前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子场论和量子力学关系范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】量子场论 还原性 问题
物理中的突现主要是指很多因素,对于系统组成要素具有性质问题,不是在于任何单个要素,因素系统的低层次形成时期才会出现,所以说才成为涌现。系统功能之所以表现是整体会大于部分,是因为系统会涌现出新质因素。人们对于这一个现象的研究是从生物学开始的,后来应用于人工智能和复杂物理理论中,随着社会现代科学即使发展,出现了很多问题,在整体性为主题中,量子场论的建立都针对很多问题进行发展和研究,也引发了很多原论和反原论问题深入研究。从重整化操作参数中选取任意性理论问题都是没相关性,场论知识具有自主性理论体系,各个理论之间没有关系,所以说量子场论涉及当今物理学和哲学领域很多问题。
1 有效场论思想的提出分析
一般意义的有效场论指的是某一个研究领域事物内在机制理论问题,也就是用粒子物理学家话来说就是有效理论对于物理参数空间物理实体描述,从物理学看,很多物理学理论都是随着不断变化而形成了多样性,也就是同一物理实体中的粗放型和精致形理论,这就构成了物理学参数空间唯像学理论研究。不需要费心去寻找一个物理终极理论,只要能够恰当的描述一切现象就可以了,从本质上讲也就是说对于物理具有本身局限性,是反映物理世界信息模型问题。
为了能够很好协调量子力学和相对论之间量子场论,就应该考虑到二次量子化,也就是一种包含粒子生产的基本粒子问题,在数学中量子场论系统拥有无穷自由度,数学中对于理论有很多新的要求,对于重整化问题解释争论也是突出表现了场论思想提出,从历史发展来看,重整化理论是具有一定场论理论依据的。对于有效场论思想提出都有一定追溯作用。
从重整化方法发展历史看,有效思想在建立量子场论中是非常富有启发作用的,量子场论语言的作用是非常恰当描述依赖作用的,本质就是能够超级力量。有效理论思想可以很好推动量子场论深入发展,也就是说基础物理学家说的基础物理学问题,本质上就是高能物理学和低能物理学之间相互隔离和各个击破研究问题。如何划分物理现象标准能否跨度,形式随着精度分化不断变化,也就是在重整化基础上能够实现对于理论重整。能够就会出现很多处理重整化物理学理论发展的初始阶段是处理量子电动力学发散引进方法,对于物理学家首先应该引起截至作用,将发散部分吸收,然后再进行重新定义理论参数问题,在这个过程就会出现很多处理方法问题,重整方法从此就会成功开始。随着测试现象尺度变化物理学作用和结构也会发生变化,接着人们就会缓慢减小截至思想指导,运用重整化参数变化情况进行更深度分析和研究,有效的将参数和分数关系用数学方式描述出来。能够在群方程参数变化中,降低重整化的有限维子丛。有效的低能理论有别于高能的情形,不同的高能日量可能 会产生相同低能日量,事实上在数众多不同质量粒子共存体系中,系统能量远会小于粒子质量,这时质量扮演截至就可以近似重整化有效场论,质量的影响也会相互作用不可重整化,一种新的可重整化量子场论理论广泛应用自然会导致人们对于基础物理学看法,这种观点的转变结果是量子场论的标准模型问题。
2有效场论引发的争论问题
人们认为基础物理学研究宇宙物质基础结构和物质运动规律的学科,所以说近代自然科学追求的确定性和必然性,根据这个观点对于高能物理学享有的基础地位和粒子物理学的终极理论都是有一定领地的。从弱点理论到量子色动力学发展起来的标准模型,在基础物理研究中都具有里程碑意义和作用,根据标准模型可以看出,物质有夸克和轻子组成,他们之间相互作用可以用一个统一规场论来完成,量子场论这种进展就是重整化方法更加深入人心。
重整化概念对于标准模型哲学基础构成需要更加深入分析和研究,在理论早起时候,重整化的概念在处理微饶问题时,物理学家对于突现驾驶主要是纠缠于两种备选方案,就是前面提及到的还原论和反还原论述,分别指的是高能物理学和凝聚态物理学问题。粒子高能物理学的科学家以高能物理学基础来辩护,就是粒子物理学提升了人们对于物理世界的认识,引领人们一步步走到宇宙绝对性结构面前,在还原论中也有很多关键性词语,所以说凝聚物理学家工作和粒子物理学家工作是一样的基础性。
还原重整化概念建立的历史进行实证分析,确实是可以提供理论之间相关性依据问题,但是这种论证本身没有坚实基础。理论之间联系建立只是局限于特定语境,另外理论之间是否存在基础性问题,也只是局限于各种文化层次之间,理论是否具有一定基础性争论,将是未来人类文明发展的重要问题。也就是理论之间存在内在很多联系,反还原阶段基于突现事实理论之间联系,量子场确实恰当又方面的描述了特定精度物理现象问题。根本上依赖于特定语境中和物理相对应的世界,其中包括主观意向、理论背景和实验测量问题等,所以要不断结合各种综合要素进行分析和科学解释人类现象。
3结语
