首页 > 文章中心 > 量子力学概述

量子力学概述

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学概述范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子力学概述

量子力学概述范文第1篇

本书是由两位在此领域中有颇多成果的意大利著名专家根据这方面的最新进展所写的一本新的教科书性质的专著,它包括了热动力学,统计力学和多体问题的经典课题和这方面的最新进展。

19世纪末,开尔文公爵发表著名的演说,其中提到以经典力学、经典热力学和经典电磁理论为基础的物理学大厦已经建成,后人只需要做些小修小补的工作。然而在明亮的物理学天空中飘着两朵乌云,其中之一便是黑体辐射问题。实验发现黑体辐射无法用连续能量的观点来处理,这对经典的物理学提出了巨大的挑战。为解决这一问题,一个崭新的学科――量子力学应运而生。它是由普朗克最先提出,由爱因斯坦、波尔、薛定谔、狄拉克等天才的物理学家们发展完善,是公认的20世纪物理学最伟大的突破之一。本书回顾了量子力学的发展历史,介绍了量子力学的基本知识,是一本优秀的量子力学教材。

全书共12章,分4个部分。第一部分 量子力学的提出与建立,包括第1章。分析了经典物理学对处理黑体辐射、光电效应和康普顿散射的困难,介绍海森堡不确定性原理、波尔对应原理、含时的与定态的薛定谔方程、物理实际对薛定谔方程解的限制、本征波函数与本征值、波函数的完备性与正交性、叠加原理、互补原理以及相位的概念。最后明_了量子力学的几个基本假设,强调了薛定谔方程本质上是一种假设。第二部分 使用薛定谔波动方程处理量子力学问题,包括2-7章:2.求解一维无限深势阱;3.自由粒子;4.线性谐振子;5.一维半无限有限高势垒;6.势垒隧穿处理α粒子衰变;7.一维有限深势阱等模型的薛定谔方程的解。介绍球坐标空间,引入分离变量法,求解了氢原子的薛定谔方程。第三部分 使用海森堡矩阵力学处理量子力学问题,包括第8-10章:8.介绍角动量理论和自旋算符理论;9.介绍微扰理论;10.定态一级微扰和二级微扰,并成功应用于解释Stark效应。最后介绍含时微扰,给出了费米黄金规则公式。第四部分 弹性散射理论,含第11-12章:11.并以刚球散射和方势阱散射模型为例,求解散射振幅与微分截面;12.介绍狄拉克发展的酉算子和酉变换。

本书内容简单,利于理解,适合作为物理系本科生的专业教材。与常见的量子力学教材相比,本书有两个优势,一是求解的数学过程完整且准确,可以帮助读者建立坚实的数学基础;二是在每一章的前言部分,都有对量子力学发展历史的介绍,其中对当时的物理学家们的言行描写尤为生动,妙趣横生。如果读者阅读英文有困难,也可以参考北大曾谨言教授编写的《量子力学》,两本书内容相近,可以互为辅助。

本书内容涉及2个领域:热力学和经典统计力学,其中包括平均场近似,波动和对于临界现象的重整化群方法。作者将上述理论应用于量子统计力学方面的主要课题,如正规的Feimi和Luttinger液体,超流和超导。最后,他们探索了经典的动力学和量子动力学,Anderson局部化,量子干涉和无序的Feimi液体。

全书共包括21章和14个附录,每章后都附有习题,内容为:1.热动力学:简要概述;2.动力学;3.从Boltzmann到BoltzmannGibbs;4.更多的系统;5.热动力极限及其稳定性;6.密度矩阵和量子统计力学;7.量子气体;8.平均场理论和临界现象;9.第二量子化和HartreeFock逼近;10. 量子系统中的线性反应和波动耗散定理:平衡态和小扰动;11.无序系统中的布朗运动和迁移;12.Feimi液体;13.二阶相变的Landau理论;14.临界现象的LandauWilson模型;15.超流和超导;16.尺度理论;17.重整化群方法;18.热Dreen函数;19.Feini液体的微观基础;20.Luttinger液体;21.无序的电子系统中的量子干涉;附录A.中心极限定理;附录B.Euler 伽马函数的一些有用的性质;附录C.Yang和Lee的第二定理的证明;附录D.量子气体的最可能的分布;附录E.FeimiDirac和BoseEinstein积分;附录F.均匀磁场中的Feimi气体:Landau抗磁性;附录G.Ising模型和气体-格子模型;附录H.离散的Matsubara频率的和;附录I.两种液流的流体动力学:一些提示;附录J.超导理论中的Cooper问题;附录K..超导波动现象;附录L.TomonagaLuttinger模型确切解的抗磁性方面;附录M.无序的Fermi液体理论的细节;附录N.习题解答。

