大投资者对其并不十分了解,因此,应加强股指期货的知识宣传和风险教育,增强其风险防范意识,提高风险辨别及控制能力,提高投资者的股指期货交易技巧,不能片面地让投资者只看到盈利,而对风险熟视无睹。投资者要做到理性、谨慎,根据自己的市场判断能力和风险承受能力作出决定。

第九章模型改进和后续研究

文章的思路基本上沿袭着逐步解决问题,不断优化模型的思路来展开的。文章内容的展开实则是模型不断完善的过程。

本文在首先建立极值分布模型测度了沪深300股指期货的尾部风险,这种风险是单一风险,没有考虑由于相关带来的联动风险,于是,在极值分布的基础上建立了以极值分布为边缘分布的Copula连接函数,用来度量尾部关联风险。本文还用Coplua函数讨论了其非线性的关联模式。这是对极值风险建模的模型改进。这是改进之一。

但Coplua函数在非线性相关的度量上仍有改进的空间,例如,本文测度了整个样本区间上的关联度,而没有给出动态相关系数,本文利用多元GARCH模型度量了时变相关系数。这是改进之二。

已有的关于静态套期保值率或者简单套期保值率的测算是基于最小二乘的线性回归,既不能反应沪深300股指现货和期货收益率间的时变关联的事实,又不能满足体现套期保值者的动态操作策略,本文在四种多元GARCH模型基础上推导的最优动态套期保值率具有一定的推广性和实际可操作性。这是改进之三。

9.1有关套期保值率的进一步改进模型

从近两年来的专家学者对套期保值的研究来看,下面对几个典型的研究方法和研究结果值得进行介绍和推广。

9.1.1协整序列分解模型

西南交通大学经济管理学院博士高勇等(2008)对中国燃料油期货的套期保值比率与绩效的研究模型。其研究模型是利用当期货和现货价格的自然对数值(以后简称期、现货价格)具有协整关系时,它们可以分解为一个永恒因子和一个瞬变因子之和,进一步得到以收益方差最小为目标的最优套期保值比率和套期保值绩效分别为:

…………….(39)

….(40)

这里a1,b1分别表示现、期货价格对应于永恒因子的变化率,a2,b2则表示对应于瞬变因子的变化率,σu2,σv2分别为对应数据的永恒因子和瞬变因子的方差,k为单位时间数,k越大则表示套期保值时间越长。

9.1.2HKM模型

东南大学经济管理学院金融专业硕士研究生周璇(2008)在研究我国燃料油期货套期保值功能时,使用HKM模型。在HKM模型中期货和现货价格的关系表示为:。根据现代动态套期保值理论周璇将利用HKM模型模拟出我国燃料油期货合约的套保比率。在实证过程中,对式子两边同时除以F(t,T),然后取自然对数得到:ln[S(t)/F(t,T)]=-yτ。因此建立回归模型:ln(St/Ft)=α+β*τ+μ;从理论上分析,常数项α的期望为0,β为-y的估计值,则套保比的估计值为。

9.2文章的后续研究方向

尽管文章在模型选取上做了三次较为显著的改进,在沪深300股指期货和现货的风险特征和动态套期保值方面做出了有益探讨和尝试,但囿于时间、精力和研究水平有限,文章仍存在以下两点不足,这是以后需要改进的方面。

第一点不足是模型估计上的不足。作为一种典型的金融时间序列,沪深300股指期货和现货收益率必然会同其他经济变量相关联,然而不同的经济金融变量有着独特的运行规律,因此,沪深300股指期货和现货收益率之间应该呈现出一种非线性特征。本文虽然考虑到了极值风险以及极值相依风险,构造Copula函数测度了沪深300股指期货的非线性相关结构(是静态的),文章也利用多元GARCH模型刻画了时变相依的特性,但这种刻画仍未跳出线性的框架,没有从动态非线性的角度去探讨两者的风险相依性以及在此基础上的动态套期保值比率模型;

第二点不足是假定限制上的不足。在文章的第三章,为了简化所研究的问题,就做了关于交易费用的假定:进行动态套期保值时,每次对冲交易中的交易费用很低,以至于可以忽略不计(见假定2),也正是由于没有考虑到交易费用的,使得我们推算出的动态套期保值效率会在实际操作中打上折扣,并且,交易越多,交易量越大,交易次数越频繁,产生的交易费用就越多,这就使得模型在具体操作中带有一定的局限性,在后续研究中我们会考虑带有交易费用和持有成本的套期保值比率模型。

参考文献

[1]徐国祥、李宇海.股指期货投资指南[M].上海人民出版社.2007.