粒子物理中物理场论等多个理论之间相互竞争并存在很多现象,有效的微观世界信息,可以反映客观理论语境,这样就会避免工具主义无法解释参量问题,和实在主义经验数据问题,总之就是客观事物本身是非常丰富多彩和复杂多变的,一种语言描述复杂事物行不通,对于还原论和反还原论争论,问题不是一方压倒另一方,而是要相互之间能够互补,全面客观的把两者进行相互结合起来,做到最大限度的兼收并蓄、取长补短和综合统一。
参考文献:
[1] 王博涛,舒华英.基于自组织理论的信息系统演化研究[J];北京邮电大学学报(社会科学版),2006年01期.
[2] 林祯祺.从量子论到玻色-爱因斯坦统计[J];重庆师范大学学报(自然科学版),2006年04期.
[3] 聂耀东,彭新武.复杂性思维・中国传统哲学・深层生态学[J];思想理论教育导刊;2005年04期.
本书是一部关于经典哈密顿动力学的教科书,其对象主要为刚刚进入研究生学习的物理领域学生。本书目的在于以一种相对简洁而又不失知识连贯性和概念准确性,阐述相关内容所涉及的全部论题。
本书作者John H. Lowenstein是纽约大学荣誉教授,从事非线性动力学研究20多年。在那之前,他的研究重点是量子场论,特别是可解模型和可重整微扰理论。他在纽约大学同事的鼓励下,决心撰写一部用于21世纪学生的教科书。为此,作者立足于假定学生们已经系统学过牛顿力学(包括拉格朗日形式以及一些标准应用实例)的课程,对本书所涵盖的内容范围做了严格的筛选,忽略了耗散系统、非完整约束、以及狭义和广义相对论、连续体力学和经典场论,并限制了高等微分几何的应用。
作者认为对于21世纪的学生,优势之一是熟悉计算机的使用以及软件知识,因此具有摆脱冗长繁琐的代数与分析计算的基础。写这本书时作者假定读者熟悉初等的科学编程并愿意和能够用这种能力解决遇到的实际问题。他发现,MATHEMATICA软件最适合做本课程所需要的一些小规模的计算。因此本书自始至终提供了许多把解析推导、数值计算和图形处理结合起来的MATHEMATICA具体的例子。
本书内容分为6章。开始的1章标题为“经典动力学基础”,在其中作者非常简略地评述了经典力学。第2-6章内容:2.引入哈密顿形式的核心概念,特别强调了以某种方式平行于量子力学正则对易关系的代数方法进行阐述;3.一种极为重要类型的动力学系统的细致处理,即具有完备的守恒量集合的“可积系统”的介绍;4.非可积系统的正则摄动理论;5.讨论了KAM理论和哈密顿动力学系统中有序与混沌之间迷人的相互作用;6.把前面几章所发展的概念和方法综合应用与详细地处理弹性三维摆,即所谓的“摆动弹簧”,它提供了二氧化碳分子的某种激发的非常好的模型。书末有一个附录,给出了几个用MATHEMATICA软件编写的样本程序。并提示读者,可以在网上找到本书习题的解题手册以及对于MATHEMATICA软件的介绍。网址为/lowenstein。
经典力学是物理学、工程科学和应用数学高等教育的基石之一,它的应用范围极为广泛。在本书中,作者以一种简洁的教学风格涵盖了哈密顿方法动力学研究生课程所必须的所有论题。向读者介绍了20世纪后半叶该领域取得的令人印象深刻的进展。对于已经熟悉经典力学的牛顿和拉格朗日处理的研究生和高年级本科生,本书无疑是一本理想的教材。
二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。
在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。
一、历史的回顾
十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。
虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。
1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。
2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。
我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。
3)深入探索各层次间的联系。
这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。
上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]
现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:
1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。
2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。
三、现代物理学的理论基础是完美的吗?
