首页 > 文章中心 > 量子力学和量子纠缠的区别

量子力学和量子纠缠的区别

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学和量子纠缠的区别范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子力学和量子纠缠的区别

量子力学和量子纠缠的区别范文第1篇

量子是现代物理的重要概念,与经典物理有根本的区别,提供了全新的原理和思考方式。量子具有不确定性和不可测量性,量子的世界不遵循经典物理学定律,因此人们对量子世界的探索存在很多困y。通过科学家的不断探索,在量子信息研究领域有了许多的突破,其中产生了量子通信这一新兴技术。目前量子通信主要有两种应用,一种是较为成熟的量子密码通信,一种是量子隐形传送。2012年度诺贝尔物理学奖,法国科学家塞尔日・阿罗什与美国科学家大卫・维因兰德实现了对单个原子的测量和控制,阿罗什的工作是打造出一个微波腔,借助单个原子在微波腔中会辐射或吸收单个光子的特性,实现了操纵单个光子。而维因兰德则制造出了一个离子阱,先用光来俘获离子,然后用激光冷却离子,进而对离子进行测量和控制。量子计算和精密测量有了变成现实的可能性。

二、量子纠缠

Hilbert空间是欧几里德空间的一个推广,不再局限于有限维,是一个完备的空间,其上所有的柯西序列等价于收敛序列,从而微积分中的大部分概念都可以无障碍地推广到Hilbert空间中。能用Hilbert空间中的一个矢量表示的量子系统称为纯态,反之,如果不是处于确定的态而是以某一种几率分布的,称之为混合态。通常量子比特表示为:|Ψ〉=α|0〉+β|1〉,|α|2+|β|2=1(叠加态形式)。两个纯态|Ψ1〉和|Ψ2〉的线性叠加所描述的量子态|Ψ〉=c1|Ψ1〉+c2|Ψ2〉对应Hilbert空间的一个矢量,也是一个纯态。经过测量的量子态会坍缩到|0〉或|1〉,这个过程是不可逆的。这是二维Hilbert空间中量子态的描述,类似于三维球面上的一个点。在具有n个量子态的系统中,状态空间由2n个基向量组成。在未对系统进行操作之前,量子态可能为2n中的一个,与经典存储系统相比,量子系统能在某一时刻保持2n个状态,因此量子系统具有更大的计算潜力。爱因斯坦不愿承认并称之为“幽灵般的超距作用(spooky action at a distance)”的量子纠缠,指两个相互独立的粒子可以相互影响,对其中一个粒子进行观测可以即时地影响到其它粒子,无论它们之间的距离有多远。量子纠缠描述了量子子系统相互影响的现象,对一个子系统的测量瞬间影响了其他子系统的状态。一个由|ΨA〉和|ΨB〉两个子系统组成的复合系统|Ψ〉,如果可以表示为|ΨA〉×|ΨB〉,则|Ψ〉处于直积态,否则处于纠缠态。常见的纠缠态有:两个粒子构成的bell基,三个粒子构成的GHZ态等。二粒子纯态纠缠的研究最为完善,bell态是量子通信中最基本的纠缠资源。处于bell态的两个纠缠粒子称为EPR对。四维Hilbert空间中的正交完备基称为bell基。在量子通信中,最常用的测量方法是bell基测量。

三、量子纠缠的应用

目前量子通信的两种主要方式:量子密码通信和隐形传送。量子密码或量子密钥分配是利用了观测一般会干扰被观测系统的量子力学原理来实现的。量子的不可分割性和量子态的不可复制性保证了信息的不可窃听和破解,进而实现根本上、永久性解决信息安全问题的目标。量子隐形传态需建立在经典物理信道的基础上才能实现。在研究量子领域早期,人们最感兴趣的一个问题是能否利用量子纠缠实现超光速通信,这个问题的答案是否定的,原因在于量子的不可克隆性,仅依靠量子纠缠系统无法传递具体信息,要将原量子态的全部信息提取出来,需分别根据其经典信息和量子信息来构造,因此无法实现瞬间传输。量子隐形传态利用量子纠缠态作为通道, 利用量子作为载体, 把信息从一个地方传递到另一个地方。量子隐形传态的任务可以简单地描述为:假设存在一对共享的量子比特为 A、B,利用A、B来传送量子态C。将A、B分别置于系统的两端,现将量子比特A和C作幺正变换,测量后得到两个经典量子比特的信息,在这个过程中两个量子比特被破坏。量子比特B现在包含了关于C的信息,但观测者仍无法得到C的任何信息,量子比特B处于四个任意的量子态之一。现在需通过经典通信通道将A的测量结果发送到B端,根据A的测量结果,对B作相应的幺正变换, 此时量子比特B的状态变为C,实现了量子态的传送。

