前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇粉末冶金的意义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词: 转向管柱; 粉末冶金; 移动架; 模具设计; 工艺; 材料
中图分类号: TF 124.32文献标志码: A
The Development of Powder Metallurgy Movable Frame
of Automotive Steering Column
PENG Jingguang, CHEN Di
(Shanghai Automotive Powder Metallurgy Co., Ltd., Shanghai 200072, China)
Abstract: The movable frame is one of the critical parts of automotive steering column.This paper dealt with the structure,performance,material selection and production process of it.It was complicated in shape with high precision.It hence always failed if it was produced with traditional machining method.In order to achieve massive production,powder metallurgy was used to produce parts of automotive steering column,which could improve the production efficiency and reduce the costs.Therefore,powder metallurgy movable frame with high precision,high strength complicated shape and in accordance with actual conditions could be developed by working out rational technology.
Keywords: steering column; powder metallurgy; movable frame; mold design; technology; material
粉末冶金是一门制造金属与非金属粉末和以其为原料,经过压制、烧结及各种后续处理工艺制取金属材料和制品的科学技术,是一项以较低的成本制造高性能铁基粉末冶金制品的技术[1-2].近年来,随着汽车行业飞速发展,为了降低汽车的生产成本,越来越多的零部件用粉末冶金方法来制备.
转向管柱是车辆转向系统中的重要部件.其主要作用是通过接收驾驶员作用在方向盘上的扭矩,将其传递到转向器,从而使方向盘的转动转化成齿条的移动,控制车轮按照预期方向运动[3].转向管柱中的粉末冶金移动架(如图1所示)是转向管柱实现前后上下4个方向调整的核心零件,分别和另外2个粉末冶金齿条相配合,实现方向盘的调节功能.同时,转向管柱的移动架是汽车中的安全件,对密度和性能有一定的要求,且需要热处理.该产品若采用传统机加工的方式,几乎不能加工,形状非常复杂,且精度要求较高.因此,为了实现大批量生产,使用粉末冶金的方法来制造该零件,解决了目前生产效率低、制造成本高的问题.
1零件的结构和性能特点
粉末冶金移动架,其形状复杂,在整个转向柱中起承上启下的关联作用,分别与轴向架、径向架的齿部咬合,使转向管柱具有多方向的调节作用(如图2所示).包括平齿面A、斜齿面B、限位凹面C、带键槽的内孔D,以及限位柱E.尺寸精度方面,其中齿形轮廓度要求0.05 mm,齿面高度差≤0.15 mm,限位柱和限位凹面轮廓度0.1 mm.
2材料和压机的选择
2.1材料的选择
鉴于产品的结构特点、性能以及材料要求(材料牌号:Sint D11,w碳>0.75%,w铜为1%~5%),基础铁粉选择雾化铁粉,选用硬脂酸锌为剂.硬脂酸锌熔点低,稍加热就能使其熔化成液相来减少粉末的内外摩擦,使其容易成形.
2.2压机的选择
根据产品的截面积和密度要求,测算出产品大概需要50 t的压制压力来制备.压制压力F可按下式计算[4]:
F=kps(1)
式中:p为单位压力;s为受压横截面积;k为安全系数,k=1.15~1.50,取1.20.
根据式(1)计算压制压力,则F=1.2×5×8.4=50.4 t.
同时需要上一下三的模具结构,考虑形状和结构特别复杂,所以选择使用160 t机械式压力成形机和上二下三的标准模架.
3工艺流程设计
3.1工艺的制定
根据产品要求,工艺制定如下:混料、压制、烧结、振动去毛刺、渗碳淬火、清洗和包装.由于产品精度要求高,在试验过程中需严格控制磕碰伤.
3.2粉末的混合
采用双锥型自动混料设备,其优点在于无死角、效率高、易清理,非常适合大批量生产[4].混料后粉末泊松比为2.8~3.2,压缩性大于7.0.由于产品具有很高的硬度要求,为保证成分的稳定性,采用全自动秤料系统.
3.3压制工艺
图3为转向管柱粉末冶金移动架压制成形过程,分为粉末充填、粉末传输、压制和脱模4个阶段.
由于采用上一下三的成形结构,产品每部分充填值都要非常精确,才能保证压制时每段密度是均匀的.为保证产品上下段密度均匀,成形过程中采用阴模和芯棒同时浮动.脱模时,采用保压拉下式脱模,并以内下模为基准点,把产品完全从模具中脱出.压制压力50 t,压制效率6件/min,产品高度直接达到成品要求.