相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的
呢?我们来审思一下这个问题。
1)对相对论的审思
当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。
时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。
爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。
我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。
弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。
在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')
有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。
1)对量子力学的审思
从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。
现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。
1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。
2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论
“想象一下,假如有一天你醒来,发现自己生活在计算机游戏里。”加拿大英属哥伦比亚大学物理学家马克・范拉姆斯东克说。这听起来像是科幻电影的情节,但这正是他对现实的一种理解方式。如果这是真的,那“我们周围的一切――整个三维的物理世界――就是一场幻觉,由来自某个地方的二维芯片上的编码信息所产生的幻觉”。这构成了我们的三维空间宇宙,一种从低维底片上发出的全息投影。
即使拿通常的理论物理学标准来衡量,这种“全息理论”也相当奇怪,但范拉莫斯东克是少数前卫的研究人员之一,他们认为通常的理论尚不够奇怪。无论是现代物理学的两大支柱――广义相对论和量子力学(广义相对论把万有引力作为一种时空弯曲,而量子力学是原子领域的统治法则),还是描述基本一维能量线的弦理论,都没有对时空本身的存在给出任何解释。如果没有其他的,这种“全息理论”也不失为一种解释。
范拉姆斯东克和他的同事们认为,物理学如不能解释时空是如何以及从哪里产生的,它的任务就不算完成。时空可能从某种更基本的东西产生,这种东西尚未命名,至少需要构造一个像“全息”那样大胆的概念。他们认为,这种从根本上对现实的重新定义,是解释黑洞核心那个无限致密的“奇点”怎样扭曲了时空构造的唯一方式,这超越了所有的认知。或者说,研究人员怎样才能把原子尺度的量子理论和行星尺度的广义相对论统一起来,有一个东西长期阻碍了理论学家的构建工作。
“所有的经验都告诉我们,我们对现实不该有两种显著不同的构想,它必然是一个庞大的包含所有的理论。”美国宾夕法尼亚大学物理学家阿贝・阿什特卡说。
找到一个庞大的理论是一项艰巨挑战。为此,《自然》杂志探索了现代几种较有前途的前进路线――一些新兴的观点以及对它们的检验。
热力学万有引力
人们可能会问的一个最明显的问题是,这种努力是否徒劳?是否真的有某种东西比时空更基本?证据何在?一个令人兴奋的线索来自上世纪70年代早期取得的一系列不寻常的发现。当时,量子力学和万有引力与热动力学开始紧密结合在一起,这一趋势日益明显。
1974年,英国剑桥大学的斯蒂芬・霍金证明,黑洞周围空间存在着量子效应,这使得黑洞向外发出辐射,就好像它很热一样。其他物理学家也很快得出结论,这种现象在宇宙中其实相当普遍。即使在真空里,正在加速的宇航员会感到他自己像是被包围在热水浴中。虽然对目前火箭可达到的加速而言,这种效应太微弱了而无法被觉察到,但这或许是个基本原理。如果量子理论和广义相对论是正确的――这二者都已被众多实验所证实――那霍金辐射的存在似乎是理所当然。