四、量子通信技术的发展现状

理想量子通信与传统通信相比,有着安全、无障碍通信等优势,但目前仍难以实现,量子测量、量子态的控制仍在不断完善,基于纠缠的量子隐形传态方式仍处在实验室阶段。2012年6月,潘建伟团队在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定了技术基础。2016年8月16日,中国国成功发射全球首颗量子科学实验卫星“墨子号”,标志着中国在量子通信领域又迈出重要一步。“墨子号”的主要科学目标是借助卫星平台,进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。并在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。量子技术的迅速发展,预示着量子科技的无线前景,将给人类生活和生产带来革命性的成果,对国防、对经济有着重要影响。因此,我们应加快量子通信技术实用化进程,在国际技术竞争中占据有利地位。

参 考 文 献

[1] 《量子安全通信与量子信道理论有关问题的研究》王敏杰

[2] 《量子纠缠技术与量子通信》1007-9416(2012)10-0060-01舒娜 石际

量子力学和量子纠缠的区别范文第2篇

量子力学是当代科学发展中最成功、也是最神秘的理论之一。其成功之处在于,它以独特的形式体系与特有的算法规则,对原子物理学、化学、固体物理学等学科中的许多物理效应和物理现象作出了说明与预言,已经成为科学家认识与描述微观现象的一种普遍有效的概念与语言工具,同时也是日新月异的信息技术革命的理论基础;其神秘之处在于,与其形式体系的这种普遍应用的有效性恰好相反,量子物理学家在表述、传播和交流他们对量子理论的基本概念的意义的理解时,至今仍未达成共识。量子物理学家在理解和解释量子力学的基本概念的过程中所存在的分歧,不是关于原子世界是否具有本体论地位的分歧,而是能否仍然像经典物理学理论那样,把量子理论理解成是对客观存在的原子世界的正确描述之间的分歧。

在量子力学诞生的早期岁月里,这些分歧的产生主要源于对量子理论中的波函数的统计性质的理解。因为量子力学的创始人把量子力学理解成是一种完备的理论,把量子统计理解成是不同于经典统计的观点,在根本意义上,带来了量子力学描述中的统计决定性特征。而理论描述的统计决定性与物理学家长期信奉的因果决定论的实在论研究传统相冲突。在当时的背景下,对于那些在经典物理学的熏陶下成长起来的许多传统物理学家而言,对量子力学的这种理解是难以容忍的。这些物理学家仍然坚持以经典实在观为前提,希望重建对原子对象的因果决定论的描述。这种观点认为,现有的量子力学只是临时的现象学的理论,是不完备的,将来总会被一个拥有确定值的能够解决量子悖论的新理论所取代。量子哲学家普遍地把这种实在论称之为定域实在论,或者称为非语境论的实在论。从EPR悖论到贝尔定理的提出正是沿着这一思路发展的。这种观点把量子论中的统计决定论与经典实在论之间的矛盾,理解成是量子论与传统实在论之间的矛盾。

