前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇大概念教学的定义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】 代数;几何;变式教学
1.1 代数概念引入变式:教师在教授一个新的概念时,将概念还原到客观实际(包括变式题组)之中,拮取部分含有此新概念的萌芽或雏形的实际现象(如实例、模型或已有经验、题组等)进行引入,通过变式移植概念的本质属性,使实际现象数学化,达到展示知识形成过程,促进学生概念形成的目的。引入代数概念有时也采用与学生原有认知结构进行对比的方式,通过新旧知识的对比,使学生构建出新知识,对比也是变式的一种形式。
1.2 代数概念的辨析变式:教师在引进概念后,针对概念的内涵与外延设计辨析型问题,通过对这些问题的讨论,达到明确概念本质、深化概念理解的目的。
1.3 代数概念的巩固变式:教师在代数概念引入、理解的同时,要明确概念的应用,以达到对代数概念的巩固。教师可通过设计直接应用概念的练习变式题组,并通过对题组的讨论解决,达到熟悉概念、巩固概念、应用概念、提高解决问题能力的目的。
2 从几何概念的特点出发进行变式设计
一般来说,几何概念具有以下特点:
2.1 实践性。学生掌握的许多科学概念都是从日常生活概念中抽象发展而来的。然而由于日常概念的宽泛性、易变性、多义性,容易对学生学习抽象的数学概念造成错误的理解。由于学生在接触数学概念之前,与之相联的日常概念可能早己在他们的意识中潜在地存在着,因而有些错误几乎是根深蒂固的。因此,教师应注意指导学生从自己的日常生活中积累有利于概念学习的经验,同时又要注意利用学生的日常经验,为概念教学服务。学生获得概念的能力随年龄的增长、智力的发展、经验的增加而发展。研究表明,就智力与经验对概念学习的影响程度来看,经验的作用更大,丰富的经验背景是理解概念本质的前提,否则将容易导致死记硬背概念的字面定义而不能领会概念的内涵。这里的“经验”除了从学校学习中获得以外,学生从日常生活中获得的经验也起到非常重要的作用。为了防止经验对新概念学习产生消极影响,教师可通过变换反映概念的图形使学生掌握概念的内涵。
2.2 直观性。几何中的许多概念都与图形密不可分,根据图形可直观地对对概念下定义,并根据图形理解概念。而书中所给图形往往只是概念外延的一个方面。这就要求教师对图形进行变式,使学生把握概念的多种外延形式,进而把握概念的本质属性。
2.3 逻辑判断性。在几何教学中教师不仅要对概念的内涵、外延,定义充分了解,而且还应意识到“凡是定义都是一种特殊的命题”,在“这类特殊的命题中”的条件和结论互为充要条件,即原命题是正确的,逆命题也是正确的。任何一个定义即可以作为性质使用又可以作为判定方法使用。例如“平行四边形的概念:两组对边分别平行的四边形叫做平行四边形”,为让学生认识到平行四边形概念的性质与判断性的双重作用,教师在适当时机对其进行语言变式,即平行四边形的两组对边分别平行。与“平行四边形”对比,引导学生对矩形、菱形、正方形得到同样的认识。
2.4 系统性。学生学习的概念是循序渐进的,有时新学习的一些概念是原有认知结构中某个概念的子概念或相关概念,抓好某个具体概念的教与学固然十分重要,但如果对于概念与概念间的内在逻辑联系不加以挖掘、分析、揭示,使之形成概念体系,学生获得的表象可能是零散的甚至是零乱的,因此,当概念的教与学达到一定阶段或一定层次之后,教师应引导学生将相关概念通过变式形成一个概念体系,并纳入已有的认知结构,以便在新的高度上通过对本质属性的变化及与相关概念的对比达到对相关概念本质属性的理解与把握。
3 代数概念与几何概念变式教学的比较
3.1 相同之处:
3.1.1 代数与几何中的许多概念都来源于实际生活、生产。在概念引入时都可将其还原到客观实际之中,撷取部分含有此新概念的萌芽或雏形的实际现象进行引入,通过变式移植概念的本质属性,使实际现象数学化,达到展示知识形成过程、促进学生概念形成的目的。例如代数中“负数”概念的引入及几何中“垂直”概念的引入都来源于客观实际。
3.1.2 代数与几何中的许多概念都具有逻辑判断性。“凡是概念都是一种特殊的命题”,在“这类特殊的命题”中的条件和结论互为充要条件。例如代数中“绝对值”的概念及几何中“平行四边形的概念”。教师在教学中注意在适当时机给出概念的逆向变式问题,以便使学生更深入地理解概念的本质属性。
3.1.3 代数概念与几何概念都具有系统性。学生学习数学概念是循序渐进的,有时新学习的某个概念是原有数学结构中某个大概念的子概念,如代数中“一元二次方程”、“分式方程”都属于“方程”的范围,几何中“矩形”、“菱形”、“正方形”都属于“平行四边形”这个大概念。在概念学习达到一定阶段时,要适时对其整理,将它们联系、归纳、概括到一个系统之中,并通过“对比”更深入地理解概念。“对比”是变式的一种有效形式。
3.2 不同之处:几何概念与代数概念相比较最明显的区别在于几何概念具有直观性。几何概念几乎都与图形相关,因此图形变式是学生正确理解几何概念本质属性必不可少的环节。代数概念相对几何概念具有较强的抽象性,因此教师要通过变换概念的非本质属性,突出概念的本质属性,使学生正确理解概念的内涵。
变式教学也是为了激发学生学习动机和兴趣,使学生真正参与到知识的形成过程、问题的解决过程中来,在这些“过程”中展开思维,真正成为学习的主人。通过教师的变式教学引导,使学生养成迅速抓住概念或问题的本质属性的习惯,使学生不断探索,从而培养学生的创新精神。
参考文献
[1] 刘长春、张文娣.中学数学变式教学与能力培养.山东教育出版社.2001,
[2] 曹才翰、章建跃.数学教育心理学.北京师范大学出版社.1999,
[3] 冉蒋.数学教育心理学.四川科学技术出版社.2002,
1.使学生掌握指数函数的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合,全国公务员共同天地的思想方法.
3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教学建议
教材分析
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数.
(2)对底数的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
教学设计示例,全国公务员共同天地
课题指数函数
教学目标
1.理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.
2.通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.
3.通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.
教学重点和难点
重点是理解指数函数的定义,把握图象和性质.
难点是认识底数对函数值影响的认识.
教学用具
投影仪
教学方法
启发讨论研究式
教学过程
一.引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.
1.6.指数函数(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?
由学生回答:与之间的关系式,可以表示为.
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.
由学生回答:.
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.
一.指数函数的概念(板书)
1.定义:形如的函数称为指数函数.(板书)
教师在给出定义之后再对定义作几点说明.
