前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学发展史范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。大批优秀的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。这是量子力学教学中遇到的主要问题。作者从几年的教学中摸索到一些经验,供大家参考。
一、教学内容和方法的改革
传统的本科量子力学教学一般包括了三大部分:第一部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。以上三个部分相互联系构成了量子力学的整体框架[3]。随着量子力学的进一步发展,产生了很多新的现象和成果。例如量子通讯、量子计算机等等。许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西完全没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。在教学方法上也应该按照量子力学的特点有所改革。由于量子力学的许多观点和经典力学完全不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。
二、重视绪论课的教学
兴趣是最好的老师。作为量子力学课程的第一节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从第一节课开始培养。在上绪论课时作者主要通过以下几点来抓住学生的兴趣。首先列举早期与量子力学相关的诺贝尔物理学奖。诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。
三、重视物理学史的引入
随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个完美的黑体辐射公式。而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。
四、教学手段的改革
量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。而且在授课过程中有大量的公式推导过程,非常的枯燥。所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。但在具体授课过程中不能完全地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。
五、加强教学过程的管理
只有让学生深刻认识结构化学的重要性,才能使他们产生学习兴趣,激发起学习的动力,充分发挥其主观能动性,使教学达到事半功倍的效果。
(1)结构化学是化学各学科的理论基础。
结构化学为化学各学科提供理论指导,是联系基础化学与高等化学的阶梯。结构化学已经渗透到现代化学的各个领域。以学生学习过的课程为例,无机化学中涉及了原子结构、分子结构、晶体结构和配合物结构等方面的内容;有机化学中运用杂化轨道理论和分子轨道理论说明有机物的结构,使用分子对称性理论描述分子空间结构,利用前线轨道理论解释化学反应机理等;仪器分析中紫外光谱中的电子跃迁、红外光谱中的简正振动、X射线衍射等,都与结构化学知识紧密相关。从这些学生熟悉的课程入手,可使他们很快体会到结构化学的重要基础地位。
(2)结构化学是分子设计的理论基础。
