前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学知识点总结范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:量子力学;材料类专业;教学探索
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)08-0122-02
对于普通高校的材料类本科教学来说,要求学生具有数学、物理、化学等方面的基本理论和基本知识,掌握材料设计、性能优选、工艺优化的原则,以及材料的组成、结构和性能关系。这就需要学生具有材料学科的完整的知识体系,量子力学是半导体、固体物理以及计算材料学、材料测试表征技术等学科的基础,在材料科学体系中有着非常重要的地位。然而其由于本课程的学习是基于高等数学、大学物理、数学物理方法等前期课程学习的基础之上的,学生对这些基础课程的掌握情况参差不齐,而大部分学生对前期课程多有遗忘,课程内容的学习过程中需要理解的知识点很多,所以要学好这门课程需要充分发挥学生的主观能动性,及时复习前期基础课程和预习相关知识。由于知识间衔接紧密,需要逻辑推理内容非常多,学生稍有走神或缺课就会跟不上教师的教学进度,从而对后续知识的学习也丧失信心。此外,对于工科大环境下的学生群体来说,学生普遍对实用的专业课程较感兴趣,而对基础理论课程不够重视,认为学习非常枯燥也没有大多的用处。种种原因造成了在工科大环境下的理论物理教学特别是量子力学课程的教学困难重重,因此将理论教学与专业特色相结合,探索具有专业特色的量子力学的教学方法具有重要的意义。如何消除学生对本课程的畏惧心理,如何调动学生的学习积极性,让学生在课堂上有收获的同时也要自觉利用好课余时间学习是解决本课程教学的关键。本文结合材料类专业的综合情况,经过实践探索,总结几点较为实用的教学方法。
一、与专业课程体系相结合,突出课程的重要性
备课之前先熟悉所授课专业的培养方案,了解学生的已修课程、同学期开设的专业课程以及后续的专业课程。材料类专业的量子力学课程一般在第四学期开课,在此之前学生已经修完了高等数学、大学物理、线性代数、数学物理方法等前期课程。同时学生开始接触一些材料类的专业课程,例如材料科学基础、高分子物理、物理化学等,在之后的第五以及第六学期将有大量的学科专业课,如材料分析测试技术、计算材料学等。教师在对本专业的课程设置以及知识框架有了整体的了解以后,有针对性地翻阅一下一些核心专业课程的教材,将专业课程当中涉及量子力学基础的内容筛选出来以备用。在给学生讲授第一堂课时既将本课程的重要地位告知学生,哪些课程在后续课程种会涉及到相关知识,哪些领域会用到本课程的知识,以及量子力学对本专业以及相关专业的研究生入学考试以及继续深造时的必要性。让学生一开始对本课程的学习有心理上的重视。在具体教学的过程中,注意将量子理论与专业内容相结合,包括已修课程和后续课程。通过多学科的渗透将整个材料学专业的课程内容进行贯穿,凸显出量子理论的重要性和实用性,让学生意识到量子力学并不是高高在上毫无用处的理论公式,同时也使得量子力学的教学更加丰富和生动。
二、与前沿科学相结合、活跃课堂气氛
当下的高校教师除了教学很大一部分时间精力都用于科学研究。平时实验或看文献时可以将所涉及的一些前沿科技成果加以搜集,课堂上通过多媒体以图片、音响等直观的方式将其进行简要的介绍。活跃课堂气氛的同时有可以加深对该理论的理解,激发学生的学习积极性。在给学生讲解理论知识的同时注重结合理论的应用领域,结合材料学科的特点以及学校的特色。作者所在的本校是有着交通特色专业背景,本校材料类专业也有水泥混凝土、沥青混合料等工程材料方面的课程,学生就业也有很大比例在交通相关领域。结合本科的这一特征,教师讲课时可以作一些前沿材料在交通领域的最新进展。在讲解知识基础的同时穿插该部分知识的应用方面的展望,展示过程中采用借助多媒体以图片、音响和板书讲解相结合的方式。通过多种途径让量子力学这种看似“高大上”的学科也有“接地气”的一面,不至于全是枯燥的理论和生硬的公式,有利于对学生学习动力的激发。对于自己的科研课题也可以作一些介绍,还可以挑选部分基础较好的感兴趣的本科生参与到课题的研究或者参观学习,零距离的接触前沿科学,对调动学生的学习积极性也有一定的帮助。