2.几点说明(板书)
关键词: 中学物理概念教学 本质属性 学法指导 物理意识 物理能力
物理概念不仅是物理基础理论知识的重要组成部分,而且是学生通过逻辑推理方法,构建知识体系的基本元素。物理概念具有抽象性与具体性相结合的特点,物理概念引入的方法很多,且有些概念是成对出现的,要使学生明确概念的物理意义,知道概念到底有什么用。
一、挖掘概念的内涵和外延,准确理解物理概念
在高中物理教材中应培养学生分析归纳和综合等抽象思维能力,使其能熟练地应用物理知识解决实际问题。如果将精力花费在定理、法则的推导与应用上,则学生接受难度大。有的老师只着重于揭示概念的描述,对物理问题的分析、推理、论述科学严密,导致学生理解困难。高中物理概念有些是从直观的实验直接得出的,有些则需要学生从已有的知识出发,或从建立的理想模型出发,通过观察、分析、归纳和推理建立起来。高中学生虽然具有一定的认知能力和逻辑思维能力,但由于他们的物理基础知识有限,且在以往的学习中养成了被动接受知识的习惯,因而对概念的接受较困难。教师在教学过程中,往往将大量的时间用于备课做题,缺乏分析研究学生的现有知识状况、接受知识的能力,教学过程中对于学生的知识能力有时估计过高,自己常常觉得有些物理概念很简单,学生一看就懂,没有必要花费时间探讨、挖掘物理概念的内涵和外延,造成学生在最初就没有真正理解有些概念,致使学生不易建立各个物理概念之间的联系。
二、抓住物理概念的本质属性,正确揭示物理现象
物理概念准确地反映了物理现象及过程的本质属性,是在大量的观察、实验基础上获得的感性认识,是物理事实在人脑中的反映。物理概念除了有特定的定义外,还有相应特定的名词与符号,是构成物理规律和公式的理论基础。学生在学习物理知识的过程中,要不断地建立物理概念,弄清物理规律。如果概念不清,就不可能真正掌握物理基础知识。我们通过概念的约定方法缩小概念的外延,或者通过概念的概括方法,扩大概念的外延,从而生成一系列具有从属关系的概念,相应地这类具有从属关系的概念可组成一个概念系列。多数物理概念既表现为一种算法操作程序,又表现为一种对象。因此,在中学物理教学中,概念教学是一个重点,也是一个难点,搞好物理概念的教学,使学生的认识能力在形成概念的过程中得到充分发展,是物理教学的重要任务。
三、加强学法指导,教会物理概念的应用
物理概念是物理学习的基础,细化物理概念对应的知识点。一般情况下,可以从以下几点细化一个概念,记住物理量的名称是了解一个物理量的第一步。在解决计算、证明、作图等具体问题中无时无刻不用到物理概念,物理概念的定义是用科学严谨的叙述给出的,教师只有通过大量生动背景材料的展示,才易于学生分析、比较、抽象、概括,明确其本质属性。物理量的符号大多采用英语的第一个字母,一般情况,每个物理量都有特定的字母,教师应通过演示教具或多媒体呈现的图形变化,使其产生直观、形象的效果,要求学生记准物理量的符号。这样,有利于规范运算过程。一个物理概念的定义用物理语言来描述,就写出了对应的定义式。抓住主要概念讲解,定义式之间的关系会写出不同的表达式,应注意选择讲解重点,要弄清哪个是决定式,哪个是定义式,物理量的定义式,给出了物理量之间的数量关系,应针对不同定义,采用不同教法。要分清国际单位和常用单位,并记准其单位符号及不同单位制之间的换算关系,在做题时要求同学们统一单位;每讲一个物理概念,要求弄清它是矢量还是标量,要求弄清它是状态量还是过程量,教师应结合生产生活实例说明如何通过状态量的变化在状态量和过程量之间建立联系,最后要提醒学生弄清物理表达式的适用范围。
四、掌握物理概念建立的方法,增强学生物理意识与物理能力
