前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学存在的问题范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
作者从多年来从事波导光学研究经验产生了一种想法,即经典电磁学理论和量子力学一定存在着某种内在的联系。在波导光学中可以找到量子力学中的比如薛定谔方程、波函数、势垒和能级等的宏观对应物。正是基于这些内在的相似性,本书通过波导光学观点重新考察了从量子力学挑选出的一些题目。并把计算经典周期介质中波的传播特征的有力工具――转移矩阵方法――推广到任意形状的位势。这样做使作者们求得了一系列新结果,包括准确的量子化条件、经典转折点的相移以及穿透系数的精确表达式、WKB和SWKB近似的一致性的解释以及对于量子反射和反射时间的物理观点等。有趣的是所有似乎毫无关系的结果可以利用作者们首次建议的新定义的概念,即具有清晰的物理观点的“散射子波”,而得到解释。如果无视这种“散射子波”,则会导致半经典理论中的许多混淆和佯谬。
作者们并不打算在本书中建立一些新的定理,而只不过收集了作者们在坚实的基础上所发展的一种关于相对简单的一些量子力学一维问题的实际求解方法。基于量子力学和电磁学的类比重新研究了量子力学中诸如穿透、量子反射和散射时间等问题。并且通过解析转移矩阵方法引入了散射子波这种全新的概念。书中无疑也会有一些不够成熟的想法,作者们旨在通过它们引起有兴趣的读者的讨论甚或争论。如果这本书能够引起研究人员的注意,甚或诱导出一些新的思想,作者们会感到十分欣慰。
全书内容共分6章:1.量子力学与光学的相似性;2.解析转移矩阵方法;3.半经典近似;4.精确的量子化条件对解析转移矩阵方法;5.位垒穿透 ;6.散射子波。
【关键词】量子力学;教学方法;物理思想
“量子力学”是20世纪物理学对人类科学研究两大标志性贡献之一,已经成为理工科专业最重要的基础课程之一,学生熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。对提高学生科学素,养培养学生的探索精神和创新意识及亦具有十分重要的意义。但是,量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。针对这些教学中的问题,如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,已经成为摆在教师面前的重要课题。对“量子力学”课程的教学内容应作一些合理的调整。
1 合理安排教学内容
1.1 理清脉络,强化知识背景
从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。为了解决这些问题,玻尔理论才应运而生。在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。
1.2 重在物理思想,压缩数学推导
在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。
2 改进教学方法
“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取传统的灌输式教学,学生势必感到枯燥,甚至厌烦。学习效果自然大打折扣。为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,在教学方法上应进行积极的探索。
2.1 发挥学生主体作用
在必要的教学内容讲解外,每节课都留出一定的师生互动时间。教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这
两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。
2.2 注重构建物理图像
在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。
3 教学手段和考核方式改革
3.1 课程教学采用多种先进的教学方式
如安排小组讨论课,对难于理解的概念和规律进行讨论。先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。例如,在讲到微观粒子的波函数时,有的学生会认为是全部粒子组成波函数,有的学生会认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。
3.2 坚持研究型教学方式
把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。
量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。在20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。量子力学的诞生,开启了人类科学发展的新思维。开展好量子力学的教学活动,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,有利于极大的提高学生的科学素养,从精神上熏陶他们的创新精神。
【参考文献】
[1]周世勋.量子力学教程[m].高教出版社,1979.
关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动
Abstract: As one of three revolutions of physics in 20th century, quantum mechanics has greatly transformed the world view of classical science in many aspects. Quantum mechanics breaks though the mechanical determinism in classical science, transforming it into nonmechanical determinism; it changes scientific cognitive process from the theory of reductionism to the theory of wholism; it shifts the way of thinking from pursuing simplicity to exploring the complexity; it also establishes the interaction between subject and object in scientific researches.
Key words: quantum mechanics; world view of classical science; nonmechanical determinism; wholism; complexity; interaction between subject and object
经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的最大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界
图景。
一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论
经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]
量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。
玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。
经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。
二、量子力学使得科学认识方法由还原论转化为整体论
还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。
量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]
波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。
三、量子力学使得科学思维方式由追求简单性发展到探索复杂性
从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。
量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。
在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。
四、量子力学使科学活动中主客体分离迈向主客互动
经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。
例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]
量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。
参考文献
[1]林德宏. 科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.