三、多种教学手段相结合,调动学生的学习积极性
在教学的过程中采用多种教学手段相结合。鉴于量子力学的理论抽象、知识量大、数学推理公式繁多,在教学过程中教师的讲授以基本概念的理解、基本物理思想的和基本的物理模型的建立为主,对于需要推理演算的部分可以引导学生利用课余时间自学。首先可以拓展多样化的考核方式。课程考核的成绩以期末考试为主但是学期内平时的表现也是必要的。可以考虑适当增大平时考核的分数比例,便于调动学生充分利用课余的时间。其中平时表现又可以分为多个方面来考核,充分调动学生的自主学习激情。课堂教师讲授为主,适时设问作为课外思考作业,作业以书面形式或者学生在下一次课作简短的展示的方式。才外还可以给学生布置小论文,鼓励学生多进图书馆,查阅相关文献书籍写一两篇小综述。在第一堂课即向学生说明考核的方式和比例,在考分的压力下学生自然会积极准备相关内容。在应对这些平时作业的过程实际上就是学生自主学习的过程中,既巩固了量课程知识,又锻炼了学生自主学习的能力和思维。在教学当中采用多媒体和传统的板书相结合的方式,多媒体信息涵盖量较大,对一些复杂又必须的推导过程可以采用PPT作快速的展示,而对于一些重要的公式及定理则需要采用板书加以强化,通过教师边书写边口诉讲解,学生有足够的时间消化理解。同时可以采用多媒体多展示一些图片、动画等内容,尽量在枯燥的理论讲授过程中增添一些有趣的小插曲,例如该理论提出的科学家的肖像及简介、名言名句,小故事等。在W习原子的波尔理论以及氢原子模型的时候,使用PPT展示基本公式和理论,再辅以教师在黑板上作图的方式讲解。可以将原子内电子的运动类比于在操场跑步以及天体的运动,在做计算近似时甚至可以将近似级类比于上课教室内的座次对个人学习效果的影响、人际关系的亲疏对个人情感生活的影响程度等。此外还可以鼓励学生多接触一些科普书籍以及最新出版的一些学术专著,例如上帝掷骰子就是很通俗的前沿物理科普书籍。通过多种渠道将量子力学枯燥难懂的教学过程生动化、有趣化。
作为材料类专业核心课程的量子力学一直都是教和学双方都感到很困难的课程。由于量子力学的理论性较强,学习过程相对枯燥,学科的实用性不是很明显,学生容易厌学。教师在教学过程中需要不断的探索适合本专业学生的教学方法。通过与专业课程相结合,与学校特色想结合,采取多种教学手段,结合最新的前沿科学研究,多方面入手使理论知识深入浅出,使教学过程生动有趣、调动学生学习热情,对提高教学质量有非常有益的帮助。
参考文献:
关键词原子物理;物理学史;教学;科学思维
1引言
原子物理是物理学专业学生必修的一门专业基础课。与其他理论性抽象性较强的学科不同,原子物理课程介绍的对象为微观结构,微观体系具有其特定的规律而且不能直接观测,所以不具有宏观物体运动的直观性,必须借助实验手段,因此教学中有大量的实验介绍。与其他学科一样,理论的建立都必须以实验为基础并遵从“实验—理论—实验”的发展原则。在原子物理的教学中一直以来侧重于通过实验现象的分析,发展理论模型,揭示原子结构及运动规律,揭示其微观结构及本质运动规律。通过物理学史的引入,介绍物理学家的实验构想,实验结果与分析可以更加清晰地让学生看到科学探索的过程:在实验过程中发现更多新信息归纳总结推测修正理论然后再在实践中加以检验。实际教学中结合物理学史的讲授能够极大地激发学生的学习兴趣,同时也从中看到实验与理论是怎样相互推进完善我们对原子世界的认知。诺奖辈出的近代物理发展史贯穿整个原子物理学,本文将着重以α粒子散射实验、玻尔氢原子模型和康普顿散射实验为例讨论原子物理教学与物理学史的结合并分析其优势。
2α粒子散射实验教学过程与物理学史的结合