第二个重要发现也与此密切相关。根据标准热力学理论,一个物体要辐射出热量必须降低熵值,这也是检测其内部量子状态的一种数量方法。所以黑洞也是如此:甚至早在霍金1974年发表其论文之前,现在以色列耶路撒冷希伯来大学任职的雅各布・贝肯斯坦就曾证明了黑洞拥有熵值。但二者之间还是有差异的。对于大部分物体来说,它们的熵与物体所含原子数目成比例,也就是和体积成比例;但黑洞的熵却与其事件视界的表面积成比例。事件视界是光无法逃逸的界限,这就好像黑洞的表面是其内部信息的某种编码,正像以二维全息编码的形式来表现三维图像那样。
1995年,美国马里兰大学物理学家泰德・雅各布森将二者的发现结合起来提出一种假设:空间中的每个点上都有一个微小的“黑洞视界”,并服从熵与面积关系。结果他发现,这样在数学上就变成了爱因斯坦的广义相对论方程――只用了热力学概念,而没有用时空弯曲理论。
“这好像涉及某种深入万有引力起源的东西。”雅各布森说。尤其是,热力学定律的本质是一种统计表现,即大量原子和分子运动在宏观上的平均,所以该计算结果也意味着,万有引力也是统计上的表现,是对时空的某种看不见的成分的一种宏观近似。
2010年,荷兰阿姆斯特丹大学的弦理论学家埃里克・韦林德证明了时空成分的统计热力学――无论它们最终是什么,都会自动产生牛顿的万有引力定律。
而在另一项独立研究中,印度浦那校际中心天文与天体物理学中心的宇宙学家萨努・帕德曼纳班指出,爱因斯坦方程可以改写成另一种等同于热力学定律的形式――就像万有引力的许多其他替换理论一样。帕德曼纳班最近正在扩展热力学方法,试图以此解释暗能量的起源及其在宇宙中的量级。暗能量是推动宇宙加速膨胀的一种神秘力量。
要想用实验来验证这些想法是非常困难的。就好像水看起来是光滑完美的流体,但如果用显微镜深入观察到能看见水分子的程度,也就是不到1纳米,情况就会完全不同。据此人们估计,时空虽然看起来是连续的,但如果小到普朗克级别,大致是10的负35次方米,比一个质子还小约20个数量级,情况也可能完全不同。
但这并非不可能。人们经常提到一种方法可以检验时空的结构是否为离散的,就是寻找高能光子延迟。在遥远的宇宙角落,由某个宇宙事件(比如超新星爆发)抛射出大量γ射线,这些高能光子到达地球可能会产生时间上的延迟。事实上,这些波长最短的光子能感觉到它们所穿越的太空旅途是由某种微小的、崎岖不平的成分构成,正是这种崎岖不平略微延缓了它们的行程。
2013年4月,意大利罗马大学量子-引力研究员乔瓦尼・阿麦利诺-卡梅利亚和同事在一次γ射线爆发记录中,发现了这种光子延迟的线索。阿麦利诺-卡梅利亚说,这些结果还不是最后定论,他们打算进一步扩展研究,观察宇宙事件中产生的高能中微子的旅行时间。他说,如果这些理论无法被检验,“那么对于我来说,它们就不是科学,而是,我对此并无兴趣。”
其他物理学家也在寻求实验的证明。比如在2012年,奥地利维也纳大学和英国伦敦帝国学院的科学家提出了一项“桌面实验”,实验中用到一种能在激光驱动下来回运动的显微镜。他们认为,当光从镜面反射时,普朗克尺度的时空间隔会产生能探测得到的变化。
圈量子引力
即使这种理论是正确的,从热力学的角度来看,时空的基本构成也可能什么都不是。姑且这么说,如果时空由某种东西编织而成的,那织造它的“线”又是什么?
目前一个还算实际的答案就是圈量子引力(loop quantum gravity)理论。该理论是上世纪80年代中期由阿什特卡等人发展而来,将时空构造描述为就像一张展开的蜘蛛网,网线上携带着它们所通过区域的量子化的面积和体积信息。每根网线的末端最终一定会连在一起而形成圈状――正如该理论的名字――但这与更著名的弦理论的“弦”没什么关系。弦理论的“弦”在时空中来回运动,而圈量子引力的“网线”则构成了时空本身:它们携带的信息定义了周围时空构造的形状。
由于这种圈是量子的,所以该理论也定义了一个最小面积单位,非常类似于在普通量子力学中,对氢原子一个电子的最小基本能量态的定义。这种面积量子是大约一个普朗克单位那么大的一个面。要想再插入一根面积更小的“线”,它就会跟其余的“网线”断开。它不能与任何其他东西连接,只好从时空中退出。
定义了最小面积带来了一个令人欣慰的结果,就是圈量子引力不能被无限挤压到一个无限小的点。这意味着在大爆炸瞬间以及在黑洞中心,它不会产生那种打破爱因斯坦广义相对论方程的奇点。
2006年,阿什特卡和同事报告他们利用这一优势进行了一系列模拟,他们用爱因斯坦方程的圈量子引力版本反演了时钟倒转,以可视化形式展示了大爆炸之前发生了什么:宇宙如预期那样反向演化,回溯到大爆炸时。但在它接近由圈量子引力决定的基本大小极限时,一股斥力进入奇点迫使其打开,成为一个隧道,通向另一个先于我们宇宙之前而存在的宇宙。