[2]郭奕玲,沈慧君. 物理学史[M].第2版.北京:清华大学出版社,1993:1-2.
[3]刘敏,董华. 从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.
[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.
[5]彭桓武. 量子力学80寿诞[J].大学物理,2006,25(8):1-2.
[6]疏礼兵,姜巍. 近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.
关键词:薛定谔猫,坍塌,波函数,态叠加
中图分类号: S829.3 文献标识码:A文章编号:
在宏观现实生活中,猫是我们再也熟悉不过的动物了,对于一只活泼乱跳的猫,我们对它最客观的评价是“它是活的”;而对于一只已经停止呼吸的猫,我们只能说“它是死的”;然而猫的状态真的只有这两种状态吗?是否存在一种半死半活的猫呢?我们不妨去微观世界寻找答案。
量子力学的奠基人之一埃尔文·薛定谔在很早以前就已经注意到了量子力学的迭加问题在宏观上的体现,他提出了猫可能处于一种死活未定的状态之中,这个较有趣的悖论被称作猫的悖论。
薛定谔设想了一个关于辐射原子和猫相互作用的实验,一只猫被关在内部设有“机关”的铁箱内,要保证此装置不会对猫产生干扰,在铁箱内猫碰不着的地方,放一小瓶氰化钾,把一小块放射性元素镭放入盖勒计数器中,它非常小,使它的量控制在一小时之内,任何一个镭原子产生或者不产生衰变。如果衰变,计数管便会放电同时释放一重锤,进而击碎一个盛有剧毒的氰化钾小瓶,因此,这只猫必然会毒死。但是,若是在这段时间上原子没有发生衰变呢这只猫还会安然无恙的。所以这只猫在箱子中,到底处于一个什么状态呢?无人可以给出一个准确的答案。
在日常生活中,我们非常清楚,那只猫会非死即活,然而在未打开箱子之前,我们并不能预测它是处于什么状态。这时我们也只能用几率来说明它可能处于某个状态,这就是很让人费解,我们不禁会这样想:真的会有半死半活的猫吗?让我们回到量子力学的角度去剖析这个问题,根据量子力学薛定谔方程,箱内的两个系统处于两种波函数叠加的状态,一种是“活猫”的状态、另一种是“死猫”的状态,这两种状态都是真实存在的。但是是一个又活又死的猫,究竟是什么意思呢?想必也只有那只关在箱子里猫它自己知道它是死还是活吧。
传统的哥本哈根解释是从一个不同的角度来看这些概率。它说,从效果上看,这两个波函数都同样的不真实。当我们往箱子里观看时,它们当中中有一个固化为现实。我们可以注意到这种解释的前提条件是箱子会打开时,整个系统的波函数会发生坍塌,然而你却不能想象为在有人观察之前,屋子里有一只死猫,或者仅仅是一只活猫。因此,如何定义一个“有意识”的观察者呢?要选择已经毒死或还活着的猫吗?我们又如何知道那只猫的死活呢?在量子概率性与我们所认为真实性之间的分界线又在何处呢?从量子角度出发电子设备是由原子和分子构成的,所以检测器不能使波函数坍塌;但是猫或者人也是由分子和原子构成的,那么我们为什么能呢?我们不禁会问一个系统成为“真实的”能够使波函数发生坍塌之前应该包含多少分子呢?
埃弗雷特的解释接受了整个量子方面的表面价值,接受了两个波函数的事实,但它们位于不同的两个世界中,也就是说,如果一个量子体系处于n个量子态的迭加,该宇宙就会分裂成n个相同的宇宙。这个诠释的优点是:薛定谔方程始终成立,波函数从不坍缩,由此它简化了基本理论。它的问题是:设想过于离奇,付出的代价是这些平行的世界全都是同样真实的。然而多宇宙论也是受到质疑的,假设每发生一次测量,宇宙就会分裂一次,但是什么是一次测量呢?我们怎样对宇宙进行测量呢?而且多宇宙论也是不能被检测的,我们意识在某一时刻局限于一个宇宙,怎么能证实或否定其它宇宙的存在呢?而多世界理论是目前无法证实、但也无法证伪的理论,自这个理论被提出以来,就争论不休,直到现在也没有谁能更好的诠释多宇宙的存在。
20世纪最伟大的两位量子力学思想家,约翰·冯·诺依曼和尤金·魏格纳也对这个问题进行了大量的思考,他们认为观察者的意识在波函数的坍缩中起着关键作用,听起来就像精神支配物质的思想一样,冯·诺依曼设计了一个无止境的测量装置链,每一个装置都观察着前一个装置,但是没有一个测量装置带来波函数的“缩编”,只有测量结果进入某人意识之中时,量子边缘态才会实现坍缩,因此仅用一些记录装置来装备实验室是不够的,除非有意识的人在那个箱子里观察现象。如果让“魏格纳的朋友”也在那个箱子里,观察猫所处的状态会怎样?我们可以问他原子是否衰变了?猫是否还活着?可是谁又忍心让自己的朋友去冒那个险呢?假若原子真的衰变了,猫也死了,可是同样在箱子里的人会怎样,我们都可想而知了,如果实验真的可以这样做的话,谁又肯去做那个“替罪羊”呢?所以薛定谔猫实验依然是一个假想实验,如果是世界上唯一的非量子力学部分都是靠意识产生的,那么为什么不同的观察者对观察到的物理世界看法一致呢?又让我们想到了,爱因斯坦的疑问,在我们不去看月亮的时候,月亮是否会存在呢?