“结构决定性能,性能反映结构”。如果找到某类具有特殊性质的物质的规律性,就能设计出性能更好的分子。结构化学及在其基础上发展起来的计算化学、分子模拟等对分子设计起理论指导作用。为了让学生了解这方面的内容,可用如下实例进行说明。首先以石墨烯为例。碳元素是自然界中分布广泛并且与人类社会发展关系密切的重要元素。碳单质有多种存在形式,主要有石墨、金刚石、富勒烯、碳纳米管等,其中石墨烯由于其优良的结构性质而成为材料科学领域的研究热点。在教学中可先向学生提出问题:石墨烯的结构是怎样的呢?这就要从石墨的结构谈起。石墨为层状结构,同层的碳原子间以sp2杂化形成平面共价键,每个碳原子剩余一个p轨道未参与杂化,上面各有一个电子,这些p轨道互相平行且与sp2杂化轨道所在平面垂直,相互重叠形成离域大π键。π电子在整个碳原子平面方向运动,所以石墨可以导电和导热,可以用来制作电极和坩埚。而石墨的层与层之间以微弱的范德华力相结合,容易断开而滑动,所以石墨具有性,可以用来制作剂。石墨烯可以看做是只有一个原子层厚度的单层石墨片。2004年,石墨烯由英国曼彻斯特大学的海姆和诺沃肖洛夫通过微机械力剥离法制得,二人因在二维空间材料石墨烯方面的开创性实验而获得2010年诺贝尔物理学奖。从结构上来看,石墨烯可以看做是构成富勒烯、碳纳米管和石墨的基本组成单元。将其包裹成球得到富勒烯,沿着固定轴卷曲得到碳纳米管,多层堆叠在一起就形成了石墨。由于石墨烯独特的结构,决定了其具有多种优异特性,如低密度、高强度、良好的导热性、室温下较高的电子迁移率等,这些特性决定了它在半导体工业、材料、力学和光学领域拥有巨大的应用潜力。例如,石墨烯被分割时其基本物理性能并不改变,而硅不能分割成小于10nm的小片,否则将失去其电子性能。因此,石墨烯极有可能成为硅的替代品推动电子信息产业的发展。研究者正在不断对石墨烯的结构进行修饰和改造,以挖掘和发挥其优良性质,优化使用效果,扩大应用范围。通过这个例子,可以让学生深刻感受到结构化学与科技前沿领域的联系,意识到结构、性能、用途三者间的辩证关系。然后以计算机辅助药物设计为例进行讲解。作为在结构化学基础上发展起来的新兴交叉学科,计算化学正在科学领域内逐渐崭露头角。计算化学基于三维分子结构,以量子力学或经典力学原理为指导,确定算法并实现程序,再通过计算机运算来模拟和预测分子体系的性质;计算化学在实际生产中的一个重要应用就是计算机辅助药物设计。例如研究者通过生物学方面的研究,发现了与某类疾病相关的大分子如蛋白质,将其作为靶标(受体),并且通过X射线晶体衍射或核磁共振等方法测定了其三维结构,尤其是得到其作用(活性)位点的结构。这时就可以通过计算机模拟的方式,在数据库里寻找分子形状和理化性质与受体作用位点相匹配的小分子(配体),研究受体与配体的详细相互作用信息(包括结构信息和能量信息),合成并测试这些分子的生物活性,这样就有可能发现新的先导化合物,开发出治愈疾病的药物分子[。这就是基于受体结构的药物设计方法,可为药物开发节省大量时间和资金,已在药物设计方面取得了巨大成功。如HIV-1蛋白酶抑制剂的设计就是一个典型的成功案例,标志着计算机辅助药物设计从方法研究过渡到实际应用阶段。2013年的诺贝尔化学奖授予美国科学家卡普拉斯,莱维特和瓦谢尔,以表彰他们“为复杂化学体系发展多尺度模型”。这个奖项是对计算化学进步的认可,强调了计算化学在科学领域内越来越大的作用。在计算化学领域有两种主要的计算方法,一种是基于量子力学原理的量子力学计算方法,另一种是基于牛顿力学的分子力学/分子动力学模拟方法。将这两种方法有机结合、取长补短而建立起来的量子力学/分子力学方法已获得巨大成功。例如在研究药物分子与蛋白质结合时,对药物及与药物相作用的蛋白部分采取精确的量子力学计算,对蛋白的剩余部分采取快速的分子力学计算,这样就兼顾了准确性和计算量,取得了很好的结果。计算机作为当今化学家的工具就像试管一样重要,模拟是如此真实以至于传统实验的结果也能被计算机预测出来。莱维特曾经这样描述他的一个梦想:利用计算机处理复杂化学过程的能力,实现在分子水平上模拟一个完整生物,构建“数字生命”。通过这个例子,使学生认识到结构化学并非只是“纸上谈兵”,而是具有重要的实际应用,可以激发他们的学习兴趣。最后,向学生介绍结构化学的发展历史,将其发展史与诺贝尔奖紧密联系在一起,进一步突出其重要性。在结构化学中的一些重大科学发现和理论突破基本上都获得了诺贝尔奖。