[2]DanielssonJ.,CG.deVries.ValueatRiskandExtremeReturns,LondonSchoolofEconomics[M],FinancialMarketsGroupDiscussionPaper1997(272-273).

[3]韦艳华,张世英,郭焱.金融市场相关程度与相关模式的研究[J].系统工程报.2004,19(4):(355-362).

[4]Sklar,A.,1959,“FonctionsdeRepartitionanDimensionsetLeursMarges”,Publicationsdel''''InstitutdeStatistiquedel''''UniversitedeParis,Vol.8,pp.229~231.

[5]Joe,H.,1997,“MultivariateModelsandDependenceConcepts”,Chapman&Hall.

[6]Nelsen,R.,1999,“AnIntroductiontoCopulas”,Springer,NewYork

[7]Embrechts,P.,Lindskog,F.andMcNeil,A.,2003,“ModelingDependencewithCopulasandApplicationstoRiskManagement”,In:Rachev,S.

(Ed.),HandbookofHeavyTailedDistributionsinFinance,Elsevier,Rotterdam,pp.329~384.

[8]Longin,F.,2000,“FromValueatRisktoStressTesting:theExtremeValueApproach”,JournalofBankingandFinance,Vol.24,pp.1097~1130.

[9]Frey,R.andMcNeil,A,.2003,“ModelingDependentDefaults”,JournalofRisk,Vol.6,No.1,pp.59~92.

[10]Bouye,E.,Gaussel,N.andSalmon,M.,2002,“InvestigatingDynamicDependenceUsingCopula”,Manuscript,FinancialEconometricsResearchCente

[11]Longin,F.andSolink,B.,2001,“ExtremeCorrelationofInternationalEquityMarkets”,JournalofFinance,Vol.56,pp.649~676.

[12]Glasserman,P.,Heidelberger,P.andShahabuddin,P.,2002,“PortfolioValue-at-riskwithHeavy-tailedRiskFactors”,MathematicalFinance,Vol.12,pp.239~270

[13]Embrechts,P.,Lindskog,F.andMcNeil,A.,2003,“ModelingDependencewithCopulasandApplicationstoRiskManagement”,In:Rachev,S.

(Ed.),HandbookofHeavyTailedDistributionsinFinance,Elsevier,Rotterdam,pp.329~384.

[14]Rosenberg,J.andSchuermann,T.,2005,“AGeneralApproachtoIntegratedRiskManagementwithSkewed,Fat-tailedRisk”,FRBofNewYorkStaffReportNo.185.

[15]Embrechts,P.,Lindskog,F.andMcNeil,A.,2003,“ModelingDependencewithCopulasandApplicationstoRiskManagement”,In:Rachev,S.

(Ed.),HandbookofHeavyTailedDistributionsinFinance,Elsevier,Rotterdam,pp.329~384.

[16]房振明,王春峰,曹媛媛.上海证券市场流动性模型的研究[J].管理工程学报,2005,19:33-39.

[17]FlemingM,RemolonaE.PriceformationandliquidityintheU.S.Treasurymarket:theresponsetopublicinformation[J].Journal

ofFinance,1999,54:1901-1951.

[18]Ederington,L.H.TheHedgingPerformanceoftheNewFuturesMarkets[J].JournalofFinance,1979,34:(157—170).

[19]Ghosh.A.Hedgingwithstockindexfutures:Estimationandforecastingwitherrorcorrectionmode1.[J]JournalofFuturesMarkets,1993,13:(743—752).

[20]Chou,W.L,Fan,K.K.Lee,C.F.HedgingwiththeNikkeiindexfutures:Theconventionalmodelversustheerrorcorrectionmodel[J].QuarterlyReviewofEconomicsandFinance,

l993,36:(495—505).

[21]McNeil.A.J,Frey.R.EstimationofTail-RlatedRiskMeasuresfor

HeteroscedasticFinancialTimeSeries:AnExtremeValueApproach[J].JournalofEmpiricalFinance2000,7:27(1-300).

[22]DuMouchelW.M.EstimatingtheStableIndex_inOrdertoMeasureTailThickness:ACritique[M].AnnalsofStatistics11.1983.(1019-1031).

[23]李竹渝,鲁万波,龚金国.经济金融计量学中的非参数估计技术[M].科学出版社.2007.

[24]欧阳资生.信用风险相依模型及其应用研究[M].知识产权出版社.2008年2月.