但是,自从1982年阿斯佩克特等到人完成的一系列实验,没有支持定域隐变量理论的预言,而是给出了与量子力学的预言相一致的实验结果以来,量子论与传统实在论之间的矛盾焦点,由对量子理论中的统计决定性特征的质疑,转向了对更加基本的量子测量过程中的“波包塌缩”现象的理解。因为量子测量问题是量子理论中最深层次的概念问题。冯诺意曼在本体论意义上引入量子态的概念来表征量子实在的作法,直接导致了至今难以解决的量子测量难题。到目前为止,所有的量子测量理论都是试图站在传统实在论的立场上,对量子测量过程作出新的解释。玻姆的本体论解释在承认量子力学的统计性特征,把量子世界看成是由客观的不确定性、随机性和量子纠缠所支配的世界的前提下,通过假设非定域的隐变量的存在,寻找对量子测量过程的因果性解释。量子哲学家把这种实在论称为非定域的实在论。[1] 多世界解释在承认现有的量子力学的形式体系和基本特征是完全正确的前提下,通过多元本体论的假设来对具有整体性特征的量子测量过程作出整体论的解释。量子哲学家把这种实在论称为非分离的实在论。[1]

量子测量现象的非定域性和非分离性所反映的是量子测量过程的整体性特征。问题是,相对于科学哲学研究而言,如果把量子测量系统理解成是一个包括观察者在内的整体,我们将永远不可能在观察者与被观察系统之间作出任何形式的分割。而观察者与被观察系统之间的分界线的消失,将会使我们在不考虑观察者的情况下,对物理实在进行客观描述的梦想彻底地破灭。这是因为,一方面,如果我们认为量子力学的形式体系是正确而完备的理论,那么,就能够用量子力学的术语描述包括观察者在内的整个测量过程。这时,观察者成为整个测量系统中的一个组成部分参与了测量中的相互作用;另一方面,如果我们仍然渴望像以可分离性假设为基础的经典测量那样,在以整体性假设为基础的量子测量系统中,也能够得到确定而纯客观的测量结果,那么,他们必须要在观察者与被观察的量子系统之间作出某种分割,观察者才有可能站在整个测量系统之外进行观察。然而,在量子测量的具体实践中,这个重要的“阿基米德点”是永远不可能得到的。因为对量子测量系统进行的任何一种形式的分割,都必然会导致像“薛定谔猫”那样的悖论。这样,关于量子论与实在论之间的矛盾事实上转化为,在承认量子力学的统计性特征的前提下,如何解决量子测量的整体性与传统实在论之间的矛盾。

以玻尔为代表的传统量子物理学家在创立了量子力学的形式体系之后,并不追求从量子测量现象到量子本体论的超越中提供一种本体论的理解。而是在认识论和现象学的意义上做文章。玻尔认为,观察的“客观性”概念的含义,在原子物理学的领域内已经发生了语义上的变化。在这里,客观性不再是指对客体在观察之前的内在特性的揭示,而是具有了“在主体间性的意义上是有效的”这一新的含义。这种把“客观性”理解成是“主体间性”的观点,在认识论意义上,所隐藏的直接后果是,使“客观性”概念失去了与“主观性”概念相对立的基本含义,从而使量子力学成为支持科学的反实在论解释的一个重要的立论依据。与此相反,近几十年发展起来的多世界解释,试图以多元本体论的假设为前提,恢复对客观性概念的传统理解;玻姆的本体论解释则是以粒子轨道与真实波的二元论假设为代价,把测量过程中的整体性特征归结为是量子势的性质。这两种解释虽然在理解量子测量现象时坚持了传统实在论的立场。但是,这些立场的坚持是以在量子力学中增加某些额外的假设为代价的。这正是为什么近几十年来,反思与研究量子力学与量子测量的概念基础问题,成为不计其数的论著和论文所讨论的中心论题的主要原因所在。

到目前为止,在量子物理学家的心目中,微观客体的非定域性特征和量子测量的非分离性特征已经成为不争的事实。如果我们站在科学哲学的立场上,像当初接受量子统计性一样,也接受量子力学描述的微观系统的这种整体性特征。那么,量子测量过程中被测量的系统与测量仪器(包括观察者在内)之间的整体性关系将会意味着,在微观领域内,我们所得到的知识,事实上,总是与观察者密切相关的知识。这个结论显然与长期以来我们所坚持的真理符合论的客观标准不相容。因此,接受量子力学的整体性特征,就意味着放弃真理符合论的标准,需要对传统实在论的核心概念——理论和真理的性质与意义——进行重新理解。这样,现在的问题就变成是,能否在接受量子力学的统计性和整体性特征的前提下,阐述一种新的实在论观点呢?如果答案是否定的,那么,科学实在论将永远不可能得到辩护;如果答案是肯定的,那么,与理论的整体性特征相协调的实在论是一种什么样的实在论呢?这正是本文所关注的主要问题所在。