例如在开创量子力学的过程中,普朗克、爱因斯坦、玻尔、德布罗意、海森堡、薛定谔、狄拉克、泡利、波恩等都获得了诺贝尔物理学奖。另外,在研究物质结构的实验方法方面,如在X射线衍射法、核磁技术和应用、质谱技术、电子显微镜技术等领域,都有很多科学家获得诺贝尔奖。而且还有很多科学家因在结构方面的研究而获奖,如克里克、沃森和威尔金斯发现DNA双螺旋结构,科尔、克罗托和斯莫利发现富勒烯,谢克特曼发现准晶体等。将结构化学的发展史与化学史尤其是诺贝尔奖联系起来,能够培养学生的科学精神和素养,促使他们树立远大的科学理想,使他们获得强大的学习动力。
2结构化学的学习方法
在让学生意识到结构化学的重要性以后,接下来就要结合课程特点传授给他们结构化学的学习方法。首先要重视定理、公式和方法的数学计算和推导。在结构化学中尤其是量子力学部分涉及许多数学和物理方面的内容,比较抽象和难懂。对于定理、公式和方法,学生要尝试跟着教师的板书一起进行计算和推导,只有这样,才能理解这些定理、公式和方法,并有助于记忆。当然,并不是要求学生死记硬背,关键还是理解。要让学生体会到演算、推导和逻辑思维的快乐,感受科学的魅力。其次要提高对空间结构的想象能力。在分子结构和晶体结构等内容中,判断点群、堆积类型、结构型式等都需要发挥学生的空间想象能力。所以对于典型的分子结构和晶体结构要多看多想,通过观察实物模型和计算机三维模型,寻找特点和规律,根据定理和规则,把看到的具体模型简化成抽象结构,体味结构之美。最后要求学生要提前预习和及时复习。结构化学难度高、内容多,不提前预习很难跟上教师的讲课节奏。即使在课堂上听懂了,若课下不及时复习,经过一段时间后就容易忘记。因此,要提前预习以做好课前准备,及时复习以巩固所学知识。另外,要加强习题练习,通过做题来查找学习中的问题,加强对知识的理解。另外,还要向学生说明一些其他教学事宜。如介绍课外参考书和网络教学资源,说明模型实习的具体安排,制定课堂纪律,明确考试考核要求以及成绩构成百分比等。
3结语
关键词:大学物理;物理学史;课堂教学;兴趣激发
作者简介:李玲(1980-),女,湖北荆州人,长江大学工程技术学院,讲师。(湖北 荆州 430020)
基金项目:本文系长江大学工程技术学院教研基金项目(项目编号:JY201112)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)08-0122-02
一、大学物理课程的意义
物理是自然科学的基础性学科,它的知识体系和思维方法贯穿人们学习自然科学知识的始终,培养人的科学精神,陶冶人的科学思维,教会人应用科学方法解决具体问题。大学物理是工程技术学院(以下简称“我院”)相关系部许多专业课的理论基础,但因有些学生认识不到这门课的重要性,经常在课程中期出现畏难厌学现象。现通过改革课堂教学内容,提高学生对物理的学习兴趣,以期提高教学质量。
物理学史上的许多名人轶事及其主要研究成果的研发过程都对今人有积极的指导作用,如光学波粒二象性对立统一的认知发展过程。若能结合教学内容将物理学史中有代表性的知识体系发展融入教学过程,既可激发学习兴趣,改变满堂灌的理论推导,又可有机地将物理知识要点与科学的世界观及哲学发展理论结合起来,有利于学生知识底蕴的累积和眼界的开阔。
表1 大学物理全模块教学内容及课时分配
我院经过数年的大学物理模块化教学改革[1]后,将学科内容分为六个模块(表1),参考课时分配,本文讨论如何在课堂教学中将物理学发明史、名人史等容易激发学生兴趣的内容导入,以及导入后其对课题教学可起到的积极作用,课程内容以我院现在使用的大学物理教材[2]为准。
二、大学物理全模块教学内容
1.力学