原子物理学发展处于经典物理完善与量子概念提出的这段革命性时期,具有丰富的史料,在教学中结合物理学史,将极大地提升教学效果,这不仅有利于本课程的教学,也将对学科乃至科学思维方法的培养都具有积极意义。将原子物理学发展史融入知识的传授过程中可增强学习的趣味性。例如在讲授卢瑟福核式结构模型[1-2]前分析当时人们对原子的认识。原子是中性,不带电,汤姆孙(J.J.Thomson)发现了电子并由此提出了葡萄干布丁模型。然后此处,电子的发现也经历了一个曲折的科学发展过程。早在1811年阿伏伽德罗(A.Avogadrao)提出的假说中隐含常数NA,联系到电荷存在最小单位,到1833年法拉第(M.Fara-day)提出电解定律并推得1mol任何原子单价离子永远带有相同电量,直至1874年,斯通尼(G.J.Stoney)才明确提出“电子”这一名词来命名电荷最小单位。由实验现象到理论推测,这只是微观世界探索路上的一小步。23年以后,1897年,汤姆孙通过放电管阴极射线偏转真正从实验上确定了电子的存在,成为“最先打开通向基本粒子物理学大门的伟人”。然而,这“理所当然”的结果也不是唾手可得的。首先,人们对阴极射线的研究已有数十年历史,由于真空度不高,很多伟大的物理学家在类似的实验中并未发现阴极射线的偏转,错误地认为阴极射线不带电,真理被掩盖在射线管的低真空环境中。另一方面,在1890年,休斯脱(A.Schuster)研究氢放电管中阴极射线偏转时算得荷质比是千倍以上,他不敢相信自己的测量结果,认为这是荒谬的,真理又一次败给“固有”观念。在与汤姆孙发现电子的同年,德国考夫曼(W.Kaufman)在类似的实验中测得比汤姆孙还要精确的荷质比,但他没有勇气发表这些结果。这些都是真理都碰到鼻子尖上还没有得到真理的人。可见,科学探索过程不是一帆风顺的,通过这些扩展和背景知识介绍让学生认识到科学研究要严谨,忠于客观事实,勇于突破传统观念。接下来在卢瑟福α粒子散射实验中,汤姆孙葡萄干布丁模型的失败、核式结构的成功,这部分的教学中可以让学生看到实验与理论两手并行,设计实验验证理论,新的实验现象修正理论,原子物理这一门学科的发展,充满了对固有观念的颠覆,带着怀疑和批判的精神进一步验证,由此一步一步接近真理,学生们可以真切地体会科学家们通过用客观事实来修正和进一步完善理论的科学思维方法。除了对知识点本身的介绍,结合物理学史的讲授能够在课堂上吸引和牵动更多学生思考,激发学习兴趣,培养基本的科学素养。
3玻尔氢原子模型教学过程与物理学史的结合
在玻尔模型的讲解中也可以通过对著名物理学家们对“量子”概念的认识理解过程以及介绍1927年第五届索尔维会议,很好地让学生了解近代物理发展的精彩一幕。这样可以有效避开传统的灌输逻辑思维方法的教学,通过介绍物理学家的认知过程、思想斗争、学术辩论,让学生看到知识的构建过程,更加深刻领悟物理学研究的思想方法。如1900年普朗克(M.Planck)“勉强”地发表了著名的量子假说,作为经典物理的大师,普朗克不得不抛弃能量是连续的传统经典物理概念,导出了与实验完全符合的黑体辐射经验公式。并且因为量子理论的创立而获得诺贝尔物理学奖。普朗克本人是如此地不喜欢自己提出的量子概念,很想把量子说纳入经典轨道,但十余年的斗争终败,最后在各种经典解释一一碰壁后他才真正理解量子的深刻含义。由此可以再次让学生看到,科学研究确实不仅需要勇气挑战经典,还要学会改变固有观念和思维方式。物理理论的萌芽、发展和完善,这个复杂的过程中学生能够深切地体会其中的曲折艰辛。在介绍玻尔氢原子模型的部分,可以引入玻尔与爱因斯坦的世纪之争。玻尔1885年出生于丹麦,在哥本哈根大学学习物理期间发展和完善了汤姆孙和洛伦兹的研究方法,并且创造性地把普朗克提出的量子假说应用于卢瑟福的核式结构模型,非常完美地解释了困惑物理学家们近30年的光谱实验。玻尔作为哥本哈根学派的创始人,不仅成功地解释了氢原子光谱,还提出互补原理和哥本哈根诠释来解释量子力学。在玻尔成立的哥本哈根大学理论物理学研究所还诞生了大量杰出优秀的物理学家,是当时世界上最重要最活跃的学术中心。玻尔与爱因斯坦的世纪之争因为对物理学发展具有极为重要的作用而被载入史册。在第五届索尔维会议中,爱因斯坦质疑海森堡的不确定性原理,并抛出了“上帝不会掷骰子”的观点,而玻尔反驳“爱因斯坦,不要告诉上帝怎么做”。爱因斯坦对测不准关系和量子力学的几率解释极为不满,认为量子力学不完备,并提出一个思想实验来反驳测不准关系。但这正好被玻尔用分析场的可测性证明了量子场论的无矛盾条件。爱因斯坦提出了很多问题,找到很多矛盾,但都被玻尔一一攻破,反而更加全面地证明自己的正确性,阐明了量子力学的原理。