[25]徐成贤、薛宏刚.金融工程[M].北京:科学出版社,2007.

[26]殷家祥.股指期货投资与交易实务[M].成都:西南财经大学出版社.2006.

[27]彭红枫,叶永刚.基于修正的ECM—GARCH模型的动态最优套期保值比率估计及比较研究[J].中国管理科学,2007年10月,第l5卷第5期.

[28]王斌会,吕亮霞.DCC一MVGARCH模型计算方法研究及在金融市场中的应用[J].广东省自然科学基金项目《统计预测方法的算法研究及计算机实现》.编号:04010490).2006.

[29]赵新娥,王婷.对我国股指期货风险管理的思考[J].特区经济,2009年1月.

[30]杨奇志.发展我姑股指期货的策略研究[J]现代商贸工业,2009年第2期.

审计风险现状范文第4篇

摘 要:由于形成审计风险的因素的多样性,在高校内部审计过程中审计风险是客观存在的,基于高校内部审计风险无法完全避免的现状,必须找到科学的防范措施对高校内部审计风险进行有效防范,从而增强高校内部审计工作的实效,避免审计风险造成的不利后果。本文从目前高校审计工作的现状出发,对高校内部审计风险进行了简单分析,并提出了可行的针对当前高校内部审计风险的防范措施,希望对相关的高校内部审计工作者有所帮助。

关键词 :高校 内部审计 审计风险 防范措施

高校内部审计工作,是保障高校健康、可持续、高效发展的重要工作,对于高校有着重要的意义。然而,内部审计中出现的风险却很可能导致高校内部审计工作效果降低,甚至产生对高校发展极为不利的影响。因此,必须重视高校内部审计风险,找到科学的应对方案和解决策略,避免或者降低高校内部审计风险造成的不利影响,从而使高校内部审计工作更加值得信任,为高校的发展提供更加充实的助力。

一、高校内部审计中存在的风险分析

高校内部审计工作是反映高校财务状况和相关经济活动状况的工作,对于审计结果的可靠性要求较高。在高校内部审计过程中,影响审计结果的因素是较多的,如果不能够正确控制这些因素,就很可能导致高校内部审计风险的产生,如财务报告出错、漏报、错报等,进而导致决策失误,造成严重后果。通过对相关案例的调查分析,发现影响高校内部审计工作的因素主要有包括以下几个方面:

(一)被审计单位内部控制不合理

在高校内部审计过程中,被审计单位的内部控制对于审计结果有着显著的影响,具体来说,如果被审计单位的内部控制合理并且能够有效执行,即能够科学、正确配合审计工作的进行,那么审计风险存在的可能性会大大降低,反之,如果被审计单位内部控制效果差,不能很好地配合审计工作的进行,那么会导致审计风险存在的可能性大大增加。

(二)审计工作独立性和权威性差

在高校内部审计过程中,审计工作的独立性和权威性是保证审计工作获得科学结果的重要前提,审计人员只有在独立性和权威性足够的审计环境中,才能够充分并科学地开展审计工作,得到最客观的审计结果,而一旦审计工作在其他单位或者人员的干扰下失去独立性和权威性,那么审计工作的效果必然大打折扣,使审计结果的可靠性和说服力大大降低。

(三)高校内部审计范围逐渐扩大

和以往的高校内部审计工作相比,目前高校内部审计工作的审计范围正在逐渐扩大,从过去单纯的财务审计扩大到了目前的学校领导任期经济责任审计、经营性资产审计和基建工程、修缮工程的审计。高校内部审计范围的增大,使审计工作审计的内容更多,也使审计工作容易受到的影响也更多,从而导致高校内部审计风险也随之加大。

(四)高校内部审计工作人员素质

在内部审计过程中,不同的审计对象需要采用不同的审计程序和方法,只有采用合适的方法才能得到科学的审计结果,如果审计方法不恰当,必然使审计结果的科学性受到影响,因此,审计工作对于工作人员的专业素质要求是比较高的。如果审计工作人员素质不够,那么很可能导致在针对某个或某些对象进行审计时采取的方法不恰当,进而导致审计风险的产生。

二、高校内部审计风险的防范措施

高校内部审计风险是客观存在的,为了有效规避风险,降低风险造成的不良影响,就必须找到科学的针对高校内部审计风险的防范措施。通过对高校内部审计风险产生原因的分析,现将高校内部审计风险的主要防范措施总结如下:

(一)规范审计程序和审计方法

在高校内部审计过程中,不仅需要严格依照国家的审计工作规定,也需要采取科学的审计程序和审计方法。因此,在高效内部审计工作程序和方法没有权威性的规定的情况下,首先需要规范高校内部审计工作的程序和方法,明确不同的审计对象所采取的审计程序和方法,提升审计工作的科学性。

(二)提升审计工作人员的素质

审计工作人员的专业素质不够是导致高校内部审计风险产生的重要原因,因此,为了提升审计工作的可靠性,就必须重视审计工作人员的专业素质问题,一方面招聘审计工作专业能力足够、经验丰富的人才,另一方面对审计工作人员进行适当培训,提升审计工作人员的专业能力素质,明确审计工作人员的职责,从而保证审计工作科学、严谨地进行。

(三)完善高校内部审计的制度

制度是保障审计工作科学进行的重要保障,高校应当建立并完善内部审计的相关制度,包括质量控制制度、审计风险评估制度、审计工作底稿复核制度等,从而通过严格执行制度实现对内部审计风险的有效控制和规避,增强高校内部审计工作的质量,并使审计工作中遇到的阻碍可以通过制度及时排除,使高校内部审计工作为高校的财务管理和其他决策提供有力的依据。

(四)规范高校内部审计报告

审计报告是高校内部审计工作的最终成果,其规范性和公正性、客观性,都影响到通过审计结果做出的其他决策的科学性,因此,必须规范高效内部审计报告,使高校内部审计报告可以明确、客观、公正地反映审计的结果。具体来说,审计报告应当做到措辞严谨、表述清晰、文字简练、风格得体、评价客观等。

三、结束语

总而言之,高校内部审计工作关系重大,而高校内部审计风险的客观存在又会极大地影响审计工作的开展,并可能导致不良后果。因此,必须通过控制审计工作人员的素质,建立并完善审计工作制度、规范审计工作程序、方法和审计报告等方式,对高校内部审计风险进行有效控制和规避,从而实现高校内部审计工作质量的实质性提升。

参考文献:

[1] 曹永模,张未.当前教育内部审计环境存在的主要问题及对策[J].中国内部审计. 2013(03) .

[2] 雷建邦.高校内部审计工作存在的问题及对策初探[J].中国乡镇企业会计. 2010(02) .

[3] 曾李梨.关于高校内部控制管理的现状、问题及对策研究[J].中国外资. 2012(24) .

作者简介:

审计风险现状范文第5篇

    2003年,国际审计和保证准则委员会(IAASN)新颁布的国际审计准则修改了审计风险模型(张龙平和聂曼曼,2005)。2006年,中国注册会计师协会修订并重新颁布了新的审计准则体系。新准则借鉴了国际审计准则的成果,采用了国际审计准则的审计风险模型。审计风险有两个方面:审计职业风险与审计项目风险,审计职业风险是对审计职业界生存和发展可能带来不利影响的行为和环境的总和,是从整个注册会计师职业界的角度来看待的审计风险(刘力云,1999)。现有文献对审计风险的研究多从审计项目风险的微观角度出发,而从整个职业界的宏观角度研究审计风险的文献尚显欠缺。其次,近年来国内和国际的重大会计造假事件引起理论界和实务界的广泛关注,人们在总结这些会计造假事件的成因时往往会将审计风险不够列为原因之一,并提出要加重对注册会计师的民事责任(如黄世忠,2001)。然而,审计风险并不完全取决于注册会计师,因而审计风险的控制也不能单纯从加大注册会计师的责任入手以求彻底解决。笔者认为,在我国目前的形势下,证券市场的制度安排和上市公司治理结构的缺陷是影响整个职业界审计风险的重要因素,控制审计风险必须从供方和需方两个角度入手,采取均衡措施进行治理才能取得成效。