力学部分的讲授内容比较多,是物理学实践探索方法与思想体系建立的基础。质点运动学有两次课,第一次课绪论开端讨论物理学科的研究范围,介绍从古人对自然的朴素的感性认知,到近代利用微积分等数学工具归纳推导大量天文观测数据及实验室数据而获得的经典物理学基本定理与定律,再到近现代的量子物理和相对论,物理的发展史即人类文明的发展史。这两次课中要将大学物理用到的微积分、矢量等数学知识进行系统化介绍,而微积分的发明者之一牛顿正是近代物理的标志人物。
牛顿定律部分由于学生熟悉内容,在理论讲授部分很容易分散注意力,因此,介绍相关物理学史知识可以有效地激发学生兴趣。如被称为近代物理学之父的伽利略,其著名的比萨斜塔落体实验、斜面实验皆入选最美丽的十大物理实验,[3]其物理思想如惯性、力与运动的关系等,是牛顿定律得以建立的基石。而牛顿在1687年发表的《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石。质点动力学的最后一节非惯性系略有些抽象。以科里奥利命名的旋转参考系中的惯性力有许多常见实例,很容易激发学生探究兴趣,如台风气旋、下水方向、河道两边的不对称冲刷,以及著名的列入十大最美物理实验之一的傅科摆。[3]
刚体力学三次课相对来讲较难较抽象,需要用到微积分、空间立体几何及矢量叉乘知识,质点的角动量守恒可以将开普勒第二定律的反向证明作为计算实例,而历史上牛顿正是由开普勒第二定律推导定义角动量的概念。在大段相对沉闷的概念讲解和定理推导之后,第谷与开普勒师生的历史故事以及他们对物理学发展的贡献很容易引起学生的兴趣。
2.振动与波
由于简谐振动的振动方程、平面简谐波的波动方程等都比较抽象,其对应物理量的计算和转换多,所以此处学生最易产生厌学情绪。
机械振动两次课,第一节课可用中国2013年6月太空课堂的单摆实验导入;第二次课的利萨,及其后的阻尼振动及共振在生活中的应用及历史中的实例就更多了,例如著名的18世纪拿破仑士兵齐步过桥致桥塌事件。在西方,波动现象的本质首先是由达芬奇发现的。机械波致质点受迫振动也可举共振的例子,如中国古代战场上利用共振器判断敌军多寡和方位、唐朝寺庙钟磬声波共鸣等事例。第二次课中可以用1842年多普勒在散步时的“多普勒效应”导入,目前该效应应用很广。
3.热学
热学部分我院仅勘工和化工类专业需要学习。气体动理论部分的两次课中涉及到微积分的计算不太多,学生们对克拉伯龙方程也有一定基础,总体难度不大。第二次课讲自由度及麦氏速率分布率时,由于涉及到统计学,相对比较枯燥且理论公式冗长。可以在前期已观察到学生状态及接受水平的基础上,淡化理论,介绍一下科学家麦克斯韦生平。麦克斯韦被誉为牛顿与爱因斯坦之间最伟大的物理学家,其一生对物理学的卓越贡献不仅表现在对后世产生巨大影响的电磁学上。他在热力学方面提出的麦克斯韦速率分布式也是应用最广泛的科学公式之一,在许多物理分支中起着重要的作用。同时代的科学家玻尔兹曼将麦克斯韦速率分布式应用到保守力场中,提出了玻尔兹曼速率分布律,在热力学研究中也具有重要地位。玻尔兹曼把物理体系的熵和概率联系起来,阐明了热力学第二定律的统计性质并引出了能量均分原理。
热力学基础三次课,可联系科学发展史上对永动机的探索导入。如第一类永动机不可能被创造出来是违背了能量守恒定律,但其探索过程为热力学第一定律的建立提供了实验基础;第二类永动机则违背了热力学第二定律。此外,热机的发明是工业革命的标志之一,第二次课的循环过程可借此话题导入。
4.光学
光学是一个古老而充满活力的学科。[4]从十七世纪中叶牛顿和惠更斯分别提出光的微粒学说和波动学说之后,对于光的本质的讨论一直是科学界热点话题,直到二十世纪爱因斯坦提出光的波粒二象性才告一段落。牛顿对光学的研究可视为近代光学的开端,其棱镜分解白光实验入选十大最美物理实验,[3]而牛顿环实验至今仍是大学普通物理实验室经典必选实验之一。因牛顿的权威,光的微粒学说在科学界占主导地位达一个多世纪。光的干涉第一次课以十九世纪初托马斯杨的双缝干涉实验导入,这一实验揭开了近代波动光学的序幕,亦是十大最美丽的物理实验之一。[3]第二次课薄膜干涉可以用牛顿环导入。第三次课中介绍在物理学史上有重要地位的迈克尔逊(1907年获诺贝尔奖)干涉仪。