两位伟大的科学家一直在争斗,但玻尔十分尊重爱因斯坦的挑战,爱因斯坦的批评和挑战也促进了大家对微观理论的认识。正所谓真理越辩越明,索尔维会议上玻尔与爱因斯坦的世纪争辩的介绍不仅更能提升学生对物理研究过程的了解和对科学发展的认识,同时有利于正确看待学术讨论、争议、合作,培养学术精神和正确的价值观。另一方面通过介绍以玻尔为中心的哥本哈根学派的工作,可以展开极为丰富的信息,这对激发学生兴趣给学生以启迪、联系专业学科可以起到更加积极的作用。此外,在教学过程中由玻尔理论到索末菲理论再到第三章介绍的量子理论电子云概念的提出,从介绍氢原子到类氢离子再到最外层只有一个电子的碱金属,单电子原子到双电子原子再到多电子原子,每一个部分都是物理学发展坚实的脚印,让学生看到,实际上现有的物理知识无一不是通过无数的曲折反复由简到繁升华高度概括得到的精华,这样的教学过程将更有益于渗透物理思想和学习科学思维的方法,从而树立科学的世界观[3]。
4康普顿散射实验教学过程与物理学史的结合
科学发展实验与理论两手并行,例如1923年美国物理学家康普顿(pton)在研究X射线与物质散射的实验中证明了X射线的粒子性,完满地解释了光量子说,人类对光的本性的认识在实验中完满。这是一个漫长曲折的过程,从17世纪末开始,牛顿提出的“微粒说”认为光是微小的粒子,而惠更斯提出了与之相对立的“波动说”,人们对光的认识局限在当时所能观测的有限的实验现象中,加之牛顿崇高的威望使得“微粒说”一度占领统治地位。一百年后,托马斯•杨通过光的干涉实验验证了惠更斯原理,“波动说”开始充满生机。到了19世纪中叶,麦克斯韦提出“电磁说”,由此光的波动理论占据主导地位。但很快因为波动理论认为光的传播需要介质,这难以解释宇宙中光的传播,“波动说”又身陷囹圄,而且“波动说”在光电效应面前苍白而无力。1905年,爱因斯坦提出“光量子说”成功解释了光电效应,这样几经曲折,康普顿散射实验终结了人们对于“光量子说”的怀疑,最终认识到光具有波粒二象性,粒子与波动完美统一。康普顿散射实验这个漂亮的句号可以启发学生认识到人们对于客观事物的认知总存在历史局限性,前人们经历了从无知到多角度多方面看实物,从相对真理到越来越接近绝对真理的过程。
5小结
在原子物理这门课程的教学过程中充满了革命性创新性的故事,联系物理学史开放性的教学,对于培养学生不拘泥思维,敢想敢干勇于创新将起到积极的促进作用。物理教学中,特别是原子物理课程教学中扒开死气沉沉的公式,充分利用物理学史资料,呈现真实的历史不仅可以充实和丰富课堂内容,开阔学生视野,活跃课堂气氛,培养学生学习兴趣,更重要的是可以让学生对专业学科展开立体的联系,知识不再是单一的点,还可以连成线,展开为面,知识是立体的,充满生命力的,向各方面生长的。综上,原子物理教学过程中紧密结合科学事例的历史,将更有利于激发学生学习兴趣,深入探索实验现象,积极动脑思考物理本质,培养科学思维方法。知识的多寡不是我们教学中所追求的终极目标,探索精神的培养,对物理本质的全面理解以及建立正确的科学思维方法,树立正确的科学观才是充满生命力的有活力的教学。
参考文献
[1]杨福家.原子物理学[M].北京:高等教育出版社.
[2]褚圣麟.原子物理学[M].北京:高等教育出版社.
关键词:热力学;统计物理;教学
热力学统计物理学、电动力学、理论力学和量子力学是物理学专业四大理论课程,但是对于大部分学生来讲,他们除了对理论力学稍感兴趣外,对其他三大理论课都是从心理上带着恐惧的,觉得特别难理解。热力学和统计物理学是关于热现象理论的两个组成部分:热力学为宏观理论,而统计物理学则是微观理论。热力学和统计物理学与其他三门理论课之间有着紧密的联系,学好热力学和统计物理学掌握其学习方法及思维方式对于学习其他相关学科有着非常重要的意义。本文就是以自身教学实践为出发点,分析了在热力学统计物理学教学过程中遇到的问题,并且提出了自己的建议及解决问题的方法。
一、教学中遇到的问题
1.学生学习兴趣不足