我们不禁疑惑“不就是一只假想的猫吗?我们需要这样的锱铢必较吗?”这也许就是我们与科学家的不同了,针对一个困惑我们的问题,我们可能会选择“敬而远之”,然而科学家们则会究其因果。我们对于这个问题也许就把它当做了一个没有答案的谜语,而那些作为科学事业的探索者们却潜心挖掘归根溯源的谜底。他们称,薛定谔的猫不仅仅具有理论研究的意义,而且也具有应用的潜能,例如,多粒子的薛定谔猫态系统可以作为未来高容错量子计算机核心部分,也可以用来制造灵敏的传感器。同时薛定谔猫的研究对于哲学领域也有了进一步的认识,有人认为自我意识可能与更微观的量子力学规律有着千丝万缕的联系?还有人提出思维中的顿悟,会不会与不确定的态叠加有关呢?在生命的长河中,起源、变异、衰老等等这些内部的奥秘会不会也受着量子力学微观世界的影响呢?
参考文献:
[1]爱因斯坦的灵魂——量子纠缠之谜 郭光灿、高山/著 北京理工大学出版社
[2]物理之谜 杨宗书 文汇出版社
[3]寻找薛定谔的猫 [英] 约翰·R·格利宾/著 张广才、许爱国等译 海南出版社
[4]量子力学的世界 (日)片山泰久 /著 辽宁人民出版社
[5]原子中的幽灵 [英]戴维斯 布朗合编 易心结译 洪定国校 湖南科学技术出版社
【关键词】超弦/M理论/圈量子引力/哲学反思
【正文】
本文分四部分。首先明确什么是量子引力?其次给出当代量子引力发展简史,更次概述当代量子引力研究主要成果,最后探讨量子引力的一些哲学反思。
一、什么是量子引力?
当代基础物理学中最大的挑战性课题,就是把广义相对论与量子力学协调起来[1]。这个问题的研究,将会引起我们关于空间、时间、相互作用(运动)和物质结构诸观念的深刻变革,从而实现20世纪基础物理学所提出的空间时间观念的量子革命。
广义相对论是经典的相对论性引力场理论,量子力学是量子物理学的核心。凡是研究广义相对论和量子力学相互结合的理论,就称为量子引力理论,简称量子引力。探讨量子引力卓有成效的理论,主要有两种形式。第一,是把广义相对论进行量子化,正则量子引力属于此种。第二,是对一个不同于广义相对论的经典理论进行量子化,而广义相对论则作为它的低能极限,超弦/M理论则属于这种。
圈(Loop)量子引力[2]是当前正则量子引力的流行形式。正则量子引力是只有引力作用时的量子引力,和超弦/M理论相比,它不包括其它不同作用。它的基本概念是应用标准量子化手续于广义相对论,而广义相对论则写成正则的即Hamiltonian形式。正则量子引力根据历史发展大体上可分为朴素量子引力和圈量子引力。粗略来说,前者发生于1986年前,后者发生于1986年后。朴素量子引力由于存在着紫外发散的重正化困难,从而圈量子引力发展成为当前正则量子引力的代表。
超弦/M理论的目的,在于提供己知四种作用即引力和强、弱、电作用统一的量子理论。理论的基本实体不是点粒子,而是1维弦、2维简单膜和多维brane(广义膜)的延展性物质客体。超弦是具有超对称性的弦,它不意味着表示单个粒子或单种作用,而是通过弦的不同振动模式表示整个粒子谱系列。
圈量子引力和超弦/M理论之外,当代量子引力还有其它不同方案。例如,Euclidean量子引力、拓扑场论、扭量理论、非对易几何等。
二、当代量子引力研究进展
我们主要给出超弦/M理论和圈量子引力研究的重大进展。
1.超弦/M理论方面[3]
弦理论简称弦论,虽然在20纪70年代中期,已经知道其中自动包含引力现象,但因存在一些困难,只是到80年代中期才取得突破性进展。
1)80年代超弦理论
弦论发展可粗略分为早期弦理论(70年代)、超弦理论(80年代)和M理论(90年代)三个时期。我们从80年代超弦理论开始,简述其研究进展。
1981年,M·Green和J.Schwarz提出一种崭新的超对称弦理论,简称超弦理论,认为弦具有超对称性质,弦的特征长度已不再是强子的尺度(~10[-13]厘米),而是Planck尺度(~10[-33]厘米)。
1984年,Green和Schwarz证明[4],当规范群取为SO(32)时,超弦I型的杨-Mills反常消失,4粒子开弦圈图是有限的。