在衍射部分,将菲涅尔等实验证明的著名泊松亮斑在第一次课中作简单介绍,可以很好激发学生的讨论热情,因泊松亮斑的相关历史很多学生都有所了解。第二次课的X射线衍射的发现过程亦十分有趣,伦琴(1901年获诺贝尔奖)夫人戴婚戒的手骨底片是第一张X光照片。
光的偏振总体上是介绍性质的讲授,重点是1808年发现的马吕斯定律和1815年布儒斯特定律,不作重点但比较有趣的双折射现象则是早在1669年就被人们发现的,其在生活中可作为辨别晶体与非晶体的一种方式。
5.电磁学
经典电磁学理论是大学物理中的必修模块,虽然理论推导多、微积分计算多,但现在电磁学在生活中的应用无处不在,且名人辈出,将课上得生动有趣并不困难。如静电学部分的库仑定律是1785年的库仑扭秤实验确立的,电荷的不连续性是由1909年密立根油滴实验证明,该实验是十大最美物理实验之一。[3]第三次课讲授的静电场高斯定理因“数学之王”高斯得名。高斯生平传闻轶事很多,尤其是其研究生时期,误将悬留两千余年未解的尺规作正十七边形问题作为导师布置的课后作业一夜解决的故事,与学生们发散讨论其心理学与教育学意义,对于学生打破心理设限努力钻研学习很有意义。
稳恒磁场八次课,第一次课可介绍中国古人在磁学方面的发现,司南和指南针的意义;1820年近代磁学标志性的奥斯特实验等,也是学生们熟悉且有兴趣的内容。第二次课的毕奥-萨伐尔定律,可介绍其定律的得出与安培、拉普拉斯等在数学上的帮助密不可分,再次强调大学物理学习中高数知识的重要性。安培是一位在数学、物理、化学领域都有很高造诣的科学家,约第四、五次课中学习的磁场安培环路定理、安培定律都由他发现,被称为“电学中的牛顿”。
电磁感应部分则由著名科学家法拉第的故事导入。被誉为电磁学领域的平民巨人,著名的自学成才的科学家法拉第,生于英国一个贫苦铁匠家庭,仅上过小学。1831年,他作出了关于力场的关键性突破,永远改变了人类文明。[4]法拉第是一位无以伦比的实验物理学家,在电磁学、化学、电解、气体液化等实验方面都做出了巨大贡献。而且法拉第十分幸运地在晚年遇到了既能理解他的物理思想,又长于数学的麦克斯韦,第三、四次课中的感生电场和位移电流假设都是由麦克斯韦提出。麦克斯韦于1873年出版了科学名著《电磁理论》,系统、全面、完美地阐述了电磁场理论,这一理论成为经典物理学的重要支柱之一。1888年,赫兹经反复实验,终于发现了人们怀疑和期待已久的电磁波,由法拉第开创、麦克斯韦总结的电磁理论,得以完美的证明。
6.相对论与近代物理
这部分内容我院只有全模块的勘工和建环专业按十六课时教学并考试,其他专业都只作为了解内容,用物理学史的故事串讲主要内容即可:
(1)被誉为20世纪最伟大物理学家的爱因斯坦,其狭义相对论的两个重要结论:时间延缓和长度收缩效应,及物理学史上著名的双生子佯谬已被实验证明,而为爱因斯坦赢得1921年诺贝尔奖的是光电效应的研究。
(2)光电效应方程中的普朗克常数对描述光的量子性非常重要,因研究黑体辐射而提出该常数的普朗克(1918年诺贝尔物理学奖)是量子力学的创始人。有趣的是,普朗克本人并不认同量子理论的许多观点,直到爱因斯坦利用能量子假设完美地解释了光电效应。
(3)被戏传一举拿下诺贝尔奖(1929)的德布罗意也是量子力学创始人之一,以物质波假设理论最初的确是在其博士论文中提出的,因德布罗意是法国公爵兼德国王子,使其曾被传闻是一位花花公子,事实上德布罗意终身献身于科学,深居简出,是个标准的工作狂。
(4)提出氢原子能级假设的天才玻尔是著名的哥本哈根学派创始人,量子力学的奠基人之一。
(5)概率波动力学的创始人薛定谔,提出著名假设“薛定谔的猫”。
三、结束语
本文按长江大学使用的《大学物理》教材[2]中各章节先后顺序列出各章可能提及的名人轶事,希望对执教于大学物理的同仁们在课堂教学中有所助益。
参考文献:
[1]李玲,梅丽雪.独立学院大学物理模块化教学探讨[J].华章,
2009,(9).