热力学统计物理学在该校是在物理学本科专业大三的第一个学期开设的,对于这个时间段的大学生来讲,他们已经开始对毕业后自己的去向进行思考。在考虑就业压力及自身条件和家庭因素后,绝大部分学生选择的是毕业后就业,而只有少数学生选择继续考研究生。那些已经决定毕业后就业的大部分学生提不起对热力学统计物理学的兴趣,这门课也不足以引起他们足够的重视,在他们看来,毕业后他们不会再用到它,再加上这门课程相对于大学物理这种基础课有一定的难度,他们从心理上不愿意把时间用在与自己认为跟未来就业无关的课程上。其次是现在的“90后”大学生大多数为独生子女,心理依赖性强,除了少数打算考研的学生会在课前预习和课堂上做笔记外,大部分学生很少动笔。所以,如何激发学生学习热情,发挥其主动性是教师应该首要解决的问题。
2.数学基础薄弱
热力学和统计物理学这门课程中大部分用到高等数学中的知识,例如,某些复杂的积分要用到换元法或者是分步积分法,某些问题中要用到泰勒展开式,但是有些学生数学知识掌握不牢固,不能灵活地运用数学工具来解决热力学统计物理学中遇到的问题。
3.物理概念不清晰
热力学研究的是由大量微观粒子(分子或其他粒子)组成的宏观物质系统。同时热力学中某些知识点与高中时期讲过的热学部分知识点重合,所以大部分学生觉得理解起来相对容易些。而统计物理学理论是对物质的微观结构作出某些假设之后,应用统计物理学理论求得具体物质的特性,并且阐明产生这些特性的微观机理。大部分学生对物理概念理解不清晰、不透彻,比如,由大量全同近独立粒子组成的系统,粒子的微观状态数对于玻尔兹曼系统、玻色系统和费米系统的不同。
二、对热力学统计物理学教学方法提出的几点建议
1.教师应熟悉教材,深入研究
教师应该熟悉自己所教课程的教材,概念清晰,公式推导完整。并且应该在课下多看些关于热力学统计物理学方面的其他资料及网上的影像讲课视频,检查自身不足,深入研究,不能如蜻蜓点水般肤浅地理解知识点。
2.改变传统教学模式,提高学生主动性
现在的大学生已经不喜欢满堂灌、填鸭式的教学模式,所以教师应该适当调整自身的讲课方式,比如,可以将传统的板书和多媒体结合,一些重要的公式推导用板书细致讲解,一些比较容易理解的概念可以用幻灯放映带过即可,没必要在学生已经熟悉的简单的知识点上做冗长的陈述。另外对于师范类学生可以鼓励他们自己课下准备教案课件,一个学期抽出适当的课时给学生,让他们走上讲台。这样既锻炼了他们的心理素质,为他们日后做教师这一工作积累一定的经验。同时也激发了他们自身学习的积极性,他们必然会在课下认真看书,遇到困难会查阅相关资料或者与其他同学讨论,这也是对他们自主学习能力的一种很好的锻炼。
3.注重理论的应用及知识间的融会贯通
热力学统计物理学教师不应该只是为了完成教学任务在规定时间里将一本教材的理论知识原封不动地讲给学生,而是清楚知识之间的融会贯通,灵活运用已知的知识来引出未知的知识点。比如,在介绍均匀物质的热力学性质一节中麦克斯韦关系及四个基本方程时,可以将熵(S)、压强(P)、温度(T)及体积(V)分别用英文单词sun(太阳),peak(山峰),tree(树)及valley(山谷)表示,然后绘出一个圆(圆的上端为S,下端为T,左端为P,右端为V,箭头方向为从上到下,从左到右),可以用一个英文句子来记忆箭头的方向:The Sun is pouring down his rays upon the Tree,and the brook is flowing from the Peak to the Valley,然后利用基本方程及麦氏关系的记忆方法就可以轻松地掌握这两部分知识,这样既建立了英语与热力学统计物理学之间的联系,又激发了学生的学习兴趣。同时教师应该注意热力学统计物理学理论知识与实践应用之间的联系,比如,热力学熵的概念,完全可以将其拓展,有生物熵、信息熵、农业熵,还可以涉及熵与能量品质及社会的关系。
综上所述,提高教师自身素质,改变传统教学模式,激发学生学习主动性,注重理论与实践和热力学统计物理学课程与其他学科之间的联系,相信学生会对该课程更感兴趣,并且会提高分析、解决问题的能力。
参考文献:
[1]梁希侠.统计物理学[M].北京:科学出版社,2008.
[2]林宗涵.热力学与统计物理学[M].北京大学出版社,2007.
[3]汪志诚.热力学与统计物理[M].4版.北京:高等教育出版社,2003.