2.认识论教益:隐喻思考与模型化方法的突现

自近代自然科学产生以来,公认的传统实在论的观点是建立在宏观科学知识基础之上的一种镜像实在论。在宏观科学的研究领域内,观察者总是能够站在整个测量系统之外,客观地获得测量信息。在有效的测量过程中,测量仪器对测量结果的干扰通常可以忽略不计。测量结果为理论命题的真假提供了直接的评判标准,使命题和概念拥有字面表达的意义(literal meaning)或非隐喻的意义和指称。因此,镜像实在论是以观察命题的真理符合论为前提的。

真理符合论的最实质性的内容是,坚持命题与概念同实际的事实相符合。长期以来,科学家一直把这种观点视为是科学研究活动的价值基础。

维特根斯坦在其著名的《逻辑哲学导论》一书中,把真理的这种符合论观点表述为:就像唱片是声音的画像并具有声音的某些结构一样,命题所描述是事实的画像,并具有与事实一致的结构。因为用语言来思考和说话,就是用语言来对事实作逻辑的模写,它类似于画家用线条、色彩、图案来描绘世界上的事物。所以,用语言描述的图象与世界的实际图象之间具有同构性。1933年,塔尔斯基对这种真理观进行了定义。在当前科学哲学的文献中,人们习惯于用“雪是白的”这一命题为例,把塔尔斯基对真理的定义形象地表述为:“雪是白的”是真的,当且仅当,雪是白的。

普特南把塔尔斯基对真理的这种定义概括为“去掉引号的真理论”。塔尔斯基认为,要想使“‘雪是白的’是真的”,这个句子本身成真,当且仅当,“雪是白的”这个事实是真实的,即我们能够得到“雪是白的”这一经验事实。这个看似简单的句子隐含着两层与常识相一致的符合关系:第一层的相符合关系是,语言表达的命题与实际事实相符合;第二层的相符合关系是,观察得到的事实与真实世界相符合。在日常生活中,像“雪是白的”这样的经验事实是非常直观的,只要是一个正常的人,都有可能看到“雪确实是白色的”这个实际存在的事实。因此,人们对它的客观性不会产生任何怀疑,能够作为“‘雪是白的’是真的”这个句子的成真条件。

然而,量子力学揭示出的微观测量系统中的整体性特征,既限制了我们对这种理想知识的追求,也向传统的客观真理标准的价值观提出了挑战。这是因为,在量子测量的过程中,对命题的这种理想的描述方式和对对象的如此单纯的观察活动,已经不再可能。以玻尔为代表的许多物理学家虽然在量子力学诞生的早期就已经意识到这一点。但是,在科学哲学的意义上,他们在抛弃了真理符合论之后,却走向了认识论的反实在论;冯诺意曼的测量理论以真理符合论为基础,要求在观察者与测量仪器之间进行分割的做法,直接导致了量子测量中的“观察者悖论”;现存的非分离与非定域的实在论解释,也是以真理符合论为基础,在量子力学的形式体系中增加了某些难以令人接受的额外假设,来解决量子测量难题。从哲学意义上看,这种借助于额外假设来使量子力学与实在论相一致的作法并没有唯一性。它不过是借助于各种哲学的想象力来解决量子测量难题而已。

由此可见,量子测量难题的产生,实际上是以真理符合论为基础的传统实在论的观点,来理解量子测量过程的整体性特征所导致的。现在,如果我们像放弃经典的绝对时空观,接受相对论一样,也放弃真理符合论的实在论,接受现有的量子力学。那么,在当代科学哲学的研究中,我们需要以成功的量子力学带给我们的认识论教益为出发点,对理论、概念和真理的性质与意义作出新的阐述。量子力学所揭示的微观世界与宏观世界之间的最大差异在于,我们对微观世界的内在结构的认知,不可能像对宏观世界的认知那样,使观察者能够站在整个测量语境的外面来进行。