    一、审计风险的两个视角

    审计风险的定义有两个角度:需求导向的审计风险与供给导向的审计风险。根据中国注册会计师协会1996年颁布的审计准则,审计风险"是指会计报表存在重大错报或漏报,而注册会计师审计后发表不恰当审计意见的可能性。"风险的本质是指遭受损失的可能性(刘力云,1999),而根据上述定义,注册会计师发表不恰当审计意见并不必然导致其遭受损失,因注册会计师未能发现重大错报或漏报而遭受损失的首先应当是投资者等会计信息和审计报告使用者,因此,这个定义是需求导向的审计风险。审计风险包括固有风险、控制风险和检查风险,由于在实务中很难区分固有风险与控制风险,注册会计师往往将其进行综合评估(Hellia et al.,1996;Haskins and Dirsmith,1993)。而且,固有风险和控制风险均为被审计单位所制造或掌控,注册会计师只能评估而不能改变(张龙平、聂曼曼,2005)。可能因为这些原因,2003年颁布的国际审计准则将新的审计风险模型修订为:审计风险=重大错报风险×检查风险。2006年,我国新颁布的审计准则也采用了这个模型。新准则将审计风险定义为"财务报表存在重大错报而注册会计师发表不恰当审计意见的可能性",与旧准则的定义基本上相同。新准则对重大错报风险的定义是"指财务报表在审计前存在重大错报的可能性"。这一定义契合了固有风险和控制风险为被审计单位所制造或掌控而不能为注册会计师改变的特点(张龙平、聂曼曼,2005)。

    如果因为注册会计师未发现会计报表中重大错报发表不恰当审计意见而导致投资者遭受损失,则投资者就可能通过法律诉讼等手段追究注册会计师和会计师事务所的责任,由此可能导致注册会计师和会计师事务所遭受损失。这种因未能发现会计报表中重大错报并发表不恰当审计意见而承担法律责任的可能性才是注册会计师实际遭受损失的可能性,是供给导向的审计风险(王广明、沈辉,2001)。可见,需求导向的审计风险是供给导向审计风险的成因,它构成供给导向风险的基础。王广明和沈辉(2001)将供给导向的审计风险模型定义为:审计风险=固有风险×控制风险×检查风险×诉讼风险。根据新颁布的审计准则,该风险模型应当修订为:审计风险=重大错报风险×检查风险×诉讼风险。该模型意味着,注册会计师最终承担的审计风险不仅取决于需求导向的审计风险,还取决于诉讼风险的高低。至于诉讼风险,刘峰和许菲(2002)将其定义为注册会计师发表不恰当审计意见的行为被发现的概率和发现后被惩处力度的乘积。而被发现的概论又取决于谁可以起诉注册会计师以及诉讼门槛要求两部分的联合乘积。

    二、我国审计风险的现状分析

    既然审计风险包括需求导向和供给导向两个视角,那么,对我国审计职业界所面临的审计风险现状的分析也需从这两个角度入手。

    从需求角度看,我国审计职业界面临着较高的审计风险。首先,我国证券市场的制度安排使得上市公司普遍具有强烈的盈余管理的动机,而盈余管理往往被等同于会计造假,"中国证券市场会计信息失真的问题归根结底是上市公司盈余管理的问题"(王跃堂、陈世敏,2001)。这种盈余管理行为源于我国证券市场特殊的监管政策,包括上市政策、配股政策、暂停交易政策以及特别处理政策等(王跃堂、陈世敏,2001)。其次,我国上市公司的治理结构还很不完善,由于我国上市公司大部分由国有企业改制而来,"一股独大"现象比较严重。虽然证监会在上市公司推行独立董事等制度,但只要"一股独大"的问题没有解决,独立董事就难以保持其独立性(黄世忠,2001)。何况,我国独立董事还存在着工作负荷过重的问题,这些公司治理结构方面的缺陷被认为是会计信息质量不高的重要原因(黄世忠,2001)。再次,从会计信息披露法律责任的设定来看,我国上市公司管理当局对信息披露主要承担行政责任,而民事责任很轻,这种安排导致会计造假的收益很高,而成本过低,不能有效抑制会计造假行为(汤立斌,2002)。以上情况意味着我国审计职业界面临的执业环境并不理想,上市公司在这样的环境中确实存在着普遍的盈余管理行为,注册会计师作为一个职业整体面临着较高的重大错报风险。

    从审计风险的供给角度来看,由于法律风险很低,我国审计职业界面临着较低的审计风险。根据刘峰和许菲(2002)的分析,注册会计师的法律风险取决于谁可以起诉审计师,起诉的门槛和处罚的力度三个方面。我国注册会计师承担的法律责任也以行政责任为主,民事责任较轻,因而惩处的力度较轻。在谁可以起诉审计师方面,我国的法院因为技术原因不愿受理这类诉讼,刘峰和许菲(2002)指出,红光实业事件中法院以诉讼理由不成立驳回了中小股东的起诉,而对银广厦事件,法院起初也以技术不足胜任为由暂不受理,直至2002年最高人民法院《关于受理证券市场因虚假陈述引发的民事侵权纠纷案件有关问题的通知》后事情才有了起色,2004年5月,银川市中级人民法院召开新闻会,宣布经最高人民法院批准,证券市场投资人诉银广夏民事赔偿案件的诉讼时效从5月16日延长到8月15日(新华网,2004年5月14日)。但最高人民法院的通知给出了只受理经证监会处罚生效的案件等前置条件,这些都限制了中小股东起诉审计师的可能性(刘峰、许菲,2002)。在起诉门槛方面,由于我国实行原告举证制度,中小股东要起诉注册会计师必须提供证据,而中小股东本就处于信息不对称的地位,审计工作又是专业性很强的工作,因此诉讼门槛被抬得很高。与此相比,美国采取的是注册会计师举证的做法,降低了中小股东起诉注册会计师的成本。