1985年,D.Gross,J.Harvey[5]等4人提出10维杂化弦概念,这种弦是由D=26的玻色弦和D=10超弦混合而成。杂化弦有E[,8]×E[,8]和SO(32)两种。
同年,P.Candlas,G.Horowitz,A.Strominger和E.Witten[6]对10维杂化弦E[,8]×E[,8]的额外空间6维进行紧致化,最重要的一类为Calabi-丘流形。但是这类流形总数多到数百万个,应该根据什么原则来选取作为我们世界的C-丘流形,至今还不清楚,虽然近10多年来,这方面的努力从来未中断过。
1986年,提出建立超弦协变场论问题,促进了对非微扰超弦理论的探讨。在诸种探讨方案中,以E.Witten的非对易几何最为突出[7]。
同年,人们详细地研究了超弦唯象学,例如E[,6]以下如何破缺及相应的物理学,对紧致空间已不限于C-丘流形,还包括轨形(Orbifold)、倍集空间等。
人们常把1984-86年期间对超弦研究的突破,称为第一次超弦革命。在此期间建立了超弦的五种相互独立的10维理论,而且是微扰的。它们是I型、IIA型、IIB型、杂化E[,8]×E[,8]型和SO(32)型。
2)90年代M理论
经过80年代末期和90年代初期,对超弦理论的对偶性、镜对称及拓扑改变等的研究,到1995年五种超弦微扰理论的统一性问题获得重大突破,从此第二次超弦革命开始出现。
1995年,Witten在南加州大学举行的95年度弦会议上发表演讲,点燃起第二次超弦革命。Witten根据诸种超弦间的对偶性及其在不同弦真空中的关联,猜测存在某一个根本理论能够把它们统一起来,这个根本理论Witten取名为M理论。这一年内Witten、P.Horava、A.Dabhulkar等人,给出ⅡA型弦和M理论间的关系[8]、I型弦和杂化SO(32)型弦间的关系、杂化弦E[,8]×E[,8]型和M理论间的关系等。
1996年,J.Polchinski、P.Townscend、C.Baches等人认识到D-branes的重要性。积极进行D-branes动力学研究[9],取得一定成果。同年,A.Strominger、C.Vafe应用D-brane思想,计算了黑洞这种极端情形的熵和面积关系[10],得到了和Bekenstein-Hawking的熵-面积的相同表示式。G.Callon、J.Maldacena对具有不同角动量与电荷的黑洞所计算的结果指出,黑洞遵从量子力学的一般原理。G.Collins探讨了量子黑洞信息损失问题。
1997年,T.Banks、J.Susskind等人提出矩阵弦理论,研究了M理论和矩阵模型间的联系和区别。
同年,Maldacena提出AdS/CFT对偶性[11],即一种Anti-de Sitter空间中的IIB型超弦及其边界上的共形场论之间的对偶性假设,人们称为Maldacena猜测。这个猜测对于我们世界的Randall-Sundrum膜模型的提出及Hawking确立果壳中宇宙的思想,都有不少的启示。
2.圈量子引力方面[12]
1)二十世纪80年代
1982年,印度物理学家A.Sen在Phys.Rev.和Phys.Lett.上相继发表两篇文章,把广义相对论引力场方程表述成简单而精致的形式。
1986年,A.Ashtekar研究了Sen提出的方程,认为该方程已经表述了广义相对论的核心内容。一年后,他给出了广义相对论新的流行形式,从而对于在Planck标度的空间时间几何量,可以进行具体计算,并作出精确的数量性预言。这种表述是此后正则量子引力进一步发展的关键。
同年,T.Jacobson和L.Smolin求出Wilson圈解。在引进经典Ashtekar变量后,他们在圈为光滑且非自相交情形下,求出了正则量子引力的WDW方程解。此后,他们又找到了即使在圈相交情况下的更多解。
1987年,由于Hamiltonian约束的Wilson圈解的发现,C.Revolli和Smolin引进观测量的经典Possion代数的圈表示,并使微分同胚约束用纽结(knot)态完全解出。
1988年,V.Husain等人用纽结理论(knot theory),研究了量子约束方程的精确解及诸解间的关系,从而认为纽结理论支配引力场的物理量子态。同年,Witten引进拓朴量子场论(TQFT)的概念。