关键词:固体物理;课堂教学;教学改革
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)17-0129-02
固体物理是研究固体的结构及其组成粒子(原子、离子、电子等)之间相互作用与运动规律以阐明其性能与用途的学科。固体物理与凝聚态物理和新材料科学紧密相连,是现代科学技术的重要物理基础,是当今物理学领域中最重要的学科之一,因此它是物理学专业高年级的一门重要基础理论与应用的课程。该课程对固体的结构和性质的研究是从原子、电子和分子的角度进行的。它与金属物理、普通物理、材料科学、热力学与统计物理,尤其是量子力学等相关学科联系非常紧密。对于固体电子论、固体的磁性、晶格振动和晶体的热学性质、超导体、半导体等专题要着重研究。所以说,在物理学专业起到承前启后作用的专业课程是固体物理。如何较好地讲授该门课程,取得良好的教学效果,是一个值得深入研究的问题。就当前固体物理在教学实践中出现的问题,我们从其教学手段、教学内容和教学方法等三个方面进行探索性的实践与改革。
一、教学中存在的问题
1.教学内容方面的问题。首先固体物理课程所包含的知识面较为广泛,理论性和专业性较强,抽象难懂,大量运用比较复杂的数学处理方法,增加了学习强度,使学生的学习变得较为困难。其次,固体物理的较高要求,使得学生的空间想象能力变得更加丰富,尤其是在学习晶体结构这部分内容的时候,空间想象是必不可少的,这更进一步地增加了学习难度。再者,由于诸多方面的原因导致固体物理教学学时紧张,固体物理课程被不可避免的压缩删减。这样就使得教师在基本的讲授时间之外,选择用很少的课余时间进行专题讲解,这样非常不利于拓展学生的视野和知识层面。另外,在社会不断进步、科技发展迅猛的时代,激光、半导体、超导等一系列现代科学技术的研究均取得了很大的突破,固体物理学科发展也发生着日新月异的变化,层出不穷的高新技术,不断涌现出来的新概念,而现有的经典教材却少有前沿知识的更新,对固体物理前沿的新动态、新成果、新概念介绍得不够,这样就很容易导致学生缺乏学习的动力和兴趣,同时也给我们的固体物理教学带来了严峻的挑战。
2.教学手段方面的问题。传统的固体物理教学手段基本采用“黑板+粉笔”的传统模式,教师依然使用传统教具和较为抽象的语言来传授知识,没有具体的形象描述。而固体物理课程内容相对丰富,对于稍微复杂的三维晶体结构、倒易空间及其能带结构和特点等难以描述清楚,致使学生难以理解一维到三维的扩展,对该门课程没有形象深刻的认识,感觉很空洞,对固体物理的基本定理、公式、概念等没有较多的体会,这就让固体物理变得非常难学,学生越学越受挫,从而对固体物理失去学习的兴趣,最终导致学生对固体物理产生厌学情绪。
3.教学方法方面的问题。固体物理教学的传统形式比较单一,“填鸭式”教学模式让教师成为主体,教师唱独角戏。这种教学模式强调理论知识全面,公式推导严谨、精练,只能使学生被动地接受前人已经积累的知识,单纯靠机械记忆,从而降低了学生的理解程度。这种教学模式也没有对学生进行很好的引导,让学生积极主动地去思考和研究,去发现问题和提出问题,甚至解决问题,限制了学生的创造性。教学方法的单一也使学生缺少了对本门课程的整体认识,不知道各章节间的联系,脑中只有零散的知识点,学习效果大打折扣,觉得固体物理课程原理多、模型多、定律和概念多,这就更容易使学生对固体物理学习失去兴趣。在教学过程中大量讲授物理模型的推导过程,比如黄昆的《固体物理》中能带理论等章节含有大量涉及量子力学的理论推导,这使学生接受起来比较困难,学生对理论性相对较强的内容可能不太感兴趣,而对实用或未来就业价值更高的知识比较感兴趣。
二、课程教学改革和实践
针对我校的实际情况和固体物理课程教学中存在的诸多问题,我们相应改革了课堂教学方法、教学手段和教学内容,以期推动固体物理课程的建设。
1.优化教学内容。针对本校本专业学生的特点以及课程的学时安排,对固体物理课程内容进行优化和整合。第一章晶体结构,主要讲述晶格、周期对称性、几种基本的晶体结构和倒格子;第二章固体的结合,主要介绍晶体结合力的物理本质,并介绍基于不同结合力的几种基本晶体类型;第三章晶格振动和晶体的热学性质,重点讲述爱因斯坦模型、德拜模型以及一维单原子链和一维双原子链,其他内容让学生自学;第四章能带理论,主要讲述布洛赫定理,近自由电子近似,紧束缚近似,固体能带,能带结构计算,介绍费米面和态密度定义及其物理实质;第五章晶体中电子在电场和磁场中的运动,讲述特定电场、磁场下电子的运动规律;第六章缺陷,简要讲述缺陷产生机制,介绍点缺陷,其他内容安排学生自学。