中学物理概念无论如何抽象,实际都有它的具体内容和现实原型,大多数物理概念是通过实验演示,让学生透过现象剖析揭示其本质而引入的。在教学中,教师既应注意从学生的生活经验出发,又应注意从解决物理内部的运算问题出发引入概念。学生通过直观观察形成深刻印象,强化对概念的理解和记忆。这样,从学生熟知的语言和事例中提取感性材料,引导他们抽象出相应的物理概念,揭示概念的内涵和外延,要讲清概念中的每一字、词的真实含义。物理概念是随着物理知识的发展而不断发展的,要充分发挥已有的旧知识的作用,通过新旧概念之间的逻辑关系引入新概念,通过物理概念之间的关系学习新概念。有些概念是由某一概念通过逐步推广引申而得到的,根据学生认知结构中相应知识状况和新概念的不同特点,选择的感性材料要典型全面,注意对相近、对立、衍生概念之间的比较,要突出与概念有关的本质特征。例如:如图所示,有两个固定的、电量相等、电性相反的点电荷,a、b是它们连线的中垂线上两个位置,c是它们产生的电场中另一位置,取无穷远处为电势的零点,则以下正确的有(?摇?摇)
A.b点的电势比a点电势高
B.c点电势为负值
C.a、b两点场强相同
D.将一正电荷从b点移到c点电场力做负功
通过查阅相关资料与讨论,笔者认为,高中数学难点概念的成因主要有:(1)概念本身问题:部分概念抽象层级多,抽象思维和逻辑思维要求高,表征方法少,具体化、形象化困难,理解难度大;(2)教材编写中的问题:部分概念定义的文字表述过长、语言枯燥、符号抽象难懂,教材中对概念的形成提供的感性材料不够充分,巩固概念的配套练习不够恰当,教学课时安排过于紧张,学生缺乏深入理解所必须的时间;(3)教师教学中的问题:对所引入概念的必要性(背景)阐述不够重视;对概念本质属性的剖析不够到位,没有从文字叙述、图形、数学符号等多角度地揭示概念的内涵和外延;对概念辨析的教学环节重视不够,普遍存在以解题代替巩固练习的现象;(4)学生学习中的问题:不能理解部分概念学习的必要性,学习动力不足;上位概念理解不深、固定点知识薄弱;语言转换能力缺乏,难以用自己的语言表述概念;表征方法少,缺乏原型和样例支撑;不清楚相关概念的内在联系,无法形成恰当的概念网络结构,
有效提升学生学习力的基础之一就是让学生理解概念,而要让学生理解概念,教师首先自己要理解概念,为此,我校数学学科组开展了“高中数学难点概念解读”为主题的学科校本研修活动,提出概念的解读也要高立意的要求,体现在能宏观把握数学概念在中学阶段的地位与作用,明确这个数学概念的内涵――对象的“质”的特征,及其外延――对象的“量”的范围,挖掘依附于概念的数学思想方法,从前后知识联系的角度审视概念,在概念体系中认识概念等,只有这样,概念的教学才能循序渐进,具体教学才能抓住教学核心,摒弃细枝末节,即一节课中到底讲些什么,哪些重点讲,哪些不需讲,哪些本课之前讲,哪些后续讲等,提高概念的教学效率,
以下我们以“曲线与方程”的概念解读为例,谈谈如何对数学难点概念进行深入解读,
1.地位作用
“曲线与方程”是人教c版教材选修2一l中第二章“圆锥曲线与方程”第一节“曲线与方程”第一课时的内容,是在学生已学过必修2中的直线与方程、圆与方程内容的基础上,继续学习“圆锥曲线与方程”的起始课,具有承上启下的作用,由于解析几何的本质是用代数的方法来研究几何问题,即通过研究曲线的方程来研究曲线的性质,这就带来一个关键性的问题,为什么能通过研究方程来研究曲线?即怎样保证这种研究的可靠性,
“曲线的方程”与“方程的曲线”是解析几何的基本概念,解析几何的两个基本问题(建立曲线方程和利用方程研究曲线的性质),都是以这两个概念为基础的,该内容安排于直线与圆的方程之后,是让学生对曲线的方程的认识经历从“观念”到“概念”的螺旋上升过程,又使后续研究圆锥曲线等内容的理论基础,使得学生对曲线与方程的关系有一个更加系统、完整的认识,更为重要的是,人们可以借助曲线与方程之间互为表示的等价关系,通过方程来研究曲线,因此,“曲线的方程”与“方程的曲线”概念是解析几何的核心概念,
2.内容解析