本书适于理工科大学物理系的大学生、研究生、教师和理论物理、材料物理、超流和超导以及相变问题的研究者参考。

量子力学概述范文第2篇

量子通信是量子力学和经典通信相结合的产物,其安全性由海森堡测不准定理和不可克隆原理所保障,具有经典通信无法比拟的无条件安全性及对窃听的可检测性。电力系统通信专网,建立了“安全分区、网络专用、横向隔离、纵向认证”的网络与信息安全防御体系,但安全措施主要侧重于业务层和数据安全层面,在底层安全策略和适应未来发展方面存在局限性。由于电力数据对通信安全要求的特殊性,量子通信极有可能是确保电力通信安全的极佳选择。综上,开展量子保密通信技术研究非常有意义。本文首先对量子通信技术进行概述,接着阐述了国内外技术研究现状;最后,根据电力通信业务需求,分析量子通信在电力系统中的应用前景。

2量子通信技术概述

量子通信,广义上是指把量子态的传递,包括:量子密集编码、量子密钥分发和量子隐形传态。其中,量子密集编码用于量子计算机。量子密钥分发,在传送量子态的过程中,光子会经由光纤或自由空间被实际传送到接收方;量子隐形传态,纠缠光子对分处两地,量子态在一处消失后,在另一处被巧妙地重现,而光子本身却不被传送。量子通信,狭义上理解,是量子密钥分配或基于量子密钥分配的安全保密通信。量子密钥分发只是负责产生和分发通信需要的密钥,最终的的数据信息经由加密生成的密文,还是必须经过经典信道进行传输。在量子隐形传态中,同样也要用经典信道将测量的信息传送出去,经典信息与量子信息联合起来才能实现量子隐形传态。因此,量子通信技术除了在窃听检测和通信保密方面具有优势以外,并不能突破经典通信系统在通信速率、距离、抗干扰性能等方面的极限。

3量子通信技术国内外研究现状

量子通信具有高效率和绝对安全等特点,广泛的应用前景吸引众多国家投入人力物力。美国、日本、欧洲多国都成立了专门开展量子技术研究的机构,此外,IBM、HP、NEC、NTT等企业也纷纷加入到量子通信的研究之中。国外量子密钥分配技术专利统计显示,公司、企业申请的专利数占主导地位,科研院所其次,可以看出量子密钥分配技术具有潜在的商业化价值和应用空间。1984年,BennetC.H.和BrassardG.提出第一个量子密钥分发协议(BB84协议),揭开了量子密钥分发研究的序幕。1993年,英国国防部研究局在传输长度为10km的光纤中实现了基于BB84方案的相位编码量子密钥分发。1997年,奥地利的A.Zeilinger小组在室内首次完成量子态隐形传送的原理性实验验证。2001年,瑞士IDQuantique公司推出商用量子密钥分发系统。2004年,瑞士日内瓦大学的Gisin小组推出的“Plug&Play”光纤量子密钥协商系统光纤长度提高到67km,成为世界上首个商用的QKD系统。

国内,量子通信研究同样受到相关部门的大力支持。郭光灿小组:2004年,实现北京-天津125km光纤点对点的量子密钥分发;2007年,实现了基于波分复用的四用户量子密钥分发网络,通信距离达到42.6km;2009年,在安徽芜湖建成世界首个“量子政务网”。2005年,潘建伟小组在世界上首次实现13km自由空间的纠缠分发和量子密钥产生;2008年,实现了三用户的诱骗态量子密钥分发网络;2009年9月,世界上首个全通型量子通信网络建成,首次实现了实时语音量子保密通信。最近几十年,量子通信从理论到实验,再到实用化突破,发展迅速。