另一方面,在教学内容中适当添加一些与本学科相关的现代技术和物理前沿,开阔学生眼界、提高学习兴趣和积极性。
2.教学手段多样化。以前课堂教学是单一的黑板教学,而固体物理对学生的空间想象能力要求高,因此,为提高课堂教学质量和讲课效率,引入具有生动、形象、直观、灵活、信息量大等突出优点的现代多媒体教学。根据教学内容在网络上选择合适的动画和图片,设计和建立一套完善的多媒体课件教学系统。比如,在讲晶体结构的时候,可以加入氯化钠、金刚石等晶体的三维结构图,让学生360度观看晶体结构;在讲布里渊区的时候,利用ppt动画效果,使学生深刻理解布里渊区的画法。但是,在实际教学过程中也暴露出仅用多媒体教学的不足之处。据学生反映,多媒体画面具有瞬息多变、一晃而过、翻页太快使学生来不及思考、概念印象模糊、记忆肤浅等弊端,因此必须恰当使用多媒体课件。笔者的体会是,使用多媒体但决不能依赖多媒体,而是将使用多媒体课件与传统讲课方法有机结合,实现优势互补,获得最佳授课效果。这就要求多媒体课件不能是书本的拷贝,更不能对着多媒体课件照本宣科,而是要求课件制作必须精良,使用要恰到好处。
将一些国内外优秀的记录片引入到固体物理的教学中。如,在课程的开始阶段介绍该教材的编著者――黄昆先生。我们可以以记录片的形式介绍黄昆先生的生平,让学生在了解编著者的同时,对这本教材也有更进一步的了解,这就很容易地调动起学生对本门课程的学习兴趣。又如,在讲解超导时,教师可以运用《绝对零度》这一纪录片,让学生对超导体的特殊性质和超导的研究历史有更加形象的认识。
3.教学方法灵活化。结合本校本专业学生的特点,灵活的运用教学方法,选择学生易于理解的方法进行讲授,尽量避免大量的数学推导过程。对于物理概念、物理原理和物理模型的描述是固体物理教学中具体问题阐述的着重点,同时,教师对于较为详细的固体器件技术问题和较为繁琐的教学推导都要尽量减少。在讲解推导过程较为复杂但结论却很重要的内容时,教师一般会直接给出结果,这是大多数学生都愿意接受的,相对于那些少数需要更深入学习研究的学生,我们就可以采取将具体的推导过程用别的课件给出的形式,尽量让学生自主学习探究,碰到问题再与老师进行探讨。
在教学中贯彻“教为主导,学为主体”的原则。采用启发式教学,让学生在教学过程中通过积极思考对问题进行发现和提问,促使学生对知识的学习由被动变为主动。在各章节的教学中也采用同样的方法,使学生对教学内容进行深入思考,并且经常联系前面学过的知识,找出知识点间的关系,使学生对教学内容有宏观的认识,避免知识学的零散杂乱。
三、结语
当今社会,科学技术的不断进步与发展,使得固体物理教学也面临着越来越多的改革和挑战,固体物理的教学诸方面也要进行相应的调整和转变。针对物理学专业固体物理课程特点,结合本学校本专业学生特点,开展该课程课堂教学内容、教学手段和教学方法的改革与实践,有效地调动了学生的学习兴趣,变被动学习为主动学习,使学生学出了自信和成效,让老师和学生共同分享到课堂教学改革的乐趣和收获,为物理学专业课程的课堂教学改革进行了有益的探索。
参考文献:
[1]黄昆.固体物理学[M].北京:高等教育出版社,1988.
[2]钟佑洁,杨尊先.基于现代信息技术的固体物理教学改革研究[J].技术物理教学,2013,(21):1-4.
[3]C.Kittel.固体物理导论:第8版[M].项金钟,吴兴惠,译.北京:化学工业出版社,2009.
[4]张丽萍.固体物理研究性教学探索与实践[J].技术物理教学,2013,(21):81-82.
[5]钟佑洁,杨尊先.电子学科的固体物理教学改革初探[J].物理通报,2013,(08).
[6]夏爱林.固体物理课程教学改革研究与实践[J].安徽工业大学学报(社会科学版),2012,(04).
[7]赵增茹,王高峰.固体物理教学改革的探索[J].科技信息,2013,(5).
[8]梅显秀.固体物理教学改革的探索与实践[J].大学物理,2011,(7).
[9]孟影,邵继红,华扬.固体物理教学改革的探索[J].合肥师范学院学报,2010,(06).