[2]康垂令, 伍嗣榕,李玲.大学物理[M].武汉:武汉理工大学出版社,2013.
[3]宫铁波,张炳恒.十大经典物理实验回顾[J].大学物理实验,
关键词:结构化学;创新精神;高等教育;教育改革
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)02-0083-02
结构化学是高等院校化学、材料等相关专业的一门专业基础课,是理论化学的一个重要分支。它是探究原子、分子、晶体结构的微观结构,原子和分子中电子的运动规律,及原子和分子结构和性质之间关系的一门科学[1-3]。开设结构化学课程的目的是使相关专业的学生对微观世界的结构和运动规律有所了解,初步掌握结构与性质的相互关系;从而使学生更进一步地从更深的层次上理解其他化学相关的专业课程,包括无机化学、有机化学、分析化学、物理化学等。
一、结构化学课程的特点
结构化学这门课程特点明显,如下:(1)综合程度高;(2)理论性强;(3)内容抽象。由于这一系列的特点,初学者在开始接触这门课程时,常有听“天书”无从下手的感觉;作者在教学过程中也因此遇到了一些问题。下面将遇到的问题做一概括:
1.综合程度高。结构化学这门课程不是建立在经典力学体系下的课程,而是一门以量子力学为基础的课程[4]。因此在此门课程的学习开始,就要求学生们巩固好大一、大二所学的四大化学(无机化学、有机化学、分析化学、物理化学)课程以及其他学过的化学理论基础知识,并在脑海中建立起一套完善的量子力学体系。此外量子力学论还是近代物理的重要组成部分,因此同学还要兼备一定的物理知识基础。只有综合掌握了物理和化学的相关基础知识后,才能从本质上理解微观化学领域各个粒子的结构与性能的特征,学懂结构化学这门课程。由此可见,该课程不管是教还是学,两方面都存在着较大的难度。
2.理论性强。结构化学授课困难的一个重要原因就是课本中含有大量的公式推导过程,复杂的数学模型和大段的文字叙述求解过程。公式推导过程用到比较多的包括微积分、线性代数等高等数学知识。而高等数学方面向来是化学专业学生们的弱点,一步步的推导过程枯燥乏味,让学生感觉云里雾里般,进而忙于应付求解过程忽略了公式中各个变量的深层次含义。
3.内容抽象。微观粒子的结构和运动规律是结构化学的主要研究内容,而看不见摸不着的微观粒子的运动给同学们学的过程带来了一定的困难,文字叙述无法直观表达,只能靠学生的凭空想象。因此这门课程对学生的逻辑思维能力和空间想象能力都有较高的要求。
二、结构化学课程授课过程中存在的问题及改革建议
本文作者根据自己多年的教学授课经验,结合学生课后的反馈意见,对改革结构化学的教学方式提出了一些建议,旨在激发学生的学习兴趣充分调动学生的学习积极性,活跃课堂气氛提高课上学生的吸收率。
1.重视引导。结构化学是一门化学专业类的理论基础课,学生们看到教材上大段的文字叙述还有繁杂的数学公式推导过程,往往还没有开始学习就对此门课程失去了兴趣。所以,在上第一节课的时候就应对学生进行正确的引导,在绪论课上给大家讲述一些结构化学发展史。首先便是1900年,普朗克提出了量子假说,勇敢地打破了能量必须连续变化的经典理论,规定了以间断形式存在的能量,电磁场中的能量和物质交换间的能量,能量子的大小同辐射频率成正比,用普朗克常数作为二者之间的比例常数,从而得出黑体辐射能量分布公式,完美地诠释了黑体辐射现象。其次在1905年,爱因斯坦意识到了量子化概念在微观领域的重要性,引进了光子的概念,从而解释了光电效应,开启了量子力学的新篇章。学生们在听故事的同时,会不知不觉地克服恐惧心理,激发学习的兴趣。最后顺着教学大纲的思路,引导大家用量子力学体系的思维去思考分析结构化学中所遇到的问题,让同学们处于愉快的气氛中,带着笑容下课。