这就像盲人摸象的故事一样,不同的盲人从大象的不同部位开始摸起,最初,他们所得到的对大象的认识是不相同的,因为每个人根据自己的触摸活动都只能说出大象的某一个部分。只有当他们摸完了整个大象时,他们才有可能对大象的形状作出客观的描述。然而,虽然他们对大象的描述始终是从自己的视角为起点的,并建立在个人理解的基础之上。但是,不可否认的是,他们的触摸活动总是以真实的大象为本体的。在微观领域内,量子世界如同是一头大象,物理学家如同是一群盲人,有所区别的是,物理学家对微观世界的认识不可能是直接的触摸活动,而只能借助于自己设计的测量仪器与对象进行相互作用来进行。在这个相互作用的过程中,包括观察者在内的测量语境成为联系微观世界与理论描述之间的一个不可分割的纽带。

如果把这种量子力学的这种整体性思想延伸外推到一般的科学哲学研究中,那么,可以认为,科学家所阐述的理论事实上是一个产生信念的系统。科学家借助于模型化的理论,把他们对世界的认知模拟出来。理论模型所描述出的世界与真实世界之间的关系是一种内在的、整体性的相似关系。这种相似分为两个不同的层次:其一,在特定的语境中,模型与被模拟的世界在现象学意义上的初级相似。这种相似是指,在这个层次上,我们只是能够通过某些关系把现象描述出来,但是,对现象之所以发生的原因给不出明确的说明;其二,在特定的语境中,模型与被模拟的世界在认识论意义上的高级相似。这种相似是指,理论模型达到了与真实世界的内在结构与关系之间的相似。所以,现象学意义上的相似最后会被成熟理论所描述的认识论意义上的结构相似所包容或修正。

这两个层次之间的相似关系是建立在经验基础之上的,而不是建立在逻辑或先验的基础之上。这样,虽然科学家在建构理论模型的过程中,总是不可避免地存在着许多非理性的因素。但是,在根本的意义上,他们的建构活动是以最终达到使理论描述的可能世界与真实世界之间的结构与关系相似为目的的。因此,测量语境的存在成为科学家建构活动的一个最基本的制约前提。建构理论模型的活动是一种对世界的认知活动。建构活动中的虚构性将会在与公认的实验事实的比较中不断地得到矫正,直至达到与真实世界完全一致为止。或者说,在一定的语境中,当从理论模型作出的预言在经验意义上不断地得到了证实的时候,类比的相似性程度将随之不断地得以提高;当科学共同体能够依据理论模型所描述的可能世界的结构来理解真实世界时,相似性关系将逐渐地趋向模型与世界之间的一致性关系。

在这种理解方式中,真理是物理模型与真实世界之间的相似关系的一种极限,是在一定的语境中完善与发展理论的一个最终结果。这样,在科学研究中,真理成为科学研究追求的一个最终目标,而不是科学研究的逻辑起点。或者说,把真理理解成是在科学的探索过程中,成熟的物理模型与世界结构之间达成的一致性关系。对真理的这种理解,使过去追求的客观真理变成了与语境密切相关的一个概念。超出理论成真的语境范围,真理也就失去了存在的前提和价值。这样,与玻尔把理论的客观性理解成是主体间性的观点所不同,本文是通过改变对真理意义的理解方式,挽救了理论的客观性。

如果把科学活动理解成是对世界的模拟活动,那么,在理论的建构活动中,科学理论的概念与术语所描述出的可能世界,只在一定的语境中与真实世界具有相似性。所以,相对于不可能被观察到的真实世界而言,科学的话语(scientific discourses)将不再具有按字面所理解的意义,而是只具有隐喻的意义。只有当理论与世界之间的关系趋向于一致性关系时,对某些概念的隐喻性理解才有可能变成字面语言的理解。所以,在科学研究的活动中,研究对象越远离日常经验,科学话语中的隐喻成份就越多。这也许是为什么在量子理论产生的早期年代,物理学家在理解微观现象时,不可能在微观对象的粒子性和波动性之间作出任何选择的原因所在。实际上,微观粒子的波——粒二象性概念只是在现象学意义上的一种典型的隐喻概念,它们并不拥有概念的字面意义,而只具有隐喻的意义。因此,它们不是对真实世界的基本结构的实际描述。正如惠勒的“延迟实验”所揭示的那样,物理学家不可能选择用其中的一类图象来解释另一类图象。只有当关于微观世界的内在结构在可能世界的模型中得到全部模拟时,原来的波——粒二象性的概念才被一个更具有普遍意义的新的量子态概念所取代。