2)二十世纪90年代
1990年,Rovelli和Smolin指出,对于在大尺度几何近似变为平直时态的研究,可以预言Planck尺度空间具有几何断续性。对于编织的这些态,在微观很小尺度上具有“聚合物”的类似结构,可以看作为J.Wheeler时空泡沫的形式化。
1993年,J.Iwasaki和Rovelli探讨了量子引力中引力子的表示,引力子显示为时空编织纤维的拓朴修正。
1994年,Rovelli和Smolin第一次计算了面积算子和体积算子的本征值[13],得出它们的本征谱为断续的重大结论。此后不久,物理学者曾用多种不同方法证明和推广这个结论,指出在Planck标度,空间面积和体积的本征谱,确实具有分立性。
1995年,Rovelli和Smolin利用自旋网络基[14],解决了关于用圈基所长期存在的不完备性困难。此后不久,自旋网络形式体系,便由J.Baez彻底阐明。
1996年,Rovelli应用K.Krasnov观念,从圈量子引力基本上导出了黑洞熵的Bekenstein-Hawking公式[15]。
1998年,Smolin研究圈和弦间的相似性,开始探讨圈量子引力和弦论的统一问题。
三、当代量子引力理论主要成就
1.超弦/M理论方面
1)弦及brane概念的提出
广义相对论中的奇性困难、量子场论中的紫外发散本质、朴素量子引力中的重正化问题,看来都起源于理论的纯粹几何的点模型。超弦理论提出轻子、夸克、规范粒子等微观粒子都是延伸在空间的一个区域中,它们都是1维的广延性物质,类似于弦状,其特征长度为Planck长度。M理论更推广了弦的概念,认为粒子类似于多维的brane,其线度大小为Planck长度。为简单起见,我们把brane也称作膜。超弦/M理论中,用有限大小的微观粒子替代粒子物理标准模型中纯粹几何的点粒子,这是极为重要且富有成效的革命性观念。
2)五种微扰超弦理论
这五种超弦的不同在于未破缺的超对称荷的数目和所具有的规范群。I型有N=1超对称性,含有开弦和闭弦,开弦零模描述杨-Mills场,闭弦零模描述超引力。ⅡA型有N=2超对称性,旋量为Majorana-Weyl旋量,不具有手征性,自动无反常,只含有闭弦,零模描述N=2超引力。IIB型同样有N=2超对称性,具有手征性。杂化弦是由左旋D=10超弦和左旋D=26玻色弦杂化而成,只包含可定向闭弦,有手征性和N=1超对称性,可以描述引力及杨-Mills作用。
3)超弦唯象学
从唯象学角度来看,杂化弦型是重要的,E[,8]×E[,8]是由紧致16维右旋坐标场(26-10=16)而产生的,即由16维内部空间紧致化而得到,也就是说在紧致化后得到D=10,N=1,E[,8]×E[,8]的超弦理论。
但是迄今为止,物理学根据实验认定我们的现实空间是三维的,时间是一维的,把四维时空(D=4)作为我们的现实时空。因此我们必须把10维时空紧致化得到低能有效四维理论,为此人们认为从D=10维理论出发,通过紧致化有
M[10]M[4]×K
此中K为C-丘流形,此内部紧致空间维数为10-4=6,M[4]为Minkowski空间,从而得到4维Minkowski空间低能有效理论。其重要结论有:
(1)由D=10,E[,8]×E[,8]超弦理论(M[10]中规范群为E[,8]×E[,8])紧致化为D=4,E[,6]×E[,8]、N=1超对称理论。
(2)夸克和轻子的代数Ng完全由K流形的拓朴性质决定:为Euler示性数χ,系拓朴不变量。
(3)对称破缺问题。已知超弦四维有效理论为N=1,规范群为E[,6]×E[,8]的超对称杨—Mills理论,现实模型要求破缺。首先由第二个E[,8]进行超对称破缺,然后对大统一群E[,6]已进行破缺,从而引力作用在E[,8]中,弱、电、强作用在E[,6]中,实现了四种作用的统一。
4)T和S′对偶性
尽管五种超弦理论在广义相对论和量子力学统合上,取得了不少进展,但是五种超弦理论则是相互独立的,理论却是微扰的。尽管在超弦唯象学中,原则上-丘流形K一旦固定下来,在D=4时空中所有零质量费米子和玻色子(包括Higgs粒子)就会被确定下来,但是-丘真空态总数则可多到数百万个,应该根据什么原则来选取-丘真空态,目前还不清楚。T对偶性和S对偶性的提出,正是五种超弦理论融通的主要桥梁。