今年,乌拉圭大学物理学家鲁道夫・甘比尼和美国路易斯安那大学的乔奇・普林也报告了相似的黑洞模拟。他们发现,当一个观察者深入到黑洞核心时,遭遇到的不是奇点,而是一条狭窄的时空隧道,通向空间的另一部分。
“排除了奇点问题是一项重大成就。”阿什特卡说,他正和其他研究人员一起辨认那些留在宇宙微波背景上的特征标志。宇宙微波背景是宇宙在婴儿时期迅速膨胀残留的辐射。那些标志则可能是由一次反弹留下来的,而不是爆炸。
圈量子引力论还不是一个圆满统一的理论,因为它没有包括任何其他的力,而且物理学家们也还没能说明,正常时空是怎样从这种信息网中出现的。对此,德国马克思・普朗克万有引力物理学研究所的丹尼尔・奥利提希望在凝聚体物理学中寻找灵感。他在物质的过渡阶段生成了一种奇异相态,这种相态可以用量子场论来描述。宇宙可能也经过类似的变化阶段,奥利提和同事正在寻找公式来描述这一过程:宇宙怎样从一系列离散的圈过渡到光滑而连续的时空。“我们的研究还处在初期阶段,还很困难。我们就像是鱼,游在难以理解的时间之流的最上游。”奥利提说。探索的艰难使一些研究人员转而追求另一种更抽象的过程,由此提出了著名的因果集合论(causal set theory)。
因果集合论
因果集合论由加拿大周界研究所物理学家拉斐尔・索尔金创立。该理论提出,构成时空的“基本之砖”是简单的数学上的点,各点之间由关系(links)连接,每个关系指示着从过去到未来。这种关系是因果性表现的本质,意味着前一个点会影响后一个点,但反过来不行。最终的因果网就像一棵不断生长的树,逐渐形成了时空。“你可以想象为,时空是由于这些点而出现的,就像温度是由于原子而出现的那样。”索尔金说,“但要问‘一个原子的温度是多少?’是没有意义的,要有一个整体的概念才有意义。”
上世纪80年代末时,索尔金用这一框架估算了可见宇宙可能包含的点的数量,推导出它们应该能产生一种小的内在能量,从而推动宇宙加速膨胀。几年后,人们发现宇宙中存在一种暗能量,证实了他的猜想。“通常人们认为,从量子引力做出的预测是不可检验的,但这种情况却可以。”伦敦帝国学院量子引力研究员乔・汉森说,“如果暗能量的值更大,或是零,因果集合论就成为不可能。”
虽然很难找到支持证据,因果集合论还是提供了其他一些可检验的预测,一些物理学家利用计算机模拟得到了更多结果。其中一种理论观点可追溯到上世纪90年代初,大致上认为,普通时空由某种未知的基本成分构成,这些成分是微小的块体,淹没在混乱的量子涨落的海洋中,随后这些时空块自发地黏合在一起而形成更大的结构。
最早的研究是较令人失望的,荷兰内梅亨大学物理学家雷内特・罗尔说。时空的“基本之砖”是一种简单的超级金字塔,即三维四面体的四维形式。通过模拟的黏合规则让它们自由结合,结果就成了一系列奇幻的“宇宙”,有的有太多维度而有的太少,它们自己会折叠起来或破成碎片。“就像是一场自由混战,任何东西无法恢复原状,类似于我们周围所看到的一切。”罗尔说。
但是,像索尔金、罗尔他们的发现增加了改变一切的因果性。毕竟时间维度与三维的空间维度不同,罗尔说,“我们不能在时间中来回旅行。”所以她的研究小组对模拟做了改变,以保证后果不会跑到原因的前面。然后他们发现,时空小块开始持续地自行组装,成为光滑的四维宇宙,其性质正和我们所在的宇宙类似。
有趣的是,这一模拟还暗示了在大爆炸之后不久,宇宙在婴儿期时只有二个维度:一维空间和一维时间。还有其他尝试推导量子引力方程的实验也得到了同样预测,甚至还有人提出,暗能量的出现是我们的宇宙正在发展出第四空间维度的一个信号。其他人还证明了,在宇宙早期的二维阶段可能形成一些花纹,类似于我们在宇宙微波背景上所看到的那样。
全息论
与此同时,范拉姆斯东克在全息理论的基础上,对时空的产生提出了另一种完全不同的设想。黑洞以一种类似全息的方式在其表面存储了所有的熵,美国普林斯顿高级研究院的弦理论学家胡安・默尔德希纳最早给这一理论构建了一个明确的数学公式,并在1998年发表了他的全息宇宙模型。在该模型中,三维的宇宙内部包含了弦和黑洞,只受万有引力控制,而它的二维边界包含了基本粒子和场,服从普通量子法则而无需万有引力。
摘要:电荷守恒定律的核心是:不创造、不消灭,与电荷是否是流体无关.电荷守恒定律是一普适定律.