4量子通信技术在电力系统中的应用前景

电网规模的不断扩大,电网企业信息化程度日益提高,电网面临的安全风险更多、更大,迫切需要研究新的通信技术,将其应用到电力系统来。量子通信技术具备高效率和绝对安全的优势,将可能成为保护电力系统数据安全的极佳选择。而且,在我国相关的研究和实用化工作也走在世界前列,具有自主知识产权,探索量子通信技术在电力系统中的应用是非常有意义和前瞻性的工作。结合目前电力通信系统和业务系统现状,量子通信技术可以在以下方面开展应用研究:

4.1构建量子加密异地备份数据传输链路目前,各网省公司已大力开展备用调度系统和信息容灾体系的建设,并相继成立了异地数据容灾中心。为确保数据中心之间的数据保密传输,一个安全的加密系统是必需的。量子保密通信的安全性不是基于计算的复杂性,在信息保护和保密通信方面具有天然的优势。使用量子密钥分发链路,在主、备数据中心间进行密钥分发和交换,能够构建高效、安全的异地数据备份传输通道。

4.2构建核心加密通信网电力企业的电脑被攻击,可能引发用电行业的瘫痪,造成社会大面积混乱。传统的防火墙和信息过滤技术无法从根本上解决“黑客”攻击的问题,随着量子通信距离和多用户量子通信技术的突破,利用量子通信技术构建网省地重要调度机构加密通信网,在网络上任意两用户间实现量子密钥的加密通信,将能保证营销、市场、办公等重要业务的安全性。

4.3构建点对点量子加密保护通道线路保护、安稳属于电力生产一区的重要业务,对数据的实时性和安全性要求非常高。现采用的专用光纤、复用2M通道方式能保证数据的实时性,却无法保证绝对安全性。随着量子通信的快速发展,两点间的量子通信技术趋于成熟,两方量子密钥分发通信距离已经能够达到几十公里~百公里级。量子密钥分发技术,使用光量子作为保护、安稳信息的载体,将能极大地保障业务的安全性。

4.4构建加密量子交换网络电话业务是生产指令上传下达的关键工具,是电网安全正常运行的重要通信保障,目前主要采用PCM或交换机放号的方式,在承载网层面未进行安全保证。使用量子交换机实现经典通信网络的交换控制与量子交换网络的控制,可以构建高安全的量子交换网络,防止电话遭窃听和恶意攻击。

4.5应急量子通信当出现冰灾、地震、洪水等自然灾害,光缆、传输设备等电力通信基础设施受到大面积破坏时,现有电力通信网络陷入瘫痪,无法进行有效的应急抢修通信。目前,量子隐形传态技术已经获得16km的实验进展,随着关键量子器件技术的成熟,隐形传态将进入应用阶段。利用隐形传态技术,构建应急环境下的量子卫星通信系统,将对未来的应急抢修提供重要帮助。

5总结

量子力学概述范文第3篇

其实牛顿用力和物质给出世界图景的方式并不是惟一的,不同于牛顿的质点和机械力学说,莱布尼兹力图超越牛顿物理中的力和物质实体的描述,其提出的形而上学式的单子论更倾向于主客体融合,以今天的视角看来是更为合理的信息宇宙实体概念,逐步形成了莱布尼兹-罗素逻辑计算传统,可以说它是另一条物理学传统。可以有效地克服上述原子论的物质和力实体的困境,可惜300 年来并没有引起足够的重视,它的光芒被顺应了工业革命潮流的牛顿力学的近现代科学大大掩盖了[3]。近年来,近现代科学遭遇到的挑战正使情况发生改变,人们开始重新审视世界的图景。热力学的兴起是一个转折点,爱因斯坦将熵理论在科学中的地位概述为:熵理论对于整个科学来说是第一大法则,指出熵理论是科学定理的培养基。由于熵紧密联系着信息,这相当于肯定了信息对认识世界图像的重要性。诺贝尔物理学奖得主Gerard't Hooft 指出物理的下一次大突破或许来自信息理论,而不是量子力学或相对论[2]。近年来,John A Wheeler、Lee Smolin 等人意识到“熵原理是宇宙第一法则”可提升为“一切来自比特”,也等价于“宇宙就是一台计算机”,也等价于“信息原理是宇宙第一法则”[4]。这些事实表明,我们对世界的看法需要从信息角度来进行,回答以物质和力为基础的现代科学在客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命、G?del 不完备性等一系列根本问题上所遭遇到的根本性挑战。