2.充分利用多媒体教学手段辅助教学。结构化学在教学内容上涉及一些相对抽象的模型,如原子轨道形状、多原子分子的组合方式、配位化合物的配位形式、晶体的点阵结构等都涉及原子和分子的空间排布规律,这些内容要求学生具备较强的空间想象能力。传统的板书教学方式很难将结构化学中较为抽象的理论以直观的形式表现给同学们,大段大段的纯文字描述也使得学生感到晦涩难懂。多媒体技术可以将授课内容动态化、立体化[5],绝大多数的分子、晶体结构都可以用3D软件结合FLASH等做成可360°观看,任意缩放、平移、旋转的模型,同学们可任意角度观看,有利于巩固加深记忆。
3.注重理论与实际的联系。由于结构化学是一门理论基础学科,因此学生们理解起来可能会有一定的难度,容易学过即忘,在教学过程中应让学生通过理论联系实际中所熟知或已学过的现象,通过类比的方法巩固加深记忆。比如,在讲晶体的宏观对称性时,联系大自然,启发学生思考:大自然虽然讲究对称美,但为什么很少有五边形和七边形的物体呢?由此引入晶体的空间点阵结构、对称元素、对称操作的概念并对对称轴次加以证明,得出结论:晶体结构中的对称轴次只允许存在1、2、3、4、6这五种不存在5和7,这与大自然世界的对称美是相呼应的。而讲到离域键的共轭效应时,以碱性条件下酚酞会变成红色为例,结合学生高中所学知识让学生理解酚酞变色的根本原因,主要过程是酚酞与碱性溶液发生反应,形成了离域键,产生了共轭效应,酚酞-碱性溶液体系能量下降,能级间隔变小,光谱偏移至可见光区,因此我们看到无色的酚酞变成了红色。通过这种由外至内、循序渐进的引导方式使学生转变对结构化学这门课程的印象,说明这门课程不是凭空想象漫无边际地研究我们用不到的东西,而是服务于实践,解释着实践中所遇到的问题,从而使他们树立起学习信心,增加学习动力,真正做到课上讲过的东西当堂就吸收理解掌握。
4.弱化公式推导。结构化学教学的目的就是让同学们理解掌握结论和推导过程中各符号的物理意义及这些符号在化学中起到了什么样的作用,有什么应用。结构化学中的公式推导过程用到的高等数学的课程知识比较多,包括微积分的多重积分求解,线性代数中的行列式求值等。而数学功底普遍是化学专业学生们的弱项,大部分所用到的数学知识又都是在大一学习的可能已经被忘到了脑后,因此在讲述结构化学课本中的公式时应尽可能弱化公式推导过程,强化学生对整体大局和结论的理解,不再单独强调详细的求解过程。因此在讲到公式部分时,首先要明确每个符号所代表的物理意义,从本质上理解结构化学这门课程,引导学生们如何去解决问题,解决问题后又能得出怎样的结论,所得结论的实际意义是什么,然后再回到研究数学推导求解过程上。让学生抓住该课程的主线厘清学习这门课程的基本思路,顺着大纲学下去,把握住主要的大方向,这样继续向后面章节学习就不会出现断层。反之如果从数学公式推导出发,进行烦琐的化简计算,就容易忽略需要解决的问题的主体,不知道这些纯数学求解过程是要干什么,得出的结果有什么意义,事倍功半。
5.科学的完善考核机制。考试是教学活动不可缺少的一部分,也是衡量教师授课成果和学生掌握课程情况的主要方法。现代大学是以培养综合创新型人才为目的的,因此在教学考核过程中,应该用科学的、多元的方式去综合评价每个学生,拒绝一考定终身的制度,取代传统的单一闭卷考试方法,转变学生们认为只要死记硬背课本就能取得好成绩的惯性思维。将最终成绩定为三部分之和,其中,平时成绩占30%;期中成绩30%;期末成绩40%。平时成绩的30%包括课堂表现(10%)、习题作业(10%)和专业课小论文(10%)。课堂上教师有针对性地提出问题并根据学生的回答情况给出分数,既能随时掌握学生们的学习状况还能根据学生们的整体掌握情况随时调整课程安排。有利于增强师生课上的互动、改变课堂沉闷的授课氛围,培养学生们独立自主的思考问题,讨论问题,解决问题的能力,同时还可以锻炼他们的语言表达能力和应变能力。课后的习题作业主要是引导学生正确地复习所学内容。专业小论文则偏重于考查学生查阅相关文献、获取知识的能力。这样灵活的考试机制有利于引导学生改变突击复习期末考试的方法,树立正确的学习观,从平时开始做到课后即复习,查漏补缺,也只有这样才能真正达到结构化学的教学目的。
