前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇半导体工艺基础知识范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2017)11-0213-02
随着中国加入WTO及中国改革开放的日趋深化,使得我国对双语复合型人才的需求程度迅速提高。为了培养双语复合型人才,2001年教育部颁发的《关于加强高等学校本科教学工作提高教学质量的若干意见》中对高等院校的本科教学提出了使用英语等外语进行公共课和专业课教学的要求[1]。“双语教学”的英文是“bilingual teaching”。《朗曼应用语言学词典》给出的定义是“The use of a second or foreign language in school for the teaching of content subjects”,即能在W校里使用第二语言或外语进行各门学科的教学[2]。
《半导体制造技术》是电子科学与技术专业的主干课程,系统介绍了集成电路芯片的制造工艺及工艺原理,详细描述了集成电路制造的全过程。学生在初步掌握硅材料制备、氧化、淀积、光刻、刻蚀、离子注入、金属化、化学机械平坦化等工艺及其设备的基础上,掌握CMOS、双极集成电路的工艺集成及测试封装等。
一、《半导体制造技术之CMOS工艺集成》双语教学存在的问题
《半导体制造技术》涉及电子、机械、材料、制造、物理、化学等多种学科,其理论性和实践性均较强,且内容更新快,在这样的课程中开展双语教学必定会遇到一些问题。
1.学生英语听、说、阅读能力有待提高。《半导体制造技术之CMOS工艺集成》双语课的授课对象是大三学生。经过两年多的大学本科教育,大三的学生虽然具备了一定的专业基础知识,大多数学生过了国家英语四级考试,而少部分学生过了国家英语六级考试,但学生的听、说、读、写训练也仅限于围绕《大学英语》课程及应试来进行,致使学生们并没有将这些技能应用于专业知识的学习。学生们没有接触过专业英语,英语专业词汇掌握得少之又少,也缺乏英语专业论文阅读的经验,专业论文的写作更无从谈起。《半导体制造技术之CMOS工艺集成》课程内容广泛,知识点多。双语教学中要求学生在英语环境中听、读并掌握这些专业知识点有相当的难度。
2.双语教学师资短缺。双语教学教师不仅要有过硬的教学能力和系统的专业知识,还要有精深的专业英语和流利的英语口语功底。这样不仅让学生系统掌握了专业知识,而且能运用外语熟练进行专业交流,使他们的整体素质得以提高。近年来虽国内外交流日益频繁,但就我校的情况而言聘请的国外专家学者、海归博士等多从事经济、金融等领域,还没有从事电子科学相关领域的外聘的国外学者和海归博士。双语教学的任务主要由有过旅美经历的、有丰富的专业课教学经验的高级教师来负责。但具备这样条件的教师数量也非常有限,不能形成团队协作。
3.教材及教学方法的选择。《半导体制造技术》国内外教材很多,各教材侧重点不同,有的偏重于科学研究,有的偏重于工程实践;内容各不尽相同;难易程度各不相同;受者群也各不相同。从良莠不齐的众多教材中选择合适的教材是至关重要的。选择什么样的教学方法也是要重点思考的,以最大程度地提高学生的专业知识和专业英语读、说、写能力。
二、《半导体制造技术之CMOS工艺集成》双语教学实践
本文第一作者于2013年夏季小学期开设《半导体制造技术之CMOS工艺集成》双语课,授课对象为电子科学与技术专业三年级本科生。此时三年级本科生已经学过了《半导体工艺》,掌握了《半导体制造技术》的基本概念、工艺原理及流程。在此基础上开设《半导体制造技术之CMOS工艺集成》双语教学既能巩固相关的专业知识,也能掌握专业英语的听、说、阅读能力。
1.教材。综合考虑各种因素,本课程选择的教材是英文版的《硅超大规模集成电路工艺技术:理论、实践与模型》,作者James D.Plummer等,由电子工业出版社出版。该教材内容由浅入深,写作简单明了易于理解,适于大专院校电子专业高年级学生使用。考虑到学生的英语水平及授课时间的限制,双语教学仅选择该教材的第二章《CMOS工艺集成――CMOS反相器制造工艺流程》。辅助教材为中文版的《芯片制造――半导体工艺制程实用教程》(第五版),作者Peter Van Zant,韩郑生等译,由电子工业出版社出版。
2.教学方法。考虑到学生的实际情况,本双语课程采用英文教材,英文版书,中英文授课的模式。课前要求学生充分预习。课堂上教师对基础英语中常见的重点词汇、固定搭配、句式结构等进行适当讲述,在此基础上重点讲解专业词汇及科技文献常用的表达方式。通过举例归纳总结词汇的专业性及日常应用中的差异及科技文献与通俗小说等写作手法的不同。让学生们参与教学,由学生先用英文通读一段再用中文来讲解,再由老师进行讲解总结。同时每次课都会利用一定的时间给学生播放Intel和斯坦福等多家机构联合出品的《Silicon Run》,该套视频是微电子行业的经典纪录片,其详细讲述了硅集成电路(IC)工艺制程中的各单项工艺,如晶圆的制备、氧化、光刻、淀积、离子注入、刻蚀、金属化、封装等等。让学生们生动形象地了解实际生产线上各工艺的同时,也能练习听力,课后还能跟读,一举三得。待到学生听、说、读英语的能力提高了,教学模式最终会过渡到英文教材,英文版书,英语授课。