3.4烧结工艺
烧结是粉末冶金生产过程中最基本的工序之一.所谓烧结,就是将粉末压坯在低于其主要成分熔点的温度下进行加热,从而提高压坯强度和各种力学性能的一种过程[2].FeCCu三元体系的烧结为有限多元系固相烧结类[2].采用连续式普通网带烧结炉进行烧结,烧结温度为1 120 ℃,烧结时间30 min,采用氨分解和氮气的还原性保护气氛,露点为-40 ℃,防止产品氧化并去除表面氧化颗粒.冷却段采用常规水冷.
3.5振动去毛刺
鉴于产品的使用工况,产品外观不允许有毛刺和飞边.移动架形状又较为复杂,采用盘刷或者喷砂的方式都不可行,所以选用钢球振动的方式去毛刺,其效率高、去毛刺效果好.去毛刺介质选用钢球,振动时间为10 min.
3.6热处理工艺
热处理采用铁基粉末冶金通用的整体渗碳淬火[5],即在分解氨气氛下,将烧结的零件加热到860 ℃,保温30 min,然后在860 ℃下将零件淬于50 ℃温油中.最后在150 ℃下回火5 min,达到硬度要求.
3.7清洗包装
由于零件用于汽车转向管柱系统,所以对产品清洁度有一定要求.采用高压油清洗工艺可以符合要求,也具有一定的效率.产品清洗后,采用散装的方式进行包装.
4模具的设计
4.1成形模具主要零件的尺寸计算
4.1.1阴模高度
阴模高度应满足粉末充填和定位的需要.因此,阴模高度一般包括粉末充填的高度、下模冲的定位高度和上模冲压缩粉末前进入阴模的深度[6],即
H阴=H粉+h上+h下(2)
下模冲的定位高度h下是根据下模冲与阴模之间的装配需要而选定的.总的来说,以能满足下模冲在阴模的定位需要为原则,一般取10~30 mm,本文中取20 mm.上模冲的定位高度h上取0.综上,阴模高度为:
H阴=65+20+0=85 mm
4.1.2阴模和模冲尺寸确定
由于移动架形状特别复杂,所以每个模冲的尺寸需要同比例缩放,由材料试验结果得到,压制弹性后效为0.15%,烧结变形量为0.25%.根据模具尺寸计算公式如下[6]:
D=D产(1-t-s)(3)
式中:D为模具尺寸;t为压坯的径向弹性后效;s为压坯的径向烧结收缩率;D产为产品外径.通过该公式可计算出每个模冲的尺寸.
4.1.3模冲高度的计算
由于采用上一下三的成形结构,上模高度只需采用闭合高度的最小值,通常取100 mm.
外下模计算如下[6-9]:
H外下模=H阴+H法兰+H脱模(4)
式中:H外下模为外下模高度;H阴为阴模高度;H法兰为安装用法兰高度,通常取15 mm;H脱模为脱模所需要高度,通常取10~20 mm.
根据式(4),H外下模=85+15+10=110 mm.
中下模计算如下[6-9]:
H中下模=H外下模+H法兰+H脱模+H垫块(5)
式中:H中下模为中下模高度;H垫块为外下模垫块高度.
根据式(5),H中下模=110+15+10+50=185 mm.
内下模计算如下[6-9]:
H内下模=H中下模+H法兰+H脱模+H垫块
式中:H内下模为中下模高度.
根据式(5),H内下模=185+15+10+40=250 mm.
4.2模具设计中的注意事项
移动架较为复杂,产品台阶数多,设计过程特别需要注意模具的分型区域.同时,单个模冲的成形面积特别小,模冲又特别长,热处理硬度需要控制在特别紧的范围内.在试验过程中,模具寿命是难点,需要在脱模、圆角过渡等方面特别注意.
通过大量的理论计算和实际生产的细节讨论,制定了转向管柱移动架生产的模具样式和具体的试验工艺.通过混料、压制、烧结和热处理等一系列工序设计,对移动架的开发进行了详细的说明.在所有的工作中,模具设计是重点.经过对移动架的设计,可以制造该零件为生产所需.目前该产品已经实现批量生产,取得了较好的经济效益,解决了机加工高成本和低效率的问题.