本文进一步指出,信息/熵是比质点、物质、力、引力更重要的物理实在,通过信息/熵可以了解力、引力、量子等。换句话说,信息/熵是本质,力是表象,力起源于信息/熵。从某种程度上说,信息/熵即量子引力作用,量子即信息。因此本文立足于更本质的广义信息,以一种全新的视角看我们的世界,给出了描述我们这个世界的一种新框架,可以贯通物理、化学、生物、生态、经济、社会、心理等分支,实现客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命等的统一。本文最后给出该新框架在复杂生态系统中的应用案例。

2 一个唯信息论的理论模型

2.1 近现代物理学的理论模型

近现代物理学以小球(质点或场)为对象,坚持先有物质、后有联系的原则,在简单动力学因果(力学的、可还原的、对称的、单调的)下,定义质点、惯性系、运动、力(场)、时空,得到了牛顿力学方程或哈密顿力学方程。

形成了从牛顿力学、电磁场理论、平衡统计力学、相对论到量子力学的近现代物理学的理论框架,论述了物质、时空、运动、力等大千世界的可逆的、确定的物理运动现象。这种基于简单动力学因果的法则导致了力、运动、物质(或能量)的还原性和客观性,也即式(1)有如下特征:牛顿力学方程必须基于惯性系;能量或哈密顿函数H是可积的;刘维算符L 具有正则性和厄米性。于是世界便是物质(或能量)在力的作用下运动或转化,因此便有了“世界除了运动的物质或物质运动以外,什么都没有”的图像。这种图像看似很合理,但似乎还有不少东西(如主观、精神、心智、不可逆、有机性、活力、生命等)没法包含进来,因此也会有上帝第一推动的困惑。

确实,由于简单的物理运动还属于比较低等的运动现象,大千世界还有许多更高级、更复杂的运动现象,因此,在物理学的前沿领域,则进一步兴起了系统科学、非线性科学、自组织理论、非平衡统计力学、复杂性科学等,它们主要以式(1)所示的微观动力学为基础,引入粗粒化、新概率因果或其它假设,形成以经典熵/信息为核心的统计力学,实现从微观可逆动力学、中观动理学到宏观非线性偏微分方程的推演,从而研究生命、秩序、心智、文明、进化等更高级、更复杂的世间万象。显然,这种思路仍是基于物理学的还原逻辑,具体说来就是,以近现代物理学的可逆动力学为基础,要么是像非线性科学那样在可逆的动力学基础上加入非线性作用,要么是像自组织理论和统计力学那样人为地引入了粗粒化和新概率因果假设,要么像系统科学和复杂性科学那样人为地假设组元间的复杂作用规则,从而实现对生命、秩序、心智、文明、进化等复杂世间万象的形成机理的分析。不可否认,这种思路取得的成就是巨大的,目前也是科学界的研究主流。但显然,近现代物理学中所谓的质点、物质、惯性系、运动、力(场)、时空都是一种简化,是一种实用主义的唯物观,描述了一个客观的、简单的、可逆的、确定的机械唯物的世界,以其揭示宇宙的简单物质性方面是足够的,但进一步以其为出发点研究宇宙的生命、秩序、心智、文明、进化等复杂世间万象方面有先天的固疾。其实在力的起源上牛顿必须求助于上帝的第一推动时已揭示了这种固疾确实是先天存在,今天现代科学在许多前沿问题如四种力统一、宇宙奇点、客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命、G?del 不完备性等一系列根本问题上的大量困惑只是具体表现,它们只是让这种科学根基的先天固疾昭然若揭而已。所以总体来说近现代科学的唯物论正遭遇到重大挑战,必须从根源入手探讨修正方法。