“曲线的方程”与“方程的曲线”的定义:一般地,在直角坐标系中,如果某曲线c(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点,
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线,
在平面直角坐标系建立以后,任何曲线都有惟一的方程,任何方程也都有惟一确定的曲线(或点集),曲线与方程之间的一一对应的关系,是通过曲线上的点所成的集合与方程所有解所构成的集合之间存在一一对应关系来建立的,定义中,条件(1)中“都”字阐明了曲线上每一点的坐标都满足方程,保证了曲线对于方程的纯粹性;同样地,(2)中“都”字阐明了符合条件的所有点都在曲线上,保证了曲线对于方程的完备性,纯粹性与完备性合起来,保证了曲线与方程的等价性,这是曲线的方程概念的本质属性,
从集合角度看,如果把直角坐标平面内曲线上的点所组成的集合记作A,方程F(x,y)=0的解所对应点的集合记作日,那么定义中(1)用集合关系表示就是A∈B,定义中(2)用集合关系表示就是B∈A,两者合起来即A=B,这是从集合角度对曲线与方程关系的解释,
“曲线的方程”与“方程的曲线”是同一事物的两种表现形式,只是定义的主体不同,曲线的方程反映的是图形所满足的数量关系,方程的曲线反映的是数量关系所表示的图形,“曲线与方程”概念所界定的既不是具体直观的曲线,也不是具体实在的方程,而是它们之间相互的“隶属关系”,跨越几何和代数两界,认识这种隶属关系并能应用,是教学的着力点和落脚点,
“曲线与方程”一方面要从形到数,即绘出曲线,写出相应方程;另一方面要从数到形,即给出方程及其要求,画出相应曲线,揭示几何中的形与代数中的数相互统一的关系,体现解析几何的核心――数形结合的思想,为“作形判数”与“就数论形”的相互转化开辟了途径,是数学方法论上的一次飞跃,
3.学情分析
3.1知识与认知基础
就学生而言,在这节课之前,他们已经在必修课程《数学2》的直线与方程、圆与方程中,讨论了曲线与方程的关系,加上初中和高一学过的函数在内,学生已有了曲线与方程的初步观念(还不能说是“概念”),有了一定的感性认识,也有了处理相关问题的基本数学活动经验,这是学生学习曲线与方程的认知基础,是学生理解曲线与方程概念的最近发展区,
3.2可能的理解障碍
首先,学生在学习曲线与方程概念之前,对曲线与方程的关系更多是从整体、宏观角度认识的,一般情况下,会认为直线就是直线、圆就是圆,不会想到把它们看作满足某种条件的点的集合,方程就是方程,不会想到把它们看作满足某种条件的解的集合,而曲线与方程概念是通过“曲线上的点”和“方程的解(有序实数对)”之间一一对应关系来定义的,这种考察问题角度与思维方式的变化会导致学生理解上的思维障碍,因此,教学设计的着力点是借助实例,将学生对曲线与方程之间的“能相互替代”“等价”“不多不少”等观念进行精确描述,将已有观念明确化、概念化,
其次,在经历由直观表象上升到抽象概念的过程中,学生容易对定义中为什么要规定两个方面产生困惑,原因是不理解两者缺一都将扩大概念的外延,同时学生易将定义中的(1)(2)两点孤立开来,认为曲线上的点的坐标都是方程的解,那么曲线就是方程的曲线,以方程的解为坐标的点都是曲线上的点,那么方程就是曲线的方程,未能将两个方面统一起来,因此,教学要通过对正、反例的充分辨析,引导学生明确概念的内涵与外延,认识到曲线的方程与方程的曲线是同一事物的两种表现形式,
再次,之前学生求得的直线或圆往往是一条完整的直线或一个完整的圆,不需要去深究求得的方程是否会混入不在曲线上的点的问题,而进入到一般的曲线的研究过程,在给定曲线一部分确定其方程时,学生会受函数定义域与值域负迁移的影响,出现变量范围错误的现象,例如,对单位圆的上半圆(不含端点),其方程应为X2+y2=1(y>o),学生会写成X2+y2=1(-1