在M理论的孕育过程中,对偶性起了重要作用。弦论中存在着一种在大小紧致空间之间的对偶性。例如ⅡA型弦在某一半径为R[,A]的圆周上紧致化和ⅡB型在另一半径为R[,8]的圆周上紧致化,两者是等效的,则有关系R[,B]=(m[2,s]R[,A])[-1]。于是当R[,A]从无穷大变到零时,R[,B]从零变到无穷大。这给出了ⅡA弦和ⅡB弦之间的联系。两种杂化弦E[,8]×E[,8]和SO(32)也存在类似联系,尽管在技术性细节上有些差别,但本质上却是同样的。
A.Sen证明,在超对称理论中,必然存在着既带电荷又带磁荷的粒子。当这一猜测推广到弦论后,它被称作为S对偶性。S对偶性是强耦合与弱耦合间的对称性,由于耦合强度对应于膨胀子场,杂化弦SO(32)和I型弦可通过各自的膨胀子连系起来。
5)M理论和五种超弦、11维超引力间的联系
M理论作为10维超弦理论的11维扩展,包含了各种各样维数的brane,弦和二维膜只是它的两种特殊情况。M理论的最终目标,是用一个单一理论来描述已知的四种作用。M理论成功的标志,在于把量子力学和广义相对论的新理论框架中相容起来。
附图
上面给出五种超弦理论、11维超引力和M理论相容的一个框架示意图[16],即M理论网络。此网络揭示了五种超弦理论、11维超引力都是单一M理论的特殊情形。当然至今M理论的具体形式仍未给出,它还处于初级阶段。
6)推导量子黑洞的熵-面积公式。
在某些情形下,D-branes可以解释成黑洞,或者说是黑branes,其经典意义是任何物质(包括光在内)都不能从中逃逸出的客体。于是开弦可以看成是具有一部分隐藏在黑branes之内的闭弦。Hawking认为黑洞并不完全是黑的,它可以辐射出能量。黑洞有熵,熵是用量子态来衡量一个系统的无序程度。在M理论之前,如何计算黑洞量子态数目是没有能力的。Strominger和Vafa利用D-brane方法,计算了黑-branes中的量子态数目,发现计算所得的的熵-面积公式,和Hawking预言的精确一致,即Bekenstein-Hawking公式,这无疑是M理论的一个卓越成就。
对于具有不同角动量和电荷的黑洞所计算结果指出,黑洞遵从量子力学的一般原理,这说明黑洞和量子力学是十分融洽的。
2.圈量子引力方面
1)Hamiltonian约束的精确解。
圈量子引力惊人结果之一,是可以求出Hamiltonian约束的精确解。其关键在于Hamiltonian约束的作用量,只是在s-纽结的结点处不等于零。所以不具有结点的s-纽结,才是量子Einstein动力学求出的物理态。但是这些解的物理诠释,至今还是模糊不清的。
其它的多种解也已求得,特别是联系连络表示的陈-Simons项和圈表示中的Jones多项式解,J.Pullin已经详细研究过。Witten用圈变换把这两种解联系起来。
2)时间演化问题
人们试图通过求解Hamiltonian约束,获得在概念上是很好定义的、并排除冻结时间形式来描述量子引力场的时间演化。一种选择是研究和某些物质变量相耦合的引力自由度随时间演化,这种探讨会导致物理Hamiltonian的试探性定义的建立,并在强耦合微扰展开中,对S纽结态间的跃迁振幅逐级进行考查。
3)杨-Mills理论的重正化问题
T.Thiemann把含有费米子圈的量子引力,探索性地推广到杨-Mills理论进行研究。他指出在量子Hamiltonian约束中,杨-Mills项可以严格形式给出定义。在这个探索中,紫外发散看来不再出现,从而强烈支持在量子引力中引进自然切割,即可摆脱传统量子场论的紫外发散困难。
4)面积和体积量度的断续性
圈量子引力最著名的物理成果,是给出了在Planck标度的空间几何量具有分立性的论断。例如面积
此中lp是Planck长度,j[,i]是第i个半整数。体积也有类似的量子化公式。
这个结论表明对应于测量的几何量算子,特别是面积算子和体积算子具有分立的本征值谱。根据量子力学,这意味着理论所预言的面积和体积的物理测量必定产生量子化的结果。由于最小的本征值数量级是Planck标度,这说明没有任何途径可以观测到比Planck标度更小的面积(~10[-66]厘米[2])和体积(~10[-99]厘米[3])。从此可见,空间由类似于谐振子振动能量的量子所构成,其几何量本征谱具有复杂结构。