3.教学反馈。课程结束前对教学效果进行的调查问卷显示[3],80%的学生认为本课程教学有助于提高自己的专业英语水平,对阅读专业英文论文及著作起到了抛砖引玉的作用。学生们认为教学中的视频在提高听力的同时,让他们更真切地了解了实际生产线上器件、集成电路的制造过程。
三、对开展《半导体制造技术之CMOS工艺集成》双语教学的几点建议
通过几年的《半导体制造技术之CMOS工艺集成》双语教学实践,针对当前的不足进行了有益的探索,对开展双语教学有几点建议仅供探讨。
1.在授课中意识到很多学生对英语心理上存在恐惧感,限制了他们学习的积极性,同时许多学生误认为专业英语的学习是重点,而忽略了专业英语只是教学工具,利用这个工具或媒介掌握专业知识才是根本。只有克服对英语的恐惧感,对双语教学有正确认识才能达到预期效果。
2.针对双语教学师资缺乏的情况,学校应依据“引进来,送出去”的原t,在大力加强外国专家学者、海归博士引进工作的同时,可在校内组织专门的培训,或者通过送到外校学习的形式提升教师讲授双语课的综合能力。如果有条件聘请国外相关领域的知名专家学者、海归博士与本校教师组成双语课教学团队不失为非常好的解决办法。
3.双语教学应循序渐进,不能操之过急。双语教学不能一蹴而就,防止一味硬灌和被动接受。应循序渐进,因地制宜,因材施教。教师与学生应相互配合,相互信任,充分发挥各自的积极性和主动性,从双语的教与学中获得知识,收获快乐。
四、结束语
双语教学是培养复合型人才必不可少的手段。虽然国内的双语教学开展了十多年也取得了长足的进步,但仍有诸多问题需要探讨。本文介绍了《半导体制造技术之CMOS工艺集成》双语教学的教学实践并提出了相关的建议,以便完善今后的双语教学实践。
参考文献:
[1]徐晓娟,屈健,梁亚秋.材料科学基础课程双语教学的调查与分析[J].硅谷,2010,(1).
[2]黄海艳.大学双语教学的目标研究[J].郑州航空工业管理学院学报(社会科学版),2006,25(5).
[3]桑应朋,李悒东,邬俊.操作系统课程双语教学时间与探讨[J].教育教学论坛,2016,(19).
Discussion on Bilingual Teaching in Semiconductor Fabrication Technology-CMOS Process Integration
LV Pina,QIU Weia,YUE Cheng-junb
(a. Physics School,Liaoning University;
b. College of Information,Liaoning University,Shenyang 110036,China)
关键词 半导体物理 教学改革 教学质量
中图分类号:G047 文献标识码:A 文章编号:1002-7661(2015)19-0007-02
从第一个半导体点接触式晶体管发明以来,半导体产业已经成为了国民经济重要的组成部分,世界各国均竞相大力发展本国的半导体产业,以期在国际舞台的较量中争得主动权。因此,它关系到国民经济整体效益和国家安全,关系国家前途的重要战略产业。现代半导体科学的迅猛发展、知识的不断翻新、竞争的不断深入、对人才素质要求的不断提高都给我国半导体产业的发展提出了严峻挑战,也给半导体物理基础教育提出了新的、更高的要求。
半导体物理主要介绍了半导体材料和器件中的重要物理现象,阐述了半导体物理性质和理论,确定了半导体有关物理量的实验方法。半导体物理是微电子类相关专业,如电子科学与技术、微电子、集成电路设计等专业核心重点课程,作为微电子技术的理论基础,半导体物理研究、半导体材料和器件的基本性能和内在机理是研究集成电路工艺、设计及应用的重要理论基础;作为微电子学相关专业的特色课程及后续课程的理论基础,半导体物理的教学直接影响了后续专业理论及实践的教学。但是,由于半导体物理的学科性很强,理论较为深奥,涉及知识点多,理论推导繁琐,对于学生的数学物理的基础要求较高,学生在学习的过程中存在一定的难度。因此,对授课教师提出了更高的要求,不仅要对半导体物理有充分的理解,还要熟悉半导体工艺和半导体集成电路设计。同时,必须针对目前教学过程中存在的问题与不足,优化和整合教学内容,丰富教学手段,结合科技发展热点问题,探索教学改革措施,激发学生的学习兴趣,提高半导体物理课程的教学质量。
一、优化整合教学内容
重庆邮电大学采用的教材为刘恩科主编的《半导体物理学》(第七版,电子工业出版社),该教材是电子科学与技术类专业精品教材。同时,半导体物理课程学科领域发展极为迅速,新的理论和研究前沿不断涌现,研究领域不断扩展,学科交叉渗透性越来越强,知识更新也很快。针对以上问题,授课教师应与时俱进,在保持课程知识结构与整体系统性的同时,对教学内容进行合理取舍,压缩与其它课程重叠的内容,删除教材中相对陈旧的知识,密切跟踪科技前沿与研究热点,加入近几十年来发展成熟的新理论、新知识,突出研究热点问题,力求做到基础性和前瞻性的紧密结合,使学生在掌握基础知识的同时能对半导体的发展历程和发展趋势有一个清晰的认识,让学生能从中掌握事物的本质,促进思维的发展,形成技能;同时注重与信息化技术相结合,互联网搜索最近几年半导体技术的最新研究成果,以多媒体录像及图片的形式,使学生能及时掌握前沿发展趋势,激发学生的学习热情,培养学生的科学精神。例如,在正式开始《半导体物理学》相关内容课程教学前,应将前置课程中重要的基本知识贯穿于教学过程中,以免造成学生认识上的巨大跳跃感;在讲解半导体能带结构前,增加适量学时讲授近论物理知识,使学生了解原子中电子能级和电子壳层分布,掌握泡利不相容原理、玻耳兹曼分布律和玻尔频率条件等微观粒子运动的基本规律。这些都是学习《半导体物理学》必备的知识,只有在透彻理解这些基本概念的前提下,才能对现有课程知识有更深入的了解和掌握。否则将造成学生理解上的障碍,最终导致学生失去继续学习的兴趣。 因此在授课内容的选择、排列上要遵循循序渐进的原则。再例如在讲授半导体元器件的结构及性能时,适当补充半导体器件的制备工艺,结合半导体器件的制备视频,让学生结合某种半导体器件分析其结构与性能。