参考文献:
[1]倪冠曹.汽车用粉末冶金件对铁粉的需求[J].粉末冶金工业,2003,13(2):26-28.
[2]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
[3]刘海峰,张鹏.转向管柱转动力矩不确定度评定[J].汽车零部件,2011(8):33-34.
[4]韩风麟.粉末冶金设备实用手册[M].北京:冶金工业出版社,1997.
[5]美国金属学会.金属手册[M].北京:机械工业出版社,1994.
[6]印红羽,张华诚.粉末冶金模具设计手册[M].北京:机械工业出版社,2002.
[7]奏万忠.粉末冶金异形齿轮的开发[J].粉末冶金工业,2007,17(4):19-21.
【关键词】粉末冶金 模具 仿真技术 加工方法
中图分类号:TD353.5 文献标识码:A 文章编号:1009-914X(2013)35-111-01
0引言
粉末冶金是通过制取金属粉末或金属粉末与非金属粉末的混合物作为生产原材料,通过过压制成形、烧结等工艺过程,制造出各种粉末冶金制品的工艺技术。现在,这种工艺已经成为我们在新材料研制领域内的重要工艺技术。在粉末冶金工业中,模具对于在很多工序中都有所应用,并且对于整个生产工艺也具有较大的影响。粉末冶金模具是粉末冶金制品生产的重要工艺装备,粉末冶金模具的质量对粉末冶金制品的质量具有直接的影响。然而,粉末冶金模具的质量主要取决于它的加工过程。因此,对于粉末冶金模具加工方法及仿真技术的研究,对于粉末冶金工业具有重大的意义。
1 粉末冶金模具的加工方法
目前,对于粉末冶金模具的先进加工方法种类很多,其中各种加工方法也是各有特点。现就几种主要的粉末冶金模具加工方法进行介绍,并对各种方法的特点和对粉末冶金模具的影响进行探讨。
1.1 电火花加工方法
电火花加工的方法,是通过在放电瞬间产生剧烈高温。然后,利用这一高温将工件的表面熔化(甚至汽化),从而达到机械加工的目的。这种加工方法在一些难以加工的超硬材料加工中具有明显的优势。
(1)电火花加工方法的特点
电火花加工方法能够有效的填补常规的机械加工方法对于难加工材料的不足,适用于对于强度高、熔点高、硬度高等难加工的材料的加工。另外,由于电火花加工方法直接利用电能与热能进行加工,因此在加工过程中可以实现加工的自动化控制。再者,这种加工方法的精细度很高,对于粉末冶金模具这种加工质量要求较高的产品是一种较为合适的加工方法。不过,这种方法也存在着一定的缺点,那就是利用电火花加工方法加工的粉末冶金模具的表面粗糙度较高,会对粉末冶金工业造成一定的影响。
(2)电火花加工方法在模具加工中的应用
在粉末冶金模具电火花加工中,常是通过使用数控电火花机床来进行加工的。数控电火花机床可以实现粉末冶金模具的精密加工,确保满足粉末冶金模具的质量要求。在粉末冶金模具的尺寸精度、仿形精度和表面质量等方面将发挥重要的作用。
1.2 仿形磨削加工方法
利用仿形磨削加工方法加工粉末冶金模具,即是通过利用专门的平面磨床,通过仿形尺对粉末冶金模具进行仿形磨削。这种粉末冶金模具加工方法的特点是其加工生产的粉末冶金模具的精密度较高,且表面较为光滑、平整,粗糙度较低。这种加工方法的缺点是加工效率较低。
1.3 数控线切割加工方法
数控线切割加工的方法,是通过将金属丝电极安装在一个转动的贮丝筒上,然后分别将被切割工件与金属丝电极接到高频电源的正、负极上,通过计算机技术控制控制电极的移动方向,并通过电火花加工达到自动切割的目的。
数控线切割方法是计算机技术与电火花加工技术的结合,可以发挥电火花加工方法的优点,还可以实现自动切割的目的。其在粉末冶金模具的加工上具有重要的作用。由于这种加工方法对于电极没有特别的要求,并可以对各种硬度和形状的工件进行加工。数控线切割加工的方法,还可以反复的使用电极丝,加工损耗小、精度高等特点,非常适合粉末冶金模具的加工生产。因此,数控线切割加工的方法也是目前在粉末冶金模具加工中最常用的方法之一。