2.2 一个唯信息论的理论模型

我们把自然实在看成生成性网络(整体),大自然是个整体,对大自然来说,是先有联系(信息),后有物质,生成性网络的联系、信息创生万物。换句话说,对自然来说,信息是比物质和力更根本的本体,可以用一种以信息为本体的唯信息论去取代以物质和力为本体的近现代科学的唯物论。

当然以信息为基础建立物理学并不是一个陌生的概念[5]。300 多年前,莱布尼兹就有了从信息出发建立力学的思想。自上世纪50 年代以来,学术界已在热力学的基础上发展起了信息熵的概念。近年来,量子信息的出现,信息概念开始融入量子力学研究,为理解量子物理学的基础问题提供了一个新的途径,量子信息和量子计算对整个社会的信息格局有巨大的冲击。最近,不少著名物理学家如John A Wheeler 和Lee Smolin 等意识到,对整体网络这样的研究对象,应坚持先有整体网络结点的物理过程之间的信息交换、后有场和时空的观点[4]。现有不少研究也暗示,很可能是先有表征正如现代科学自身逻辑揭示出的黑洞视界熵、确定性混沌、彭加勒共振、量子测量坍塌之类的整体论的信息、或全息原理,后有力/量子引力[2]。一句话,我们需要直接从整体网络中提炼信息概念,重新诠释力、时空和动力学等概念。如目前Frieden 利用Fisher 信息重构了物理学,也有人从量子信息角度理解重力[2]。这些研究确实是试图从反映整体网络的信息/熵角度修正牛顿力(能量函数、哈密顿函数或作用量函数)、时空观和动力学,提出新的物理学方程,从而尝试重建物理学[6-7]。

不过,总体上,这些信息概念起源于经典熵,仍基于物理学的还原逻辑,对本原的整体性和有机性理解是不充分的;这种信息熵概念是狭义的,不具有本体论的意义,仍是附属于物质上的派生品而已,没有从根本上替代力和物质实体,也仅限于用在通讯等技术和数据统计领域而已。遗憾的是,目前几乎所有的信息熵概念都是以其为基础的。因此,不难理解,以其为基础来重建物理学是不可能成功的。

广义信息熵及其最大化原理会导致涌现出有序结构,实际上是产生沿λk>0 模式的最小流动阻力或最大流量的流动(即形成特定构形或流动)。直观看来,由于组元xi 的不断时空演化,对应的网络前峰就不断在以最小阻力的形式流动并持续变形,就像一团流体,从而导致复杂系统结构的演化。因此,一个复杂开放系统结构的演化实际上就是生成性网络或一团流体(或气)在时空上以最小流动阻力或最大流方式的蔓延,条件允许,其往往会形成发展层次分形结构。这是一幅生动的宇宙图像:物质、时空、生命、活力、社会、组织、秩序等,该图像可给出牛顿式的物质世界图像(最简单的、最低层次的图像),也可给出引力理论和量子理论给出的图像,也是系统科学、非线性科学、自组织理论、复杂性科学、统计力学给出的图像。它可以看做是这个有机自然的图像。

显然,通过定义ρJ 及MFP 这种方式就产生和构造了力和时空,即在图2 的网络上由不断的信息操作(多样化的、复杂的、内置的、非对称或更高级对称的联系)这种全新的因果关系而产生流动的、进化的、稳定的、公用的序结构,这种结构的出现不仅就是我们感受到的物质、时空、运动、力等物理现象的起源,也是生命、秩序、心智、意识、文明、进化等世间万象的起源。而MFP 揭示了信息熵最大原理正是产生流动的、进化的和稳定的结构,从而产生物质、时空、运动、力、生命、秩序、心智、意识、文明、进化等世间万象的调控法则。上述体系相当于找到现代物理学的深层次基础。相对论力学认为,没有万有引力,只有时空弯曲。现在则可以这样表达,没有万有引力,只有最大化的广义流或信息传递,万有引力是最大化的广义流或信息传递的结果。时空、物质、力、量子、生命、意识、社会、进化等也是最大化的广义流或信息传递的结果。