5)推导量子黑洞的熵-面积公式
已知Schwarzchild黑洞熵S和面积A的关系,是Bekenstein和Hawking所给出,其公式为:
附图
这里k是Boltzman常量,是Planck常量,G[,N]为牛顿引力常量,c为光速。对这个关系式的深层理解和由物理本质上加以推导,M理论已经作过,现在我们看下圈量子引力的结果。
应用圈量子引力,通过统计力学加以计算,Krasnov和Rovelli导出
附图
此处γ为任意常数,β是实数(~1/4π),显然如果取γ=β,则由式(3)即可得到式(2)。这就是说,从圈量子引力所得出的黑洞熵-面积关系式,在相差一个常数值因子上和Bekenstein-Hawking熵-面积公式是相容的。
Bekenstein-Hawking熵公式的推导,对圈量子引力理论是一个重大成功,尽管这个事实的精确含义目前还在议论,而且γ的意义也还不够清楚。
四、量子引力理论的哲学反思
我们从空间和时间的断续性、运动(相互作用)基本规律的统一性、物质结构基本单元的存在性三个方面进行哲学探讨。
1.空间和时间的断续性
当代基础物理学的核心问题,是在Planck标度破除空间时间连续性的经典观念,而代之以断续性的量子绘景。量子引力理论对空间分立性的揭示和论证,看来是最为成功的。
超弦/M理论认为,我们世界是由弦和brane构成的。根据弦论中给出的新的不确定性关系,弦必然有位置的模糊性,其线度存在一有限小值,弦、膜、或brane的线度是Planck长度,从而一维空间是量子化的。由此推知,面积和体积也应该是量子化的。二维面积量子的数量级为10[-66]厘米[2],三维体积量子的数量级为10[-99]厘米[3]等。
对于圈量子引力,其最突出的物理成果是具体导出了计算面积和体积的量子化公式。粗略说来,面积的数量级是Planck长度lp的二次方,体积的数量级是lp的三次方。这就令人信服地论证了在Planck标度,面积和体积具有断续性或分立性,从而根本上否定了空间在微观上为连续性的经典观念。
依据空间和时间量度的量子性,芝诺悖论就是不成立的,阿基里斯在理论上也完全可以追上在他前面的乌龟。类似的,《庄子·天下》篇中的“一尺之捶,日取其半,万世不竭”这个论断在很小尺度上显然也是不成立的。古代哲学中这两个难题的困人之处,从空间时间断续性来看,是由于预先设定了空间和时间的度量,始终是连续变化的经典性质。实际上在微观领域,空间和时间存在着不可分的基本单元。
2.运动(相互作用)基本规律的统一性
20世纪基础物理学巨大成功之一,就是建立了粒子物理学的标准模型,理论上它是筑基于量子规范场论的。这个模型给出了夸克、轻子层次强、弱、电作用的SU(3)×SU(2)×U(1)规范群结构,在一定程度上统一了强、弱、电三种相互作用的规律。但是它不含有引力作用。
超弦/M理论的探讨,在于构建包含引力在内的四种作用统一的物理理论。传递不同相互作用的粒子如光子(电磁作用)、弱玻色子(弱作用)、胶子(强作用)和引力子(引力作用),对应于弦的各种不同振动模式,夸克、轻子层次粒子间的作用,就是弦间的相互作用。在Planck标度,超弦/M理论是四种基本作用统一理论的最佳侯选者,也就是所说的万物理论(Theory of everything)的最佳侯选者。
在Planck时期,物质运动或四种作用基本规律的统一性,正是反映了我们宇宙在众多复杂性中所显现的一种基本简单性。
3.物质微观结构的基本单元的存在性[17]
世界是由物质构成的,物质通常是有结构的,但是物质结构在层次上是否具有基本单元,即德谟克利特式的“原子”是否存在?这是一个长期反复争论而又常新的课题。当代几种不同的量子引力,尽管对某些问题存在着不同的见解,但是关于这个问题从实质上来看,却给出了一致肯定的回答。
超弦/M理论认为,构成我们世界的物质微观基本单元是具有广延性的弦和brane,并非所谓的只有位置没有大小的数学抽象点粒子。粒子物理学标准模型中的粒子,都是弦或brane的激发。弦和brane的线度是有限短的Planck长度,它们正是构成我们世界的物质基本单元,即德谟克利特式的“原子”,这是超弦/M理论为现今所有粒子提供的本体性统一。