关键词:电荷; 守恒定律; 创造; 消灭
1 引言
电荷守恒定律是物理学界普遍接受的定律之一,并喻为普适定律。这在一般的物理教科书中都几乎明显地提出。
电荷守恒定律是构成电磁理论大厦的重要支柱之一,它与诸多电磁学中的定律都有着密切的联系。在物理学中,许多理论的正确性都是以电荷守恒定律的成立为前提。
电荷守恒定律是物理学中最基本的定律之一,深入学习电荷守恒定律对今后的物理学习有着积极作用和意义。
1.1电荷守恒的发展
法拉第在1843年最先提出了电荷守恒的观念,此后众多物理学家开始对电荷守恒进行研究,并做了大量的实验,如摩擦起电,静电感应等都证明了电荷守恒的正确性,麦克斯韦正是通过对电荷守恒定律的研究,在1873年导出了电流连续性方程,这也为他预言电磁波和位移电流提供了理论依据。在今天,电荷守恒定律在电磁波的信息传输和静电技术等前沿科学都有着广泛的应用。
2 电荷与电流的关系
2.1电荷
带正电或负电的基本粒子,称为电荷,带正电的粒子叫正电荷(表示符号为“+”),带负电的粒子叫负电荷(表示符号为“﹣”)。
电荷的多少叫电荷量,即物质、原子或电子等所带的电的量。单位是库仑(记号为C)简称库。
我们常将“带电粒子”称为电荷,但电荷本身并非“粒子”,只是我们常将它想像成粒子以方便描述。电荷有两种:正电荷和负电荷.物体由于摩擦、加热、射线照射、化学变化等原因,失去部分电子时物体带正电,获得部分电子时物体带负电.带有多余正电荷或负电荷的物体叫做带电体,习惯上有时把带电体叫做电荷.
自然界中的电荷只有两种,即正电荷和负电荷。由丝绸摩擦的玻璃棒所带的电荷叫做正电荷,由毛皮摩擦的橡胶棒所带的电荷叫负电荷。 电荷的最基本的性质是:同种电荷相互排斥,异种电荷相互吸引,是物质的固有属性之一。琥珀经摩擦后能够吸引轻小物体的现象是物体带电的最早发现。继而发现雷击、感应、加热、照射等等都能使物体带电。电分正、负,同号排斥,异号吸引,正负结合,彼此中和,电荷可以转移,此增彼减,而总量不变。
构成物质的基本单元是原子,原子由电子和原子核构成,核又由质子和中子构成 ,电子带负电 , 质子带正电,是正、负电荷的基本单元,中子不带电。所谓物体不带电就是电子数与质子数相等,物体带电则是这种平衡的破坏。在自然界中不存在脱离物质而单独存在的电荷 。 在一个孤立系统中,不管发生了什么变化,电子、质子的总数不变,只是组合方式或所在位置有所变化,因而电荷必定守恒。
2.2电流
3 电荷守恒提出的实验和理论基础
3.1电荷守恒的提出
1843年,M.法拉第做了冰桶实验,并据此最早提出电荷守恒的观念。法拉第把白铁皮做的冰桶放在绝缘物上,用导线把冰桶外面与金箔验电器相接。用丝线将带电小黄铜球吊进冰桶内,随着小球的深入,验电器箔片逐渐张开并达到最大张角,尔后,即使小球再深入,甚至与冰桶接触,张角也不再变化。并且实验结果与冰桶内是否装有其他物质以及小球是否与之接触均无关。冰桶实验表明,其中的电荷可以转移变动,但不会无中生有,也不会变有为无,总量守恒。这是电荷守恒定律第一个令人满意的实验证明。
电荷守恒定律是大量实验事实的总结,适用于迄今所知的一切宏观过程和微观过程。质子和电子是正负电荷的基本单元。在各种物理过程中,电子和质子总数不变,只是组合方式或所在位置有所改变,因而电荷守恒是十分自然的。
值得指出的,近代物理学发现了大量有关基本粒子互相转化的事实。例如正、负电子e+、e-对撞湮没 ,产生两个γ光子;中子n的衰变
式中p是质子;是反中微子。在这些过程中,出现了电荷的消失或产生,但反应物的总电荷等于生成物的总电荷,电荷仍守恒。这意味着电荷守恒具有更深刻的根源。
4对称性与守恒律的对应关系。
4.1物理学中的对称性
对称性是人类认识自然时产生的一种观察,对称性是指自然界的一切物质和过程都存在或产生它的对应方面.这种对应表现为现象的相同、形态的对映、物质的反正、结构的重复、性质的一致和规律的不变性等.对称给人一种圆满、匀称、均衡的美感,它内含表现出某种有序、重复的成份.对称性深刻地解释了自然界相互联系中的一致性、不变性和共同性,是反映自然规律的一条基本原则.