信息、认知是产生一切的终级理由,这就是终级解释,所以进一步地追问终结原因是不必要的。其实作为一种哲学和科学的根本信念, 或者说一种假设,是无法基于逻辑推理加以论证的。

如上所述,在现有的现代科学逻辑中实现从物质到生命这样大跨度的贯通,必须基于以牛顿力学为基础、以经典熵/信息为核心的统计力学,从微观可逆动力学、中观动理学到宏观非线性偏微分方程,令人困惑的粗粒化和新概率因果假设不可少。本文则改变力和物质的思维方式,引入新本原,这不仅可描述物理学现象,也可与生命、意识现象等贯通起来。与现有系统科学、非线性科学、自组织理论、非平衡统计力学、复杂性科学等的研究思路有根本的不同。

3 唯信息论新模型在生态系统中的应用

生态系统作为由大量组元组成的典型复杂开放系统,其演化动力学是当前学术界的研究热点和难点。生态系统不同于以力和原子概念为主导的经典力学体系,而是一个以熵和信息概念为主导的非平衡热力学和统计力学系统,因此,上述的唯信息论的新模型可以在研究生态系统的演化中得到良好的应用。

以位于“日光城”拉萨市的拉鲁湿地为例,该湿地是目前青藏高原上受人类活动影响,生态环境和结构发生重大变化较为典型的生态系统之一。60 年代以前,该湿地面积曾有数十万平方公里,生态环境良好,生物多样性丰富。然而,70 年代后期以来,频繁的人类活动导致了拉鲁湿地生态系统的退化,严重地破坏了当地的生态环境。因此必须从湿地形成的机理上寻找原因,分析湿地结构形成的影响因素,从机理抓起,从而来治理高原湿地。 分析其原因,主要是人类活动的影响。自20 世纪80 年代中期在湿地东北面娘热沟、夺底沟山角下相继建立的一些采矿场和1990 年修建的“一江两河”农业灌溉引水渠对湿地积水状况影响最为显著。同时,1990 年后修建的一条长7.3km,宽3-5m,自东向西横穿湿地而过的拉萨中干渠,因渠底低于湿地地面高程1-2m,湿地中60%的积水和地下水通过该渠排走,因而湿地地势相对较高的东面就逐步成为了季节性积水或无积水的地带。虽然夏季雨季开始后,上涨的河水可冲越抬升的河床增大湿地积水覆盖面积,但湍急的河水所挟带的大量泥沙已致使北面河水入口处约有6.7-13hm 的湿地被沙化。同时,随着城市建设的加快发展,又有一些单位和个人进驻湿地,开展旅游项目和进行无规则放牧,对该湿地和拉萨市的生态环境造成严重威胁,进一步加速了湿地退化的进程。

从广义信息熵最大的角度来说,各种条件自始至终都影响着湿地生态系统中组元的变化,从而影响湿地生态系统中结构的形成,或者说,生态系统中的组元会通过信息的传递,极力去争取最大广义信息熵,协调发展形成新的食物链网络从而适应新的环境要求。在外部条件的影响下,湿地生态系统会突然失稳、结构发生突变,这就可能造成湿地生态系统向退化的方向发展。延伸阅读:农业田间信息技术的应用