圈量子引力给出了在Planck标度面积和体积的量子化性质,即断续的本征值谱,面积和体积分别存在着最小值。由于在圈量子引力中,脱离引力场的背景空间是不存在的,而引子场是物质的一种形态,因此脱离物质的纯粹空间也就是不存在的。空间体积和面积的不连续性和基本单元的存在,正是物质微观结构的断续性和基本单元的存在性的最有力论据。
总之,超弦/M理论和圈量子引力从不同的侧面,对量子引力的本质和规律作出了一定的揭示,它们在Planck标度领域一致地得出了空间量子化和物质微观结构基本单元存在的结论。这无疑是人们在20世纪末期对我们世界空间时间经典观念的重大突破,也是广义相对论和量子力学统合的成果;同时更是哲学上关于空间和时间是物质存在的客观形式,没有无物质的空间和时间,也没有无空间和时间的物质学说的一曲凯歌!
【参考文献】
[1] G.Horowitz.Quantum gravity at the turn of the millennium.gr-qc/0011089.22.
[2] C.Rovelli.Loop quantum gravity.gr-qc/9710008 10.Oct.1997.
[3] M.Kaku.Introduction to superstring and M-theory.Second Editon.Springer.New York,1999.
[4] M.Green,J.Schwarz.Anomally cancellations in supersymmetric D=10 gauge theory and superstring theory.Phys.Lett.149B(1984)11.
[5] D.Gross,J.Horvey,E.Martine and R.Rohm.Heterotic string.Phys.Rev.Lett 54(1985)502.
[6] P.Candelas,G.Horowitz A.Strominger and E.Witten.Vacuum configurations for superstrings.Nucl.Phys.B258(1985)46.
[7] E.Witten.Non-commutative geometry and string field theory.Nucl.Phys.B276(1986)291.
[8] E.Witten.String-string duality conjecture in various.dimensions.Nucl.Phys.B443(1995)307.
[9] C.Baches.D-brane dynamics.Phys.Lett.B374(1996)37.
[10] A.Strominger,C.Vafa.Microscopic origin of the Bekenstein-Hawking entropy.Phys.Lett.B379(1996)99.
[11] J.Maldacena.The large-Nlimit of superconformal field theories and supergravity.hep-th/9711200.
[12] C.Rovelli.Notes for a brief history of quantum gravity.gr-qc/0006061.23Jan,2001.
[13] C.Rovelli,L.Smolin.Descreteness of area and volume in quantum gravity.gr-qc/9411005.
[14] C.Rovelli,L.Smolin.Spin networks and quantum gravity.Phys.Rev.D52(1995)5743.
[15] C.Rovlli,Black hole entropy from loop quantum gravity.Phys.Rev.Lett.74(1996)3288.