2 粉末冶金模具的数控加工动态仿真
计算机仿真技术在各类科技领域都有广泛的影响,随着计算机仿真技术不断发展成熟,已经可以应用到产品从概念设计到结束使用寿命的整个周期的各个环节中,其中在产品的加工阶段应用更为广泛。在粉末冶金模具的加工过程中,仿真技术的应用将对粉末冶金模具的加工行业,甚至整个粉末冶金工业都具有重要的意义。
在粉末冶金模具的加工过程中,建立一个较为精确的数控加工动态仿真模型,通过模拟整个模具加工过程,从而获得在粉末冶金模具加工过程中所需的几何数据和力学信息,以及加工过程中可能发生的不良影响和可能出现的偏差值。通过数控动态仿真模型,便可以在加工前获得准确的信息,规避可能产生的不良影响,有效的降低了加工失误、偏差等现象发生的可能性。
在粉末冶金模具的加工过程中,利用精确的数控加工动态仿真模型,可以获得准确的数控加工代码,避免加工的错误和偏差;另外,还可以对加工误差值、刀具磨损等进行预测,为保证粉末冶金模具的质量要求和刀具的更换提供重要的参考信息。因此,在粉末冶金模具的制造加工过程中,计算机仿真技术发挥了重要的作用,对于保证模具加工生产的质量和提高模具生产效率都有很大的帮助。
3 结语
粉末冶金模具的加工,对于粉末冶金制品的质量具有很大的影响。目前,对于粉末冶金模具的加工方法仍具有很大的发展空间,计算机仿真技术在粉末冶金模具加工中的应用,也还需要人们不断的进行发展和研究。
参考文献:
公司的主要竞争优势
1、人才和研发优势
公司充分发挥自身在粉末冶金复合材料领域的强大技术优势,凝聚了一批国内顶尖的新材料人才队伍。其中公司的创始人黄伯云先生曾为我国“863”计划新材料领域首席科学家、中国工程院院士、2004年度国家科技发明奖一等奖获得者。公司现有享受国务院特殊津贴者3人,博士、博士后18人,硕士21人。拥有中级以上技术职称的人数占员工总数的17.39%。与博云新材保持长期合作的中南大学国家级研发机构包括:粉末冶金国家重点实验室、轻质高强结构材料国防科技重点实验室、粉末冶金国家工程研究中心、国家有色金属粉末冶金产品质量监督检验中心等。
2、国家产业政策重点支持优势
博云新材研制的高科技产品涉及的行业被国家列为优先重点发展的行业,符合国家产业政策的发展要求。公司还承担了国家重点工业性实验、国家高新技术产业化示范工程等十余项国家、省、市级科研项目。公司生产的高科技粉末冶金复合材料产品打破了国外竞争对手长期垄断的格局,有利于我国新材料产业赶超世界先进水平,尤其是公司的航空产品(军用、民用飞机刹车副)和航天产品,确保了国家航空战略安全,同时在国防上具有重要战略意义。
3、细分产品市场优势
公司首获国内大型干线飞机一波音757飞机炭/炭复合材料飞机刹车副的PMA证书,公司开发生产的图一154飞机刹车副,获得俄罗斯图波列夫设计局颁发的生产许可证,公司开发的波音737-700/800飞机Goodrich机轮用粉末冶金刹车副是国内唯一取得民航产品生产许可证(PMA)的产品。博云汽车生产的环保型高性能汽车刹车片已配套多家汽车主机厂,近年来的销售额成持续上升局面。博云东方生产的高性能级进冲压模具材料占国内市场份额持续稳定增长。
4、可持续发展优势
博云新材开发的粉末冶金复合材料产品已在航空航天、汽车、高端冲压模具等应用领域得到了市场的充分认可,成功打入了原来由国外企业垄断的细分领域。公司开发的高性能粉末冶金复合材料产品通过在当前航空航天、汽车、高端冲压模具三个领域的应用,为公司产品拓展在其它领域的应用奠定了坚实的技术基础。公司产品未来将逐渐应用于高速列车、工程机械、船舶、石油、化工等领域,保证了公司的可持续性发展能力。
5、价格优势