二、强调基本概念与物理模型,提高教学质量
半导体物理课程涉及到的基本概念和物理模型较多,仅凭教材中的定义理解这些概念和模型,学生很难完全掌握。教师授课时应重在与应用相结合,以必需、够用为度,结合实用性和先进性,力求内容精简、重点突出、概念明确、说理清晰。将书本上的理论推导与结论同相关实验相结合,使学生对抽象的课堂相关知识能顺利地转化为直观认识,增强教学效果。实践是检验真理的标准,在理论教学的同时,适当安排学生进行相关实验操作,观察实验现象,既加深了对理论的认识,锻炼了动手能力,又能通过做实验使学生切身体会到一个物理结论是怎样体现了理论和实践的完美统一,从中领悟出科学研究的普遍方法和过程。
部分深奥的物理模型,学生比较难以理解,教师应运用恰当的类比,进行形象分析,加深学生对物理模型的理解,增加学生的学习兴趣。例如讲电子能态密度以及电子密度的概念,部分学生较容易混淆的概念。为了帮助学生理解,教师可以通过教学楼里面的学生人数与半导体中的电子数目进行类比:同楼层不同的教室对应不同的能态,教室里座位数对应能态的数目,把学生当作半导体中的电子。这样计算电子能态密度就相当于计算教室里单位面积的座位数,计算半导体电子浓度就相当于计算教室单位面积内学生人数。一个学生坐在某一排的某个座位上,即认为这个电子态被电子占有。通过这种生动形象的类比,学生对这两个概念的理解就清楚多了。半导体物理课程中理论推导和数学上的近似处理较多,繁琐的公式推导增加了学生对物理模型理解的难度。物理模型和简单的数学推导用多媒体或视频的形式展示给学生,复杂的数学推导则采用黑板板书的形式加以讲解,这样能适当地把物理模型和公式推导分开,使学生在彻底理解物理模型的基础上掌握理论推导。
课前预习和课后练习也是提高课堂教学的两个重要的环节。应适当给学生布置相关的课后作业,引导学生进行独立思考,在下一堂课开始安排一定的时间进行个别回答或集体讨论,及时解决学生的疑惑,从而形成可持续发展的模式。
三、考核方式的改革
为了客观地评价教学效果和教学质量,针对半导体物理课程特点,对考核方式作如下尝试:1.考试是课程教学过程中一个非常重要的环节,平时成绩是衡量学生平时学习表现的主要指标,所以本课程考核方式之一采用期末试卷笔试与平时成绩结合的方式;2.在授课过程中,针对课程的某些从实验得出的理论结论,开放实验室,让学生分组协作完成实验结验证,从而将课本知识转化为实践动手能力。
四、结束语
总之,半导体物理是电子科学与技术专业专业基础核心课,在教学过程中合理安排教学内容,采用现代化教学手段,不断进行教学改革,提高了半导体物理课程的课堂教学效果,为学生后续专业课程的学习奠定了扎实的基础,培养适应社会需求的专业型人才。
参考文献:
[1]汤乃云.微电子“半导体物理”教学改革的探索[J].中国电力教育,2012,(13):59-60.
[2]刘恩科,朱秉升,罗晋生. 半导体物理学[M]. 北京:电子工业出版社,2011.
关键词:半导体器件;物理;教学改革
半导体器件物理是微电子学、电子科学与技术等专业的重要专业基础课程,也是应用型本科院校培养新兴光电产业所需的应用技术人才必备的理论与实践基础课程。该课程是连接半导体材料性质和器件应用的桥梁学科,在新兴产业应用技术人才的知识结构中具有重要的基础地位。因此,探讨教学中存在的问题,改革教学的方式方法具有重要意义。
一、课堂教学中产生的问题及原因分析
1.学生听课效率低,学习兴趣淡薄,考试成绩低
以某大学光电行业方向工科专业近三年半导体器件物理考试成绩分布情况为例,表1中近三年学生成绩均显示出60分左右的人数最多,以60分为原点,其高分和低分两侧的人数呈现出逐渐降低的正态分布。从表1中还可以看出,成绩低分人数逐年增多,成绩偏离理想状况较多。
2.针对问题分析原因
导致表1结果的原因有以下三方面:
(1)学生的物理基础参差不齐,知识结构存在断层
近年来,由于高考制度的改革,部分学生参加高考时未选报物理,物理仅作为会考科目使得相当一部分高中学生轻视物理的学习。当学生进入大学,有些专业大学物理成为必修课,由于学生高中物理基础差别很大,因此,同一班级的学生物理学习能力就表现得参差不齐。
对于一般工科专业的学生(包括面向新兴光电产业的工科专业)来说,他们大二或大三开始学习半导体器件物理课程(或半导体物理课程)时,他们的物理基础只有在高中学过的普通物理和大学学过大学物理,其内容也仅涉及经典物理学中的力学、热学、电学和光学的基本规律,而近代物理中的实物粒子的波粒二象性、原子中电子分布和原子跃迁的基本规律、微观粒子的薛定谔方程和固体物理的基本理论均未涉及。半导体器件物理课程的接受对象,不仅在物理基础上参差不齐,而且在物理知识结构上还存在断层,这给该课程的教和学增加了难度。