    从审计风险的需求导向和供给导向进行的分析说明,我国审计风险的现状是需求导向的审计风险较高,这导致注册会计师的执业环境并不理想,同时,由于诉讼风险较低,注册会计师真正面临的供给导向的审计风险也较低。

    三、审计风险控制:一种均衡措施

    根据前面的分析,在我国究竟如何治理审计风险?同样,需要从需求和供给两个角度来采取措施,进行均衡治理,才能收到预期的效果。

    审计风险有两个视角,需求导向的审计风险是投资者遭受损失的可能性,而供给导向的审计风险是注册会计师遭受损失的可能性,后者以前者为基础。如果只考虑加大注册会计师的法律风险,不考虑审计环境的改善,那么需求导向的审计风险不会降低,而注册会计师的审计风险会极大地增加。针对增加的审计风险,注册会计师的选择有增加审计收费或者退出审计行业。无论是哪一种选择,都不利于社会效益的最大化。究竟应当如何治理审计风险?可以从会计责任和审计责任的角度进行分析。

    审计的产生根源于所有权与经营权的分离,所有者(投资者)在将资本交给经营者管理时,要求经营者根据公认会计原则如实报告受托经营情况。但矛盾可能导致的道德风险使经营者有歪曲会计信息的可能性。为了增强会计信息的可靠性,投资者聘请注册会计师对会计报表进行审计以减轻信息不对称的程度。经营者需对会计信息的真实性和可靠性承担责任,这就是会计责任;注册会计师应对其审计行为和审计报告的恰当性承担责任即审计责任。审计责任不能替代、减轻或免除会计责任。会计责任源于受托经营责任,所有者将资本委托给经营者管理时,还隐性地要求其履行"忠诚义务"(duty of loyalty)(Shleifer and Vishny,1999),这种义务包括如实报告受托经营情况的责任。如果经营者损害所有者的利益,所有者可以要求其赔偿损失。在美国的集团诉讼便是这样一种机制,它使得被审计单位管理当局可能因为会计造假付出惨重的代价,从而有效地抑制其机会主义行为。从审计风险的角度来看,经营者为了达到证券监管政策的要求而进行盈余管理导致的会计信息失真属于应当由经营者承担的会计责任,但这种会计信息失真行为会增加注册会计师的审计风险。我国目前的信息披露责任对上市公司管理当局的要求太低,这样无疑恶化了注册会计师的执业环境,如果只考虑增加注册会计师的法律责任,而不注重改善其执业环境,则会导致管理层应承担的会计责任转移到注册会计师身上,实质上等于让注册会计师通过承担过多的审计责任来替代管理当局应承担的会计责任,结果就会混淆会计责任和审计责任。

    审计风险的治理应从两个方面采取均衡方法进行。从需求导向而言,要强化被审计单位管理当局的会计责任,加重会计造假行为的民事责任,赋予中小股东起诉被审计单位管理当局的权利,降低起诉门槛,强化被审计单位管理当局对投资者尤其是中小投资者的"忠诚义务"。民事责任解决的是赔偿问题,如果投资者可以通过民事索赔从管理当局获得赔偿,则会改变管理当局进行会计造假的成本收入函数,从根本上遏制会计造假行为,优化注册会计师的执业环境。在此基础上,需要强化注册会计师的审计责任,注册会计师应当合理保证会计报表不含有重大的错报,为此,注册会计师需要根据审计风险的评估执行实质性测试获取充分适当的审计证据,提高审计的质量。在强化会计责任的基础上强化审计责任就不会导致会计责任转移到注册会计师身上,有利于促使注册会计师提高风险意识,通过提高审计质量来降低需求导向的审计风险,起到保护股东尤其是中小股东利益的作用。如此,审计风险就能得到有效的治理。