2000 年湿地生态结构模式和1990 年的湿地生态结构模式比较接近,说明自1990 年后湿地的生态结构模式又逐渐的稳定下来,湿地生态结构没有发生太大的变化,湿地的衰退现象得到了一定的抑制,究其原因,是人们为了留住拉鲁湿地这片独特的高原内陆湿地生态系统,做了很多有效的保护工作。通过这些保护工作,鸟类,鱼类的数量减少趋势得到了控制,湿地芦苇、藏青苔草的生物量开始逐渐的增加。此期间的湿地生态系统中,人类的对外部环境的干预增强了关键物种从外界获取环境流的能力,物种通过竞争和协作,物种之间形成某种联系,从而组成新的自然生态网络;这种有序结构的形成增强了物种抵御外界干扰的能力,保持了系统的稳定性,有利于湿地生态的发展。

4 结语

本文的理论内核是信息生成万物,自然界多样化的现象可以看成是网络上信息的动态演绎过程(动力学原理就是MFP)。从无到有、从无序到有序、从简单到复杂、从无生命到有生命、从低等到高等、从物质到意识等,都可以看成是这团网络流体的流变形态的进化而已。过去,以物质为核心的近现代科学,在揭示宇宙的简单物质性方面是相当成功的,但在研究宇宙的生命、秩序、心智、文明、进化等复杂的、高级的世间万象方面遭遇到了客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命、Gdel 不完备性等一系列根本问题的挑战。本文提倡用信息本体取代近现代科学中的物质和力(或场)的本体,用信息论来解释现有的物理定律,重新看所谓的客观世界,许多挑战性疑难都可得到一定程度的解决。

另外,从实用方面看,本文的基于信息论的新物理学模型得到了对称破缺的力学方程,可以应用到物理、化学、生物、生态、经济、社会、心理等不同学科,描述结构、组织、生命、社会等复杂系统展示的现象。以拉鲁湿地复杂生态系统为例,本文的方法清晰地给出了生态系统结构的演化规律,论述了一个具有严格理论基础的完整分析复杂系统的模型,说明新的理论模型可以很好地应用到实际研究当中。

[1] Jaynes E T. Papers on Probability, Statistics and Statistical Physics[M]. R D Rosencrantz (ed.)。 Dordrecht:Kluwer Academic Publishers, 1989: 1-10.

[2] Frieden B R. Physics from Fisher information[M]. Cambridge: Cambridge University Press, 1998: 1-5.

[3] [比]普里高津。 确定性的终结[M]. 上海: 上海科技教育出版社, 2000: 20, 107. [5] 刘钢。 信息哲学探源[M]. 北京: 金城出版社, 2007: 73-74.

[6] 邬焜。 信息哲学: 理论、体系、方法[M]. 北京: 商务印书馆, 2005: 424.

[7] Stonier T. Information and meaning: an evolutionary perspective[M]. London: Springer, 1997, p1-5.

量子力学概述范文第4篇

关键词:物理 人才培养 策略

理科教育在高等教育中占有重要的地位,随着科学技术的不断发展和应用,各个学科之间的交叉变得越来越负载,理科教育和工科教育之间的融合变得越来越深入。物理学科是一门应用性十分强的学科,对于学生的综合实践能力的提升具有十分重要的意义,物理教育在人才培养过程中占据重要的地位。在培养学生的科学观念、创新和探索精神方面有积极的促进作用,而且当前社会上的对应用型人才的需求量十分大,为此应该要加强高校物理教育过程中对应用型人才的培养力度。

一、物理学科的发展概述

物理学研究的内容主要是各种物质结构和运动基本规律,包括宇宙间的所有物质存在的基本形式、物质的运动规律、物质之间的转化、物质形态内部结构等,从十九世纪末开始,物理学就已经形成了一种初步的体系,在上个世纪初期,物理学的发展过程中产生了相对论和量子力学,并且在此基础上建立了近代物理学。物理学的发展也加深了人们对物理学的理解以及认识,促进了很多新兴的科学技术产物的出现。物理学作为其他学科的一种基础学科,在教育过程中占有十分重要的意义,尤其是发展到现在,社会对应用型人才的需求越来越大,物理学教育过程中人们对人才的综合实践能力的需求越来越大。很多深入到分子结构层次的学科,都需要物理学的基础知识作为支撑,因此在各个学科的交叉过程中又出现了很多新的学科,比如量子化学、激光化学、分子反应动力学等,应用物理是近年来逐渐发展起来的一门物理学的分支,随着信息技术的不断发展,各种科学技术在我们生活中的应用越来越多,加强物理的应用功能的发挥,加强对各种先进技术的应用成为当前时展过程中的一个重要方面。当前物理学科的研究体系也逐渐发生了改变,由简单到复杂、由单一到多元化,越来越多的高校在教育过程中对应用物理加强了教育的力度,从而促进了物理学科的进一步深入发展。