另外,即使增加学习该门课程所必需的近代物理、量子物理初步知识和固体物理的基础内容,但由于课程课时的限制,也决定了该课程在学习时存在较大的知识跨度,很多学生难以跟上进度。
(2)课程理论性强,较难理解的知识点集中
半导体器件物理课程以半导体材料的基本性质和应用为基本内容,内容编排上从理想本征半导体的性质和半导体的掺杂改性,到P型半导体和N型半导体结合形成半导体器件的核心单元,再到各种PN结的设计和控制,采取层层推进的方式,逻辑严密,理论性强,对学生的要求也高,每一部分的核心内容都要扎实掌握才能跟上学习的进度。同时,在各章内容讲解过程中几乎都有若干较难的知识点,如本征半导体性质部分的有效质量、空穴的概念、能带的形成、导带和价带的概念等;半导体掺杂改性部分的施主、受主、施主能级、受主能级、半导体中的载流子分布规律、平衡载流子和非平衡载流子以及载流子的漂移和扩散运动;简单PN结部分的平衡PN结、非平衡PN结、PN结的能带和工作原理;不同专业在PN结的设计和控制这部分会根据所设专业选取不同的章节进行学习,面向光电行业的本科专业则通常选取半导体的光学性质和发光这部分来讲授,该部分包含半导体的跃迁类型,以及半导体光生伏特效应和发光二极管等的工作原理。这些知识点分布集中,环环相套,步步递进,因此理解难度较大。
(3)学习态度不端正的现象普遍存在
近几年,在社会大环境的影响下,学习态度不端正现象在本科各专业学生中普遍存在。无故迟到旷课情况经常发生,作业抄袭现象严重,学生独立思考积极性差。电子产品的普及也严重影响到了学生上课的积极性,很多学生成了手机控,即使坐在课堂上也频频看手机、上网。有些学生上课连课本都不带,更谈不上用记录本记录重点、难点。特别是半导体器件物理这门课程涉及的知识点密集,重点、难点较多,知识连贯性要求高,如果一些知识点漏掉了,前后可能就连贯不起来,容易使疑难问题堆积起来,对于不认真听讲的部分学生来说,很快就跟不上进度了。另外,学生畏难情绪较严重,课下也不注意复习答疑,迎难而上的精神十分少见。俗话说,“师傅领进门,修行在个人。”在课时紧张、学生积极性差、课程理论性强等多重因素影响下,教师的单方面努力很难提高课堂教学效率。
二、改进方法的探讨
针对教学过程中发现的问题,本文从教学方法和教学手段两个方面入手来探讨该课程教学的改进。
1.教学方法的改革
半导体器件物理课程教学改革以建设完整的半导体理论体系和实践应用体系为目标,一方面,着重在教学观念、教学内容、教学方法、教师队伍、教学管理和教材方面进行建设和改革,形成适合应用型本科专业学生的课程体系。另一方面,我国本科院校正处于教育的转型发展时期,围绕应用型人才培养目标,按照“专业设置与产业需求相对接、课程内容与职业标准相对接、教学过程与生产过程相对接”的原则,半导体器件物理课程改革重视基础知识和基本技能教学,力争构建以能力为本的课程体系,做到与时俱进。本课程改革具体体现在以下六个方面:
(1)转变教学观念
改变传统向学生灌输理论知识的教学观念,以学习与新兴行业相关的基础知识和关键应用技术为导向,确定该课程在整个专业课程体系中承上启下的基础性地位,在教学观念上采取不求深,但求透的理念。
(2)组织教学内容
为构建以能力为本的课程体系,本课程改革在重视基础知识和基本技能的教学、合理构建应用型人才的知识体系的同时,力争使学生了解半导体器件制作和应用的职业标准及其发展的热点问题,并积极实现“产学研”一体化的教学模式,故此本课程改革分几个层次组织教学内容。
第一层次为基础知识铺垫。为解决学生知识结构不完整的问题,在讲授半导体器件物理之前要进行固体物理学课程知识的铺垫,还要增加近论物理学知识,如原子物理和量子力学的知识,为学生构建完整的知识框架,降低认知落差。
第二层次为半导体物理基本理论,也是本课程的主体部分。包括单一半导体材料的基本性质、半导体PN结的工作原理、常见半导体结构的工作原理和半导体的光电及发光现象和应用。
第三层次为课内开放性实验。在理工科学生必修的基础物理实验项目(如“电阻应变传感器”、“太阳电池伏安特性测量”、“光电传感器基本特性测量”、“霍尔效应及其应用”等)的基础上,结合专业方向设置若干实验让学生了解半导体电子和光电器件的类型、结构、工作原理及制作的工艺流程以及职业要求和标准,还有行业热点问题,激发其学习兴趣,提高动手能力和实践能力。
第四层次为开展课题式实践教育,实现“产学研”一体化。为解决传统教学理论和实践脱节问题,以基础物理实验项目和针对各专业方向设置的与半导体器件应用相关的实验项目为实践基础,开展大学生科技创新活动,鼓励学生利用课余时间进入实验室和工厂企业,利用已学理论对行业热点问题进行思考和探究,加强实践教学。
(3)调整教学方法
一方面,要正确处理物理模型和数学分析的关系,不追求公式推导的严密性,强调对物理结论的正确理解和应用。另一方面,充分利用现代化的教学设施和手段,变抽象为具体,化枯燥为生动,采用讨论式、启发式和探究式教学,调动学生积极性和主动性。
(4)建设教学队伍
对国内知名院校的相关专业进行考察和调研,学习先进教学理念和教学方法,邀请国内外相关专业的专家进行讲座,邀请企业高级技术人才和管理人才作为兼职教授来为学生讲授当前最前沿、最先进的技术及产品,并参与教学大纲及教学内容的修订。另外,鼓励教师团队充分利用产学研践习的机会深入企业,提高教师队伍的实践经验和综合素质,为培养双师型教师打下基础。