根据笔者多年来对结构化学课程改革的摸索,使用上述方法学生们学习结构化学课程的积极性明显提高,课堂气氛也活跃起来了,学生们爱听了,授课效率明显提高。
总之,结构化学是一门其中理论在实际生活中接触较少,学习的知识内容相对抽象,老师和同学们在教与学的过程都感到较为困难的理论基础课。教师们应精心备课,认真设计教学内容,研究课程改革,由浅入深的教学,消除学生们对课程的恐惧心理。通过一系列的改革过程,改变课堂环境,活跃课堂气氛,让学生体会到独立自主创新和团队合作精神的重要性,培养他们对问题分析和解决的能力;最后引入科学合理的考核机制对学生进行综合评价,引导学生树立正确的学习观,不断充实结构化学理论基础知识,提高主动获取知识、综合运用知识的能力,培养多能创新型优秀人才。
参考文献:
[1]杨志广,彭鹏,石晓明,周凯.如何激发学生学习结构化学的兴趣[J].教育教学论坛,2014,(20):118-120.
[2]令狐文生,董华平.结构化学课程建设的实践与思考[J].教育教学论坛,2011,(35):214-215.
[3]韩波.结构化学教学实践与初探――引导启发式教学[J].科技信息,2013,(25):218,259.
本书名为现代电动力学,它以希望深化对电磁学的理解而数学水平又不太低的研究生为读者对象。考虑到它既可作为课堂教学用书,又可作为对广泛读者有用的参考书,作者认为,它与专著相反,应该涵盖学生们必须知道的一切,而不是作者应当知道的一切。但物理学家们对于“学生们必须知道的一切”极少有共识,一般来讲,除了大学教程中所出现的一些核心内容之外,对于研究生课程的讲义的内容往往依赖于作者的研究工作背景。本书作者打算在适当的篇幅下使本书包含有远远超过两个学期课程所需的材料,以适应根据不同的要求选择教学内容。
本书书名中的“现代”并不意味着使用特殊的“现代”数学方法,而是指它包括了近几十年来引人关注的新发展起来的一些重要论题,为此不惜忽略掉或者仅仅略微提及一般教科书中一些熟悉的论题。为了帮助读者学习,本书提供大约120个完全解出的例题。此外,各章后面总共有近600个课后作业题,这些题目中有一些属于大学生水平的技巧性题目,而有一些是直接取自研究文献中具有挑战性的问题。
学生在读懂课文的帮助下积极地完成这些习题能为自己打下良好的基础。
全书内容共分成24章:1.数学预备知识; 2.麦克斯韦方程;3.静电学; 4.电多极矩; 5.导体; 6.电介质; 7.拉普拉斯方程; 8.泊松方程;9, 稳恒电流; 10.静磁学;11.磁多极距;12.磁力和磁能;13.磁性物质; 14.动力学的和准静态场; 15.一般电磁场; 16.真空中的波;17.简单物质中的波;18.色散物质中的波; 19.导波和约束波;20.推迟和辐射; 21.散射和衍射; 22.狭义相对论;23.运动电荷的场; 24.拉格朗日和哈密顿方法。
书末有4个附录: A.重要的符号表; B.高斯单位; C.特殊函数;D.狭义相对论中负号的处理。
本书的写作风格和丰富的内容以及作者深刻的理解力和洞察力使得本书出版后立即得到了许多相关专家、学者的好评,认为这是一部难得的研究生用教科书,而且必将成为一部经典电动力学新的、优秀的经典教材。
丁亦兵,教授
(中国科学院大学)