博云新材的竞争优势尤其体现在产品的价格上。公司生产的粉末冶金复合材料产品主要与国外厂家进行竞争,飞机刹车副、环保型高性能汽车刹车片的价格为国外同类产品的60%左右,高性能模具材料价格为国外同类产品的50%左右,具有明显的价格优势,性价比高。
募集资金用途
关键词:VC铁基复合材料 粉末冶金法 原位内生相法
随着机械制造业的迅速发展,对于耐磨性材料提出了更高的要求:首先要求耐磨性材料具有一定的韧性和较大的强度;其次要求在常温情况下具有较强的抗磨性和在高温工作条件下仍能保持较高的抗磨性。使用一种材质已经无法满足要求,急需一种介于硬质合金和高速钢的新型材料出现,兼有硬质合金的硬度、耐磨性和钢的强度、韧性。硬质合金虽然技术上比较成熟,但其价格较贵,限制了它在大众民用工业中的应用。此外,由于W,Co的资源缺乏,价格不要影响TiC颗粒的尺寸大小;微量的Cu、Ni合金有利于TiC颗粒的形成;在合金熔体中,Ti和C原子合成TiC颗粒,形核并长大直到TiC与熔体达到平衡。
目前,在研究铁基复合材料方面,国内外专家研究的主要是WC/Fe、TiC/Fe复合材料,另外也有以氮化物、硼化物及金属间化合物增强体来增强铁基材料,并不常见。目前应用最成熟最广的铁基复合材料是碳化钨钢结硬质合金、TiC钢结硬质合金,这两种合金各有优缺点。TiC和VC均具有高硬度、高模量、高熔点、热力学稳定性高等特点,因而被广泛用作复合材料的增强相。此外,钒在钢中常被用来细化钢的组织,提高晶粒粗化温度,降低钢的过热敏感性,增强钢的韧性、强度。国内应用最早,最广泛的碳化钛合金是GT35,在光学显微镜下,TiC粒子多是圆形的并且边缘整齐,而在电子显微镜下TiC的粒子的边缘不整齐,有很多细小的凸起,每个小的凸起的形状均呈现针尖。WC是金属碳化物间隙相,是具有简单六方点阵的过渡族,大晶粒棱边在电子显微镜下呈现形状比较锋锐,而小晶粒棱形状角比较钝。WC的尖角形态从钢基硬质相的粒子形态上看容易降低合金的摩擦系数,但克服冷焊现象不如TiC有利。但WC与TiC相比有较强的塑性,因此对与钢结硬质合金来说,WC型的韧性要比TiC型的韧性要强。根据硬质相在合金中的分布图来看,在TiC钢结硬质合金中,经常发现使合金变脆的碳化钛环形结构,有时候会占据合金结构的大部分面积。该结构是由于碳化钛烧结温度高,使得小的碳化钛晶粒在钢基体中溶解,然后在较大的碳化钛上析出,长大,最后在钢的基体周围形成一个环行结构。与碳化钛钢结硬质合金相比,WC钢结硬质合金的组织中有着较严重的碳化钨晶粒“桥接”现象,即把碳化物晶粒桥接起来的非钢基体组织,它会导致合金机械性能、加工性能变差。上面两种组织的缺陷都可以通过对合金锻打使其增强。从碳化钨的润湿性来看能完全被铁族金属润湿,在铁中的溶解程度远比TiC高,故而WC钢结硬质合金可以在真空的条件下或在氢气条件下烧结,降低生产成本、提高成品率、提高产品质量稳定性、断口的致密性,而碳化钛合金烧结仅能在真空条件下烧结。铁基复合材料现阶段的制备工艺主要用的方法有两种:粉末冶金法和铸造原位合成法。铸造原位合成法局限性:熔体的流动性随着增强体量的增加会降低,从而使增强相所占的体积比例增加;由于熔体的密度和增强相差距较大使增强相在铸造原位合成的过程中,造成不均匀的增强相分布,易偏析;而碳化物颗粒容易长大在高温熔体中;碳化物的形态容易恶化在铸造过程中,如生成些碳化物共晶等。
采用粉末冶金和原位内生相结合的方法,优点是:使其增强体分布更加均匀;增加了增强相体积分数。而缺点是:在产生过程中存在着界面污染,从而使得铁基体与增强体的润湿性变差;烧结致密化较差,形成较差碳化物的形态,并且存在长大现象或者桥接现象。