(5)完善教材体系
教材是保证教学质量的重要环节,也是提高专业教学水平的有效方法。针对理工科专业特色方向及学生培养的目标,除选用经典的国家级规划教材――《半导体物理学》以外,还组织精干力量编写专业特色方向的相关教材,以形成完善的半导体理论和实践相结合的教材体系,在教材中融入学校及专业特色,注重理论和实践相结合,增加案例分析,体现学以致用。
(6)加强教学管理
良好的教学管理是提高教学质量的必要手段。首先根据学生特点以及本课程的教学目标合理制订教学大纲及教学计划。在授课过程中充分发挥学生主体作用,积极与学生交流,了解学生现状,建立学生评价体系,改进教学方法、教学手段及教学内容等,提高教学质量。
2.教学手段改革
(1)采用类比的教学方法
课堂上将深奥理论知识与现实中可比事物进行类比,让学生易于理解基本理论。例如,在讲半导体能带中电子浓度计算时,将教室中一排排桌椅类比为能带中的能级,将不规则就座的学生类比为占据能级的电子,计算导带中电子的浓度类比为计算教室中各排上学生数量总和再除以教室体积。让学生从现实生活中找出例子与抽象的半导体理论进行形象化类比,帮助学生理解半导体的基本概念和理论。
(2)采用理论实践相结合的方法
在教学中时刻注意理论联系实际的教学方法,例如,根据学生专业方向,在讲述宽带隙半导体材料的发光性能时,给学生总结介绍了LED芯片材料的类型和对应的发光波长,让学生体会到材料性质是器件应用的基础。
(3)构建网上学习系统
建立纸质、网络教学资源的一体化体系,及时更新、充实课程资源与信息,通过网络平台建设,实现课程的网络辅助教学和优秀资源共享。这些资源包括与本课程相关的教学大纲、教材、多媒体课件、教学示范、习题、习题答案、参考文献、学生作业及半导体行业发展前沿技术讲座等。
(4)开展综合创新的实践
充分利用现有的实验条件,为学生提供实践条件。同时积极开拓校外实践基地,加强校企合作,为学生实习、实践提供良好的平台,使课程教学和实践紧密结合。鼓励学生根据所学内容,与教师科研结合,申请大学生创新项目,以提高学生实践创新能力及应用能力。
(5)改革考核体制
改变传统以闭卷考试为主的考核方式,在考核体制上采取闭卷、讨论、答辩和小论文等多种评价方式,多角度衡量、综合评定教学效果。
参考文献:
[1]刘秋香,王银海,赵韦人,等.“半导体物理学”课程教学实践与探索[J].广东工业大学学报(社会科学版),2010(10):87-88,94.
[2]徐炜炜,黄静.从半导体物理课程教学谈高素质人才培养[J].南通航运职业技术学院学报,2009,8(4):97-99.
[3]王印月,赵猛.改革半导体课程教学融入研究性学习思想[J].高等理科教育,2003,47(1):69-71.
摘要:半导体物理课程是应用物理专业非常重要的专业必修课,这门课程比较抽象,理论性、逻辑性较强,对半导体物理教学内容和方式的整合和讲授有一定难度。本论文依据西部地区理工科院校的培养方案和国内外先进的教育理念,培养学生创新意识和探索精神,提高教学质量以及学生综合利用知识的能力。
关键词:半导体物理;教学效果;教学方法
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2017)13-0167-02
半体物理是固体物理学的一个重要分支,主要阐述半导体的基本物理理论和基本物理性质以及当前各种半导体器件内部电子输运过程的学科,是应用物理学的新器件和新材料技术方面的基础学科,现已成为现代新器件、新材料的基本物理理论基础,为后人研制半导体新器件和新材料实现特殊性能提供解释物理机理和指导方法,将物理的基本理论和实际应用之间建立桥梁。半导体物理课程的开设为以后学生从事电子行业提供了基本理论知识。相对于西部落后地区一般本科院校的学生来说,他们的专业基础相对薄弱。但是,学习这门课程需要较强的基础功底,《量子力学》、《固体物理》这些比较难学的课程必须学好,因此出现学生课堂不愿上课,这极大地影响到教师的积极性,增加了教学的难度。为了更好地讲授半导体物理课程,让学生对这门课程知识的理解和掌握达到教学目的的要求,笔者结合西部落后地区一般本科院校学生的实际情况,并针对在应用物理专业的半导体物理课程教学实践中发现的问题浅谈自己的看法。
一、构建合理的教学内容,提高课程教学的有效性研究
1.修订教学大纲。根据光电子、微电子两个专业方向后续课程的需要及参加研究生入学资格考试应掌握的基本知识,两个专业方向的教学内容及学时分配有所不同,选择适合学生特点的教材以及教学大纲。在半导体物理学的教学内容包括半导体的晶体结构、载流子和非平衡载流子、半导体PN结器件等相关重点、难点、概念,以及一些参考资料、作业题和思考题,需要合理安排教学计划及对应学时的分配。针对半导体的教学内容,需要开展该课程教学研讨活动,着重强调半导体物理理论用在实践中。授课教师应根据该学科发展的方向、教学改革和实践的变化等情况,不定期修订教学大纲。针对半导体物理学课程的教学上,由于该课程的理论分析(包括能带理论、半导体的电子传输理论等)非常深奥,公式的推导比较多,对于基础相对较差的学生来说,学习起来非常吃力,而且枯燥乏味。我们经过比较分析现有众多半导体物理教材后,采用高等学校工科电子类(电子信息类)规划教材《半导体物理学》,由西安交通大学刘恩科等编写。该教材半导体物理的基础知识比较全面体现突出物理概念,强调基本分析方法,没有很多烦琐的公式推导,可读性强,便于自学。目前很多高校都在使用该教材[1]。