4.2物理对称性的分类
根据对称性的抽象程度,物理学中的对称性主要表现为直观对称、抽象对称、数学对称、对称破缺四种.
4.2.1 直观对称
对称性的概念最初来源于生活,也就是直观唯象对称性,是许多事物所显示的直观形象的对称.直观对称又表现为空间的、时间的和物理知识表达形式上的对称.空间对称表现为:人体的左右对称、雪花的完美的六角对称、我国古代的宫殿、庙宇和陵墓建筑的对称设计、正电荷与负电荷、反射与折射、杠杆的平衡、单摆的运动和磁场的南北极等.时间对称表现为:音乐的等间隔重复节奏、地球的周期性公转和自转、匀强电场不随时间发生变化等.物理学知识,如概念、规律、公式等,在表达式上也表现出明显的直观对称.对称的数字、公式和图像是数学形式美的重要标志,因为中心对称、轴对称、镜像对称都是令人愉悦的形式.如晶体结构具有一定的几何学上的对称性;描述电磁场规律的麦克斯韦方程组具有形式上的对称性等.天文学家历来喜欢用对称的几何图形来描述天体运行的轨道,如亚里士多德、托勒密、哥白尼、开普勒等.例如,托勒密的地心说认为,各行星都在一个较小的圆周上运动,而每个圆的圆心则在以地球为中心的圆周上运动.他把绕地球的圆叫“均轮”,每个小圆叫“本轮”.同时假设地球并不恰好在均轮的中心,均轮是一些偏心圆;日月行星除作上述轨道运行外,还与众恒星一起,每天绕地球转动一周.托勒密这个不反映宇宙实际结构的数学图景,却较为完满地解释了当时观测到的行星运动情况,并在航海上取得了实用价值,被人们广为信奉.后来,天文学家哥白尼从对称美的角度考虑了宇宙的结构,他发现“地心说”的体系过于复杂,难以反映宇宙体系的和谐、统一.他以崭新的日心模型为出发点,建立了对称性更高的“日心说”来解释天体运行规律.
4.2.2 抽象对称
随着人类认识的深入和发展,科学家面临着越来越多的抽象问题,许多问题仅仅依靠简单直观的对称图像难以解决.这时抽象对称性就起到了重要的作用.抽象对称性是将对称的直观表象和抽象思维相结合,从得出的某一个概念、规律或理论中反映出新的对称性,是人类思维活动对于对称性的更深层次的认识和理解.统计力学和误差理论中的概率思想,就是一种抽象对称:分子热运动在三维空间各自由度上发生的概率都相等;气体对容器的压强处处都相等.例如,德布罗意从对称思想认识到:19世纪科学家对于光学的研究过于强调了波动性,忽视了粒子性的研究方法;而对于物质的研究则过分强调了物质的粒子性,而忽视了物质的波动性.他认为物质也应该具有与粒子性相对称的波动性,提出了物质波假说.再如,1931年,狄拉克运用对称思想提出了磁北极和磁南极是可以分开而单独存在的学说,称为磁单极子理论.他的这一预言虽然至今未被确证,但许多物理学家正在通过各种实验探寻磁单极子.