1.1研究对象的不同对于研究对象,中学物理一般只讨论自然现象中的简单问题如一维问题,而大学物理讨论的是二维、三维甚至多维等复杂问题。比如对于力学内容,中学力学只研究加速度为恒矢量的质点的运动学和动力学问题,而大学力学则还要研究加速度变化时的质点的运动学和动力学问题,中学力学只研究质点的运动问题,而大学物理力学还要研究刚体的运动学、动力学问题,从研究对象上看更广更趋于一般化。中学物理仅对宏观简单特殊规律作一般性的认识和了解就够了,而大学物理则要进一步研究物质运动的理论本质,要运用数理统计的方法得出自然界一般性的普适规律,更上升了一个理论的高度。
1.2研究方法的不同中学物理因研究对象简单,数学知识基础少,所以研究方法基本是归纳法,讨论的规律基本上是从物理现象出发,通过简单实验总结出来的简单规律,比如中学物理力学中得出动量定理、动能定理的时候都是实验归纳法得出的,并且涉及的力基本是恒定的,只讲恒力的冲量、恒力的功,平均冲力等,在电磁学中只介绍匀强磁场、匀强电场的规律等。而大学物理与自然实际就更接近了,要讨论变力的冲量、变力所做的功、非均匀磁场、电场,而研究这些复杂问题所用工具主要是高等数学的微积分思想、矢量代数,通过数学推导演绎的方法结合物理概念得出物理规律,即大学物理讲的规律比中学物理的规律又上升了一个理论的高度。
1.3教学内容和教学进度的不同从教学内容来讲,中学物理量少,概念、原理、规律简单,对物理基本概念和基本定律只有初步浅层的认识,而大学物理涉及的知识量大,概念、原理多且相对复杂,对物理基本规律和物理基本定律要求更多的是掌握其本质和内涵。从教学进度上讲,中学物理讲的较慢,每个概念,每个公式,每个原理教师会进行全面详细讲解,每一个知识点教师都会讲透讲精,讲课重点放在解题技巧的应试训练上,教师会给学生总结题型,归纳方法,并督促学生为了高考不断学习,学生的学多是跟着教师按部就班。而大学物理教学内容量大,而教学时数非常有限,进度快,教师讲课一般都只着重把握知识整体框架,讲清思路,注重理论性、系统性,不象中学那样讲得精细全面。对于解题方法有总结归纳,但习题课的次数较少,学生运用所学知识解决问题的能力较弱,对习惯于被安排、缺乏学习主动性的中学生,就很难在短时间内适应大学教学过程。
1.4学生学习方法的不同中学生一般课前不预习,课后也很少翻阅知识辅导书,只要课堂上跟着老师听课,课余时间除了完成老师布置的作业外,就是作大量的习题,实行题海战术,重复熟练程度高,认为学好物理的标准就是多做题,解难题,学生自主接受新知识的能力较差,不善于提问题,对教师的依赖性较强。而大学生必须做到课前预习,带着问题去听课,课堂上抓住重点、难点,做好课堂笔记,课后要翻阅大量课外资料,对所学知识要融会贯通,及时复结,做的题目不在多,而在精,要学会自学,善于提出问题,要有比较强的学习主体意识。中学物理由于数学知识的欠缺,很多物理概念、规律都是直接给出,没有经过推导,这就决定了中学生接受物理知识的方式主要靠记忆,而大学由于有了高等数学、矢量代数、数理统计等工具,物理概念、物理规律大多可以做详尽的推理,因而大学物理学习概念更注重概念的理解和掌握,物理过程的分析和论证。
2如何做好大学物理和中学物理教学的衔接
2.1循序渐进,适当放慢教学进度学生已习惯于中学教学慢节奏,少容量,讲练结合的教学方法,若一开始就进行快节奏,大容量的教学,学生一下子不能适应,这不仅影响了大学物理的教学效果,同时也会挫伤学生学习物理的积极性。所以,我们在教学过程中最初应适当放慢教学进度,使学生逐渐适应,慢慢逐步进入正常的教学进度,从而达到让学生适应大学的教学进度,学会大学的学习方法。
2.2通过物理绪论课灌输大学物理的重要性大学教师应充分考虑大学物理和中学物理的区别,从一开始就让学生明白大学物理和中学物理在研究对象、研究内容、学习方法等方面有许多的不同,让学生知道大学物理不是中学物理的简单重复。同时我们在绪论课中,应介绍物理学的发展历史、物理学的发展现状和物理学的发展的未来展望,从而引起学生学习物理学的兴趣,另外对理工科学生来说,可以适当地给他们介绍物理学和自己未来的专业的联系,以提高他们学习物理的积极性,例如对我们纺织专业的学生,可适当介绍量子力学与纺织材料等、质点、刚体力学与纺织机械方面的关系。同时还应强调,大学物理的基础学科性质,学学物理不仅仅服务于后续的专业知识,更重要的是学会一种思维的方法、学习方法以及研究问题的方法。
2.3从中学物理内容过渡导入大学物理课题在教学内容方面,很多大学物理知识是在中学物理内容基础上的提高,教师在物理教学时应简要复习中学教材内容,使学生对所学过的内容做一个简单回忆,随后指出中学物理知识的局限性或特殊性,从而比较自然地引入内容,使学生顺利地从中学物理知识过渡到大学物理知识的学习。要做到这一点,必须了解和研究中学物理教材内容,比如直线运动,中学研究了匀加速或匀减速直线运动,但加速度变化时的直线运动该如何考虑呢?比如圆周运动,中学研究的是匀速圆周运动的规律,但当速率变化时,圆周运动的规律又是如何呢?恒力的冲量的定义式和恒力做功的公式中学里都学过,变力的冲量和变力所作的做功又如何计算呢?这样中学内容过渡导入的话学生会很容易从已学过的知识比较顺利地过渡到大学知识。