2.激发学生的科研兴趣,培养学生的科研素质。采用研究型课堂教学为学生提供了发现问题、研究和解决问题的基本程序,并提供了实践机会,丰富了学生的实践经验,为学生在今后工作中开拓创新奠定了坚实的基础,因为学生将来希望从事IT行业,比如太阳能电池、超大规模集成电路、LED显示等,因此,在课程起始阶段,教师介绍半导体的学科发展,结合半导体在太阳能电池、超大规模集成电路、LED显示等方面的应用,给学生提供学习思路框架,用简单的逻辑关系指明各个学习点和概念的相互关系,使学生知识的来龙去脉有整体的把握,使他们了解课程的重要性以及提高对这门课程的兴趣。做到较快地掌握教材中给出的很多结论,达到良好的学习的效果[2]。
3.合理使用现代化教学手段。在教育现代化、信息化的今天,以多媒体与计算机网络技术为核心的信息技术是当代教育改革的制高点,多媒体技术以图文并茂、声像俱佳、动静皆宜的表现形式走进课堂,所以运用多媒体技术教学可以很好地对解决常规课堂教学中难以解决的难点[3]。但在半导体物理教学中,如果一味地使用多媒体课件,尽管很多图片都非常的逼真、形象,让学生能够更好地理解。如第一章中学习有关载流子浓度的计算,对掌握晶体的能带结构,熟悉硅、锗、砷化镓等传统半导体的能带结构特征,包括禁带、导带、价带等基本概念的理解来说都非常形象,利用多媒体动画,就可以清楚地展示出原子排列结构如何从一个原子到多个原子的公有化运动形成能带,但是多媒体教学忽略了学生的感受和接受能力,违背了教学规律。针对这些问题,在课堂教学中必须先启发学生的对半导体物理思维,在学生建立对半导体的求知欲之后,适当运用多媒体技术图文并茂、声像俱佳、动静皆宜的优势,将教学过程中的难点和重点概念传授给学生。如在讲解半导体能带结构时,通过多媒体课件展示并结合板书,这样学生更容易接受相关理论的精髓。只有将教师在课堂中的板书与多媒体技术结合起来,才能获得非常好的教学效果。
二、紧跟学科前沿,结合科研实际适当把前沿知识引入课堂
在半导体物理教学组织管理方面,采用传统的理论讲述、练习习题课、实验实践相结合的形式,理论讲授课由主讲教师讲授半导体物理的基本概念和基本分析方法。专门开设习题课,负责复习和巩固理论课讲授的内容,并通过综合练习提高学生的分析问题的能力。但是不能单纯讲解理论知识,而是要结合教师和学生的科研实践对理论知识进行深入的解析,这样有助于培养学生的科研思维。将教学与科研相结合,让学生了解半导体物理学科的研究前沿。比如在讲解能带论与半导体相关器件时,可以引入现代科技进展,结合自己主持的半导体器件相关科研项目,如电阻式随机存储器(RRAM)作为一种新型的非易失性存储器,其原理是过渡金属氧化物在不同极性的外电压脉冲作用下诱导出不同电阻态的效应。由于电阻式随机存储器拥有高速、高密度、低功耗、制备简单、半导体工艺兼容性好等优秀的性能,引起人们广泛的关注,有望替代目前市面上的磁存贮器,成为下一代的通用存储器,其热点集中在性能及机理的研究上。另外一些研究通过设计成pn结器件,制备成十字交叉结构忆阻器件,以实现高的器件密度以及解决读写误读的想象。从众多的有关半导体中基本的晶体结构知识、能带理论和半导体的电子输运性质,提出了不同的模型来解释这一电阻开关现象,相应的机理包含传导灯丝导通模型,空间电荷束缚模型,电致氧空位迁移机制,肖特基势垒模型等,而电极效应是指电极与薄膜材料的界面处由表面态导致的电阻转变的机理。另外在讲解半导体发光,以及光电效应时,可以引入到目前太阳能发光,LED发光等应用非常广的领域,从而激发学生的科研能力,促进学生素质的全面提高,为学生以后从事科研或者相关工作打下一定的基础。
三、加强实验教学
实验实践教学是应用性人才培养的重要保证,针对半导体物理实践课来说,其实是半导体课程的最重要部分,通过实践实验教学,使学生掌握和体会半导体物理理论对现代半导体产业和半导体知识的理解,让学生树立理论联系实际的学风和工作作风,提高学生综合分析解决问题的能力。在传统实验课中,因内容过分偏重于基础训练,所以在方法和手段上很单调,主要以模仿为主,缺少设计性、创新性。在教学内容上,适当增加了综合性、设计性和创新性实验,如果恰当地使用直观、形象物理图像,使学生获得感性认识,缩小理论与实际的差距,缩短学生的认识过程,会提高课堂教学质量。这样也可以调动学生的学习积极性,推进学生的自主实验和合作实验。自主设计实验,测量半导体体电阻率、MOS结构C-V测量、为霍尔效应及半导体相关参数测量,通过这些实验,使学生掌握几种基本量测量方法以及数据处理的方法;熟悉基本的分析问题和解决问题方法及常用仪器的使用;在实验中综合运用所学的半导体物理学基本知识以及其他相关知识,提高学生的实际操作以及综合实验的能力,使科学研究的方法和探索解决问题的能力得到更好的培养,进而达到良好的实验教学效果。
四、结束语
半导体物理作为应用物理、光电子和微电子专业重要的专业基础课,半导体物理教学改革是一个庞大而又复杂的系统工程,我们通过对半导体物理教学模式、内容、方法和手段的改革进行了一些有意义的整合与改进,同时不断提高自身的能力,可以逐渐形成适应应用型本科院校办学定位的新的教学模式。
参考文献:
[1]耿莉,徐友龙,张瑞智,创新型人才培养模式下的半导体物理教学研究[J].电气电子教学学报,2009,(31):85-89.