4.教学建议
4.1关注知识体系的螺旋上升
教师要从全套教材的结构来认识曲线与方程的地位,弄清知识的前后安排顺序,把握好要求,体现知识体系的螺旋上升过程,教学要循序渐进,水到渠成,在函数教学中,要让学生体会到直角坐标系中的点与其坐标的一一对应关系;在直线与方程、圆与方程的内容学习中,要明确提出曲线上的点与方程的解的对应关系,使学生能熟练地判断给定坐标的点是否在曲线上,熟悉曲线上点的坐标求法,为得出曲线的方程概念埋下伏笔;在圆锥曲线方程的内容学习中,引导学生进一步体会“曲线的方程”与“方程的曲线”的关系,强化概念的理解,
4.2重视概念的生成过程
从既要让学生理解“曲线与方程”的概念、又要让学生体会“为什么要引入这个概念”出发,以学生熟悉的“直线与方程”“圆与方程”为载体,在给出抽象概念之前,通过实例,让学生建立起“纯粹性”“完备性”的充分体验,体会到引入曲线与方程概念的必要性与合理性后,再给出严格的数学定义,并借助反例引导学生进行概念辨析,使学生从内心接受“曲线的方程”“方程的曲线”这样“颠来倒去”的数学定义,再通过给出曲线写方程、给出方程画出曲线的图象,以及证明“已知方程是给出曲线的方程”等问题的探究,让学生充分理解“曲线与方程”这一概念的内涵与外延,领悟定义中①②的缺一不可性,把握概念的深层结构,
4.3善于举例,使抽象概念具体化
由于“曲线与方程”的概念比较抽象,教学要通过简单、具体而又较为丰富的例子(直线、圆及其变式)完成概念同化,在概念应用中通过进一步的变式训练完成概念的顺应,从而建立起良好的认知结构,教学时,应该为学生提供各种感性材料,不断改变其表现形式,合理运用变式,使学生从不同的角度去认识概念的本质属性,其中,反例(非概念变式)的引入对于概念的正确理解、防止或纠正学生各种可能的错误观念具有重要作用,
对于一门课程来说基本概念是基础,是其他理论、方法论展开的重要根基。本文围绕地理学课程中的三大概念,即经济地理学的研究对象、经济活动区位概念及区域概念进行辨析,旨在明晰概念内涵。
1 关于经济地理学研究对象的探讨
经济地理学是研究经济活动区位、空间组织及其与地理环境相互关系的学科。这一定义明确了当今国内经济地理学主要研究领域为人类经济活动与地理环境关系和经济活动的空间问题两大模块,与过去的相关教材相比具有鲜明地理学特色并体现地理学科研究优势。教材中明显将经济活动空间问题研究和经济活动与地理环境关系并重为经济地理学两大研究对象。作者认为经济地理学擅长研究的领域自然是经济活动的空间问题和经济活动与地理环境之间的关系(人地关系)。由于地理学向来擅长研究的领域为人地关系地域系统,因此对于后者大家普遍认可并容易接受。其原因为地理学的根基是区域性与综合性,对于人地关系地域系统研究来说,综合性不必费笔墨,人地关系系统包括诸多要素的综合,自然体现地理学的综合性。地理学的区域性主要体现在区域内部的一致性及区域之间的差异性,而区域差异性主要由地球的圆形形态与太阳的位置关系及地球自身的地质演化历史所决定。其中,地球圆形形态与太阳的位置关系这一基础物理条件使得地球表面的热量分布产生区域差异,即维度地带性规律。热量分布差异带来诸多自然地理要素(气候、植被、土壤)的空间差异,而自然地理要素的空间差异是地理学区域性特点的根基。地球自身的地质演化带来当今地球表面的地形地貌以及海陆分异状态,而上述差异又进一步影响水热分布状态,进而影响“区域性”。人地关系地域系统的基础是“地”,即人地关系协调的关键是地理环境的承载能力,因此从此种意义上讲,人文地理学科的基础亦是自然地理学科,这是由研究对象或研究领域所决定的。