4.2.3 数学对称
数学对称是指,如果某一现象(或事件)在某一数学变换下不变,那么该现象(或事件)就具有该变换所对应的对称性,也叫做数学变换下的不变性.而在某种变换下不变的理论叫做对称理论.数学对称是比抽象对称更加深刻的对称性,通常用群论来描述对称性.如物理定律在洛仑兹变换下保持形式不变,就是数学对称性的体现.在爱因斯坦建立相对论的过程中,数学对称性起到了重要作用.爱因斯坦认为,自然科学的理论不仅要求一些基本概念或基本方程具有形式上的对称性,而且要求理论本身具有内在对称性.爱因斯坦把现实的三维空间加进了时间因素,把三维空间的对称概念拓展到了四维时空空间,探讨高维空间的对称性
4.2.4 对称破缺
物理学中的对称破缺,是指由于某一种对称被破坏,引发出了更深化的思维认识,从而展现出物理学更高层次的对称.如核子同位旋守恒遭电磁作用和弱作用破坏时表现出来的破缺;铁磁材料中空间各向同性的破坏;真空对称性的自发破缺等.再如,杨振宁和李政道提出了弱相互作用中宇称不守恒,并得到了吴健雄的实验验证,使现代物理学中产生了“对称加破缺”的美学思想.物理学中产生了“对称加破缺”的美学思想.
4.3对称性与守恒律之间的依存关系
从现代物理学的高度来审视。对称性和守恒律是基本的自然法则。在经典力学中,牛顿运动三定律只适用于宏观物体,而动量、角动量、能量三大守恒定律对宏观物体和微观领域都是普遍成立的。并且,这三个守恒定律又可以由对称性原理用拉格朗日表述推导出来.自然界广泛存在的对称性在物理学中处于十分基本的地位。上述三大守恒定律又比牛顿运动定律具有更普遍更深刻的根基。人们在长期的科学探索中发现,自然界的各种对称性与守恒律之间具有相辅相存的密切联系。例如,下列每一种对称性(即变换不变性)都对应着一个守恒定律:
空间平移不变性 动量守恒定律
空间转动不变性 角动量守恒定律
时间平移不变性 能量守恒定律
空间反演不变性 宇称守恒定律
整体规范不变性 电荷守恒定律
人类在很早就孕育了守恒的思想.守恒的思想认为大自然是周而复始,无限循环的。现在我们知道,从本质上讲守恒性来源于对称性.实际上,由于对称性意味着不变性,进一步发展就意味着经过某种对称变换后物理规律的不变性,这就意味着守恒.人类最初对于守恒观念的认识还是非常原始和朴素的.随着自然科学的发展,人们对于守恒概念的认识也逐步深入.对称性与守恒律密切联系的见解最早来源于经典力学.从17世纪开始,伽利略、笛卡儿、莱布尼茨、伯努利、拉格朗日等科学家从不同的方面阐述了动量和能量守恒的思想.19世纪40年代,迈尔、焦耳、亥姆霍兹等科学家从不同侧面独立地发现了物质运动之间能量的守恒性,于是物理学就把这些不同的发现综合上升为能量守恒定律.随后,对称性和守恒律的对应关系也逐步推广到电磁学、量子力学、量子场论以及基本粒子理论等领域.诺特定理引导物理学家们去寻找新领域中的守恒定律和守恒量,由此确定其中的对称性,从而获得作用量的形式和基本守恒定律;反过来,如果知道了使一个给定的作用量保持不变的对称变换,也就可以知道相应的守恒定律和守恒量.诺特定理为物理学家研究未知事物提供了强有力的方法论工具,是物理学家探索自然的基本依据和出发点之一.由诺特定理推广,可以得到如下结论:如果运动定律在某一变换下具有不变性,必然有一相应的守恒定律.例如,有一保守的力学体系,其动力学方程可以用拉格朗日方程是 , (a一1,2,…,S)来表示.其中,拉格朗日函数 ,是广义坐标 、广义速度 和时间 的函数.如果拉格朗日函数中不出现某一个广义坐标 ,则该坐标称为循环坐标(即具有坐标变换的不变性),此时 ,拉格朗日方程变为 。由此得到广义动量 常数,即在坐标变换不变的情况下,力学体系的动量守恒.当为 直角坐标时,对应的 为线动量,“ 常数”表征了动量守恒定律;当为角坐标时,对应的为角动量,“ 常数”表征了角动量守恒定律.