[2]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2008:156-168.
―、构建课程体系的总体思路
构建微电子技术专业课程体系的总体思路是以微电子行业职业岗位需求为依据,以素质培养为基础,以技术应用能力为核心,构建基于工作过程的课程体系。实施学院“四环相扣”的工学结合人才培养模式,将“能力标准、模块课程、工学交替、职场鉴定”的四个环节完整统一,环环相扣,充分体现了高职教育工学结合的人才培养思想,努力为社会培养优秀高端技能型人才。
1.行业、企业等用人单位调研。通过调研国内“成渝经济区”为主)微电子技术行业、企业等用人需求和要求,了解现有高职微电子技术专业学生就业情况、用人单位反馈意见及人才供需中存在的问题。电子信息产业是重庆市国民经济的第一支柱产业。重庆市“十二五”规划建议提出,培育发展战略性新兴产业。把新一代信息产业建设为重要支柱产业,建设全球最大的笔记本电脑加工基地、建设通信设备、高性能集成电路、光伏组件及系统、新材料等重点产业链(集群),建成国家重要的战略性新兴产业基地。以集成电路产业的重点项目为牵引,建成包括芯片制造、封装、测试、模拟及混合集成电路设计和制造等项目的产业集群,形成较为完善的集成电路产业链;四川电子信息产业未来5年将迈万亿元,成渝经济区将打造成西部集成电路的产业高地。随着惠普、富士康、英业达、广达集团等世界级的IT巨头进入成渝,未来几年IT人才需求在20万以上,而现在成渝地区每年培养的相关人才不过2万人左右,远远不能满足社会需求。市场需求的调查表明,近年来成渝地区IC制造、IC封装及测试、IC版图设计等岗位的微电子技术应用型人才紧缺。同时调研表明半导体行业企业却难以招到满意的人才,学生在校学非所用,用非所学,实践动手能力、社会适应能力、责任意识、职业素养难以满足企业要求。
2.基于工作过程的课程体系的理论基础。基于工作过程的课程体系的理论基础,主要从德国“双元制”职业教育学习论和教学论的角度阐述构建基于工作过程的课程体系的理论依据。工作过程系统化的课程体系必须针对职业岗位进行分析,整理出具体的、能够涵盖职业岗位全部工作任务的若干典型工作过程,按照人的职业能力的形成规律进行序列化,从中找出符合职业岗位要求的技术知识和破译出隐性的工作过程知识,并以工作任务为核心,组织技术知识和工作过程知识[2]。通过完全打破原有学科体系,按照企业实际的工作任务、工作过程和工作情境组织课程,形成围绕工作过程的新型教学项目的“综合性”课程开发。
3.形成专业定位,确定培养目标。根据存在的问题及半导体产业链过程:集成电路设计—裸芯片精细加工^封装测试—芯片应用—PCB设计制造,充分掌握现有微电子技术专业课程体系建设的基础及存在的问题,形成重庆电子工程职业学院微电子技术专业定位,确定培养目标:培养德、智、体、美全面发展;掌握微电子技术专业领域必备的基础知识、专业知识;有较强的岗位职业技能和职业能力;面向集成电路设计、芯片制造及其相关电子行业企业,满足生产、建设、服务和管理第一线的优秀高端技能型专门人才。毕业生应该既掌握微电子方面的基本技术,又具有很强的实际操作能力。具体可从事岗位:集成电路版图设计;半导体器件制造;IC制造、测试、封装;电子工艺(半导体)设备运行、维护与管理;简单电子产品的设计与开发;电子产品的销售与售后服务,并为技术负责人、项目经理等后续提升岗位奠定良好基础。
二、构建基于工作过程的学习领域课程体系
对专业核心课程的构建采用“微电子行业专家确定典型工作任务—学校专家归并行动领域—微电子行业专家论证行动领域—学校专家开发学习领域—校企专家论证课程体系”的“五步工作机制”,实现校企专家共同参与课程体系设计。通过工作任务归并法,实现典型工作任务到行动领域转换,通过工作过程分析法,实现从行动领域到学习领域转换,通过工作任务还原法,实现从学习领域到学习情境转换的“三阶段分析法”,构建基于工作过程的微电子技术专业课程体系和教学内容,获得人才培养目标、课程体系、课程教学方案“三项主要成果”。即“533”课程设计方法。
1.确定行动领域。工作过程系统化课程是按照工作过程要求序化知识、能力和素质,是以工作过程为参照物,将陈述性知识与过程知识整合、理论知识与实践知识整合,在陈述性知识总量没有变化的情况下,增加经验以及策略方面的“过程性知识”3]。对典型工作任务进行归纳,确定行动领域。将本专业52个典型工作任务归纳为6个行动领域,即集成电路版图设计、晶圆制造、集成电路芯片制造技术、芯片封装、芯片测试、SMT技术。