经济活动的空间问题研究这一领域若将其独立与人地关系之外进行研究,就不是地理学所擅长的,而传统经济学比较擅长研究经济活动的空间问题。其原因有:(1)经典区位理论,如杜能的农业区位理论、韦伯的工业区位理论、克里斯泰勒的中心地理论以及廖什的市场区位理论,均为经济学家或受到经济学思维的地理学家所创。(2)上述有关区位经典理论虽关注的是经济活动的空间问题,但关注的核心问题为经济活动的空间成本或空间支出问题,而成本与收益问题显然是经济学的基本问题。(3)目前区域经济学诸多著作中介绍经典区位理论的情形常见,由此看来区位论对经济学和地理学都非常重要,两种学科均将其视为本学科的基础理论或基础理论之一。若地理学将经济的空间问题与本学科擅长的基础理论――人地关系理论相融合可能有助于本学科更好地发展。
本文认为,经济地理学应将研究对象中的人地关系概念进一步强化,而空间问题的研究需要以人地关系研究为前提即在经济地理学的空间(或区位)问题研究中,首先以人地关系的区域性和综合性研究为基础,便能更好地发挥地理学在空间问题研究上的特色与优势。为了进一步说明问题,此处简单举一例:如以某区域城镇体系空间优化为例,从单一的经济学视角分析,城镇体系的空间规划,无一例外都是按照严格的假设条件,遵循中心地体系(或其他经济学理论模式)即可。因为在仅考虑少数经济学因素(成本―效益等)的情况下,地理环境因素(综合性和区域性)的作用或影响不能够充分体现,而现实的区域城镇体系规划应首先考虑地理环境,考虑人地关系的协调性。原因是,地理环境为人类生存基础,而成本―效益等诸多经济因素是人类在保证生存基础之后的发展方面的问题。基于上述认识,本文认为在地理学教材中应将学科研究对象描述为人地关系(人类经济活动与地理环境关系)及人地关系协调基础上的区位、空间组织等问题更为合理。
2 关于经济活动区位概念的探讨
地理学众多教材将经济活动区位定义为人类经济活动所占有的场所。这一定义范围较广,年轻学生不能很好地把握其内涵。本文认为,经济活动区位有两大核心内涵,一是相对位置的内涵,即“此经济活动”与“彼经济活动”之间的相对位置决定“此经济活动”的区位的“好坏”或“优劣”,而教材所定义的经济活动所占有的“场所”一词,不能很好地体现经济活动本身的相对位置的内涵。二是须从某一视角去看待区位这一概念。例如在比较两种地理事物的区位中“谁优谁劣”,须从同一视角进行比较才具有可比性。如,北京和二连浩特的区位“谁更优”的问题,中国和蒙古国的经济贸易往来这一视角看问题,那必然是后者的区位优势显著。但从国家层面去比较区位优势,显然前者具有绝对优势。我们经常看到或者听到“什么与什么比较起来,哪一个更具区位优势”等表述,这样的表述显然忽略了两种事物的比较必须在某一个统一视角下进行才有意义这一基本常识。本文认为,经济活动区位更为容易掌握的概念表述应为,“某统一视角下,经济地理事物的相对位置”。
3 关于区域概念的探讨
区域概念在诸多领域中无统一定义,不同的学科有不同的定义。政治学认为行政界线既是区域边界;区域经济学认为统一经济特征的区域即为其边界;地理学认为区域是具有一定范围的地理空间。本文主要探讨地理学对于区域的理解或者表述。地理学对于区域的上述定义与区位定义同样,其内涵较为宽泛,没有一定的专业基础的本科生理解起来较为困难。定义表述中的“一定范围”一词,其所指范围宽泛,如,“一定范围”从小到社区,大到全球的理解均可,因此不易在学生头脑中植入清晰的空间概念,易出现歧义。由于地理学的两大根基之一的“区域性”是在自然区域的基础上发展起来的,具有很强的自然地理属性。即使在人文地理学研究中,也应强调区域的自然地理属性。因此本文更倾向于将区域定义为,某一标准下,具有内部一致性,外部差异性的地理单元。其中,“某一标准”一词是为区分不同学科(或不同研究视角)对区域的不同认识(或表述)。例如,人文地理学中的文化区仅仅是从文化这一视角划分区域的,而经济区仅仅是根据经济类指标对区域进行划分的。因此“区域”在一定标准下才具有实际意义,同时在一定标准下区域内部必然具有一致性,对外必然产生差异性。