相对于其他材料VC与铁的润湿性较好,烧结温度低,同时对于V、Ti资源十分丰富的攀西地区。因而以铁为基体、VC颗粒为增强相的复合材料的研制和开发有着广阔的的前景。由于属于同一周期的过渡金属V和Ti,且其原子序数相差1,它们能产生的碳化物都具有熔点高、硬度高和稳定的化学性,因此VC可作为铁基复合材料的理想增强体,目前国内外专家学者对VC铁基复合材料的研究相对较少。世界上共生于钒钛磁铁矿的钒资源占己探明钒资源储量的98%,钒钛磁铁矿资源储量最多的在我国攀西地区,探明储量大约100亿吨,占我国储量90.54%的攀钢公司自投产以来,已累积了高钛型炉渣大约5000多万吨,钒钛资源如何合理利用是攀钢公司面临的一个非常重要的课题,因而开展利用粉末冶金原位合成法制备Fe—VC复合材料研究对我国攀西地区钒钛资源的合理发展,促进地区经济的腾飞发展具有重大意义。
参考文献:
[1]尤显卿,钢结硬质合金硬质相种类与含量选择[J],硬质合金
[2]石建国,粉末冶金反应合成碳化钒颗粒增强铁基复合材料制备工艺基础研究
[3]游兴河,WC在WC/钢基复合材料中的溶解行为[J],复合材料学报
关键词:新型金属材料;成型加工;加工技术创新
1 概述
随着科学技术的发展,新型的金属材料在现代化工业中得到了全面的推广与应用,与普通金属材料相比,新型金属材料具有更为优异的性能与质量,已经成为很多领域中重要的工程材料,尤其是在能源开发、零部件制作、交通运输机械轻量化等方面[1]。在采用新型金属材料作为工程材料时,涉及到很多繁复的成型加工技术与工作,在现代化工业飞速发展的今天,如何不断发展与完善新型金属材料的成型加工技术,更好地发挥新型金属材料的特性,已经成为各领域中材料工程师们的研究重心。
2 新型金属材料及其加工特性
金属材料是由金属元素或金属元素为主所构成的具有金属特性的材料。金属材料通常具有较好的延展性。新型金属材料都属于合金,其种类较多,性能与质量较普通金属材料都有很大的突破,目前在市场上广泛使用的新型金属材料有高温合金、形状记忆合金、非晶态合金等。新型金属材料的二次成型加工过程通常包括焊接、挤压、铸造、超塑成型等等复杂的加工技术。新型金属材料的加工特性如下[2]:
2.1 铸造性
新型金属材料都属于合金,因此其熔点一般比较高,导致金属材料的流动性较低,收缩性较低,便于新型金属材料的锻造与二次成型加工。
2.2 锻压性
锻压性是新型金属材料的基本特性之一,该特性可以提高新型金属材料的可塑性,时成型加工的金属材料能够具有更高的性能优势。
2.3 焊接性
原始金属材料通常需要经过焊接后二次成型再进行后续的工程应用,因此新型金属材料成型加工的基础特性就是焊接性,其需要有良好的焊接性与高导热性能,才能在成型加工过程中保证材料不会产生气孔与裂缝等。
3 新型金属材料成型加工的原则
新型金属材料通过会在工程施工、机械设备、航空航天等方面广泛使用,一般具有良好的耐磨性与较高的硬度,以满足各类工程建设与机械化生产的质量需求。但是新型金属材料的这一特性也给其在成型加工方面增加了一定程度的困难,例如金属材料的硬度较高会导致其在普通的锻造环境下很难发生变形,使得很难将其塑造成一定形状或尺寸的工业零部件[3]。不同的金属材料具有不同的特性,市场对金属材料成型加工后的质量与性能也有不同的要求,因此通常会根据金属材料不同的特性采取不同的成型加工技术。例如,某些特殊的金属材料只有通过纤维性增强才能实现其二次成型加工。因此在实际对新型金属材料进行成型加工时,需要针对材料的特性采取相应的技术手段,切实推进新型金属材料成型加工工作的开展。新型金属材料的二次成型加工过程是一个非常复杂且细致的过程,其涉及的技术通常包括焊接、挤压、铸造、超塑成型等等复杂的加工技术,在实际的成型加工工作流中,一旦由于操作人员的操作不当而出现即使是小型的失误,都会给加工的金属成品带来无法磨灭的负面影响。例如,在铸造工艺中,如果没有对铸型的尺寸、大小等参数进行详细周密的把控,会导致成型加工之后的金属成品不符合零部件要求的质量与规格,不仅会给加工单位带来极大的成本损耗,还会影响工程的施工进度或机械设备的制造进度,延长施工或制造周期。因此,在对新型金属材料进行成型加工之前,加工人员需要对金属材料的物理与化学特性进行透彻的分析与掌握,才能够具体问题具体分析、因地制宜地针对不同的金属材料进行成型加工。