2.确定典型工作任务。所谓典型工作任务是指一个复杂的职业活动中具有结构完整的工作过程,它是职业工作中同类工作任务的归类,能表现出职业工作的内容和形式,并具有该职业的典型意义。我院召集企业专家和工作在一线的工程师、技术员,与学院的微电子技术专业教师一起,召开课程开发座谈会,进行微电子技术课程体系开发:以“集成电路(版图)设计—晶圆制造—封装测试—表面贴装”工作过程为主线,与行业企业一线技术骨干、专家解析微电子技术专业岗位中版图设计师、半导体芯片制造工、IC测试助理工程师、SMT工程师、FPGA助理工程师等典型岗位,得出行动领域所具有的专业素质、知识与能力。
3.将行动领域转化成学习领域。对完成典型工作任务必须具备的基本职业能力(包括社会能力、方法能力、专业能力)进行分析。通过归纳形成专业职业能力一览表。这些职业能力就是学习领域(即课程)中学习目标制定的依据。打破原有16门专业理论课程和9门实践课程组成的课程体系,按照以工作过程为导向,进行课程的解构与重构,将6个行动领域转换为9个学习领域,即集成电路版图设计、集成电路芯片制造技术、微电子封装与测试、表面贴装工艺与实施、电子线路板实用技术、电子测量仪器使用与维护、语言、单片机应用技术、FPGA应用技术及实践。根据微电子技术专业岗位群的职业能力和工作过程要求,重新构建基于工作过程的课程体系。第一、二学期:电路分析、电子技术等基础课程;第三、四、五学期:集成电路制造技术、电子测量仪器使用与维护、FPGA应用开发实用技术、微电子封装与测试、SMT技术、集成电路版图设计等专业核心课程。
4.形成学习情境模式。学习情境是实施基于工作过程系统化的行动导向课程的教学设计,由教师根据学校教学计划,结合学校的教学设施条件、教师执教能力和专长,由教师按照“资讯、计划、决策、实施、检查、评估”的行动方式来组织教学,从而促进学生对职业实践的整体性把握4]。微电子技术专业核心课程形成的学习情境模式为:①集成电路版图设计课程以任务为载体形成6个学习情境:N/PM0S晶体管版图设计、反相器、与非门、或非门版图设计、触发器版图设计、电压取样电路版图设计、比较器版图设计、DC-DC版图设计;②集成电路芯片制造技术课程以设备为载体形成8个学习情境:集成电路芯片制造技术工艺流程、硅晶圆制程、硅晶薄膜制备、氧化工艺、掺杂技术、光刻工艺、刻蚀工艺、集成电路芯片品检;③微电子封装与测试课程以工艺为载体形成4个学习情境:DP封装、BGA封装、CSP封装、MCM封装;④表面贴装工艺与实施课程以工艺流程为载体形成5个学习情境:SMT工艺流程的基本认知、表面贴装生产准备、表面贴装设备操作与编程、表面贴装品质控制、SMT生产线运行及工艺优化5个学习情境;⑤电子线路板实用技术课程以项目为载体形成3个学习情境:单面板的制图与制板、简单双面板的制图与制板、复杂双面板的制图与制板;⑥电子测量仪器使用与维护课程以电路设备为载体形成9个学习情境:收音机元件准备、收音机电路测试、收音机电路工作状态检测、收音机整机调整、收音机装调使用仪器的保养与维护、电视机元件检测、电视机电路检测、电视机的质量检查、电视机装调使用仪器的保养与维护;⑦C语言课程以项目为载体形成6个学习情境:编程的基本概念、C语言上机步骤C语言上机步骤、算法的概念、基本数据类型、结构化程序设计、函数的概念;⑧单片机技术及应用课程以任务为载体形成6个学习情境““跑马灯”电路分析与实践、单片机做算术、逻辑运算并显示、开关信号状态读取与显示电路的制作、交通信号灯电路的设计与制作、产品数量统计电路的设计与制作、两台单片机数据互传;⑨FPGA应用技术及实践课程以项目为载体形成6个学习情境:课程概述、基于QualusII的原理图输入设计、宏功能模块应用、基于QuarusII软件的VHDL文本输入设计、VHDL设计、实用状态机设计。
三、试点实施效果分析
在教学实施上,重点是加强教师执教能力:教师在教学中的角色应由主宰者转化为引导者。教师应该主动地引导、疏导和指导学生,学生可以根据自己的兴趣爱好,在教师的指导下,充分利用各种资源,相互协作开展对某一问题的学习探讨,从而获得新知识,得到探索的体验及情感,促进能力全面发展。经过我院近3年的教学实践,课程教学效果得到显著提高,学生专业核心能力、岗位适应能力、社会能力显著提高,“双证书”提高到100%,专业对口率从原来的48%上升到92%,用人单位满意度达90%以上。
高职院校在办学过程中要形成特色鲜明的高职办学模式,课程体系是重要的载体。办学特色正是通过课
程体系的实施来实现的。基于工作过程系统化的课程体系,跟随产业的发展,调整专业的课程设置,符合职业岗位要求,学生技能显著提升,同时结合我院的办学特色,努力探索基于工作过程的高职微电子技术专业课程体系的构建思路和构建策略。
参考文献:
[1]姜大源.关于工作过程系统化课程结构的理论基础〇].职教通讯,2006,(1).
[2]余国庆职业教育项目课程的几个关键问题ffl.中国职业技术教育,2007,(4).
[3]首珩,周虹基于工作过程的课程体系开发与实施m职教论坛,2008,(9).
[4]姜大源,吴全全当代德国职业教育主流教学思想研究[M].北京:清华大学出版社,2007.