二、物理学科教育中人才培养策略

(一)加强物理教育过程中的各种硬件以及软件投入

由于物理学是一门应用性很强的学科,尤其是发展到现在,结合各种应用技术进行教育成为物理学教育过程中的重要内容。加强理论课程与实践课程的有机结合,一个十分重要的前提就是要加大学校的各种硬件和软件的投入,将物理学应用型人才的培养落到实处。对于物理学课程实训的实施,高校应该要加强对软件以及硬件的投入力度,保证学生对各种物理学原理进行学习之后还能有相应的硬件环境条件进行实践训练,在教学过程中组织学生对各种物理学的原理以及实验现象进行讨论。物理学人才的实训培养过程中,对于硬件投入的力度更大,比如组建相应的实验室,为学生的实践能力的提升提供必要的基础。加强专业实践训练是促进应用型人才的能力不断提升的重要措施,学生的专业训练以及实践一般是到各种实习基地进行,因此需要学校加强实习基地以及创业园的建设,同时要配备相应的师资力量,挑选一批高素质的实习指导教师,为学生的实践学习提供必要的支持。

(二)加强院校之间的合作,提高师资队伍的质量

师资队伍力量是影响教育水平的重要因素,在当前的高校物理学教育过程中,加强师资力量队伍的完善,是提高教学质量以及学生的综合实践能力的重要措施。在师资队伍力量的建设过程中,应该要加强“双师型”教师队伍的壮大,确保高校能够走内涵发展道路。教师不仅要具备理论知识,更要加强实践能力的提升,比如加强不同院校之间相关专业的教师之间的合作以及交流,加强理论与实践相结合,教学与各种实践训练相结合等,鼓励教师到企业中参加相应的工作实践,从而能够提高实践教学能力,提高学生的实践能力。教师的能力素养的培训,不仅要保持各种教育技能的提升,还应该要加强职业道德素养的培训,为高校的物理教育以及物理人才的培养营造一种良好和谐的环境和氛围。

(三)加强校企之间的合作

校园与企业之间的有效衔接,是很多高校在教育过程中提高教育质量的重要发力点。高校教育的一个重要目的就是培养综合性的人才,直接为企业输送专业人才,尤其是对于物理学而言,随着应用物理的不断发展,对学生的综合实践能力的要求越来越高,为了不断提升学生的综合实践能力,需要加强与企业之间的联系。在高校教育过程中,应该要引入相关企业文化建设的内涵,丰富校园文化的内容,形成一种校园文化教育和企业文化教育有效融合的局面。与此同时,加强学校与企业之间的有效结合,还可以为学生提供更多实践锻炼的机会,提供相应的场所从而不断培养学生的综合能力素养,让学生在企业的实践过程中能够强化学生的职业精神,从而更加理解物理教育的本质和内涵。

三、结语

物理学识一门应用学科,从十九世纪开始就已经逐渐形成物理学体系,在不断的发展过程中结合了很多时代的特征以及社会要求,发展到现在,物理学的应用性变得越来越强,如何加强应用物理教学过程中对人才的培养力度,是很多高校在教育教学中考虑的重点。加强物理人才的培养,需要综合实践能力较强的教师积极引导,需要加强校园与校园、校园与企业之间的合作,加强高校对各种基础上设施设备以及软件教学资源的投入,最终提高学生的综合实践能力。

参考文献:

[1] 蔡敬民,魏朱宝.应用型本科人才培养的战略思考[J].中国高等教育,2008(09)

[2] 张丹.浅谈物理学的发展[J].科技信息,2009(14)

量子力学概述范文第5篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。