4 新型金属材料成型加工技术
4.1 粉末冶金技术
粉末冶金技术是以金属粉末为原料,通过不断的烧结与塑形,形成金属材料、新型金属复合材料等的工业技术。粉末冶金技术是早期使用最为广泛的新型金属材料成型加工技术,在增强晶须的功能等方面具有独特的优势。现阶段,粉末冶金技术主要应用于制造小尺寸且形状粗糙、不复杂的精密零部件,其通过不断地对金属粉末进行烧结与塑形,可以精密控制并提高金属材料中的金属含量,因此在小型零部件制作中拥有广泛的市场前景[4]。
4.2 电切割技术
电切割技术是通过在介电流中插入移动的电极线,然后利用局部的高温对金属材料进行几何形状切割,这样的方式也可以充分高效地利用冲洗液体的压力对零部件与负极之间的间隙进行冲刷,因此较传统的放电方式具有一定的优势。在采用电切割法进行新型金属材料的成型加工时,通常会由于放电效果较差等原因导新型金属符合材料的切割速度变慢,从而产生切割的切口不光滑等问题。
4.3 铸造成型技术
铸造成型技术是将液态的金属浇注到与零件尺寸、形状相匹配的铸型中,待液态的金属冷却凝固之后,将固态的金属材料取出,即可获得与铸型形状一致的毛坯或零件。在铸造成型技术的应用过程中,铸型的有效性检验是非常重要的环节,其形状、尺寸等质量的把控直接关系到零部件的质量与性能。
4.4 焊接技术
原始金属材料通常需要经过焊接后二次成型再进行后续的工程应用,焊接技术是在高温或者高压的环境下,采用焊接材料,例如焊条或者焊丝,将多个待焊接的金属材料连接成一个整体技术,该技术被广泛应用于航天航空、机械制造等领域。需要注意的是,在新型金属材料的焊接过程中,在金属与增强物二者之间常常会发生化学反应,会影响焊接的速度,在遇到这一问题时,通常可以对金属或者增强物进行轴对称旋转,然后将焊接接头置于高温下,使其达到熔化状态[5]。
4.5 模锻塑型技术
对于一些硬性较大的新型金属材料,一般的锻造环境无法使其加工塑形,以钛合金、镁合金等为例,这些金属材料由于锻造温度范围窄,可塑性较差,因此在变形时会产生极大的抗力,很难将其塑造成一定形状或尺寸的工业零部件,为了解决这一问题,模锻塑型技术应运而生。模锻塑型技术包含超速成型、模锻与挤压等方法,在对金属材料进行挤压时需要保持甚至提高锻造环境的温度,以提高金属材料的可塑性,同时需要在模具的表面涂上剂,降低模具表面的摩擦力,从而进一步降低模锻塑型的难度。通过模锻塑型技术进行金属材料的成型加工,可以使得生产出来的零部件具有较高的质量与性能,其组织也更为严密,已经成榻鹗舨牧铣尚图庸ぶ惺褂米钗普遍的技术手段。
5 结束语
与普通金属材料相比,新型金属材料具有更高的铸造性、高铸压性、良好的焊接性与高导热性等性能优势,已经成为很多领域中非常重要的工程材料。本文对现有的金属材料成型加工技术进行了详细的阐述,如粉末冶金技术、电切割技术、模锻塑型技术等,并对这些技术中的问题与关键技术点进行分析,对发展与完善新型金属材料的成型加工技术具有重要的促进作用。
参考文献
[1]李兰军.浅谈新型金属材料成型加工技术[J].科技视界,2015(15):286+291.
[2]张利民.新型金属材料成型加工技术研究[J].科技资讯,2012(16):113-114.
[3]薛宇.新型金属材料成型加工技术分析[J].才智,2012(27):37.
[4]高宝宝,解念锁.金属材料环境友好成型加工技术研究[J].科技创新与应用,2016(10):43.