如果科学语言只具有隐喻的意义,科学理论所描述的是可能世界,那么,物理学家对测量现象的描述,也只是一种隐喻描述,而不是非隐喻的按照字义所理解的描述。这种描述既依赖于观察者的背景知识,也依赖于当时的技术发展的水平。就像格式塔心理学所阐述的那样,同样的图形、同一个对象,不同的观察者会得出不同的结论。在这个意义上,测量与观察不再是纯粹地揭示对象属性的一种再现活动,而是观察者与对象发生相互作用之后,受到测量语境约束的一种生成活动。在这个活动中,就现象本身而言,至少包含有两类信息:一是来自对象自身的信息;二是包括观察者在内的测量系统内部发生相互作用时新生成的信息。

从这个意义上看,微观粒子在测量过程中表现出的波——粒二象性只是一种现象学意义上的相似,而不是微观粒子的真实存在。在大多数情况下,现象还不等于是证据,把现象作为一种证据表述出来,还要受到物理学家的背景知识和社会条件的制约,甚至受到已接受的可能世界的基本理念的制约。按照对理论、真理和测量的这种理解方式,由“波包塌缩”现象所反映的问题,就变成了提醒物理学家有必要对过去所忽视的物理测量过程的各个细节,对宏观与微观之间的过渡环节,进行更细致的理论研究的一个信号,成为进一步推动物理学发展的一个技术性的物理学问题,而不再是观念性的与实在论相矛盾的哲学问题。

玻姆的量子论是试图用非隐喻的字面语言对真实的量子世界进行描述,而现有的量子力学在它的产生初期则是用隐喻的语言对量子世界的一种模拟描述。正是由于理论模型具有的相似性,才使得薛定谔的波动力学与海森堡等人的矩阵力学能够得出完全相同的结果,并最终证明两者在数学上是等价的。在量子力学的语境中,不论是波动图象,还是粒子图象都只是理论与世界之间的现象学意义上的初级相似。在以后的发展中,量子力学所描述的可能世界的预言与真实世界的实验现象相一致的事实说明,当冯诺意曼在希尔伯特空间以量子态为基本概念建立了量子力学的公理化体系之后,这些现象学意义上的相似已经上升到认识论意义上的结构相似,说明量子力学描述的可能世界与真实世界在微观领域内是一致的。这时,以波——粒二象性为基础的隐喻图象被整体论的世界图象所取代。这也许正是物理学家可以在抛开哲学争论的前提下,只注重量子物理学的技术性发展的一个原因所在。而相比之下,玻姆的理论不过是追求传统意义上的非隐喻的字面图象和传统哲学观念的一种理想产物。

在对理论、概念和真理的意义的这种理解方式中,理论与世界之间的一致性关系不是建立在命题与概念的层次上,而是以测量语境为本体,建立在物理模型与真实世界之间从现象学意义上的初级相似到认识论意义上的结构相似的基础之上的。测量语境的本体性,成为我们在认识论意义上承认科学理论是一个信念系统的同时,拒绝后现代主义者把理论理解成是可以随意解读的社会文本的极端观点的根本保证。所以,真理的意义不是取决于词、概念和命题与世界之间的直接符合,而是在于理论整体与世界整体之间在逼真意义上的一致性。由于可能世界与真实世界之间的这种一致性关系在一定程度上是依赖于社会技术条件的动态关系。因此,以一致性为基础的真理是依赖于语境的真理,它永远是一个动态的和可变的概念,而不是静止的和不变的概念。这显然是对“把科学研究的目的理解为是追求真理”这句话的最好解答。

3.从思维方式的变革到语境实在论的基本原理

当我们把对理论、真理和意义的这种理解方式应用于对真实世界的认识时,也可以在测量语境的基础上,对理论进行实在论的解释。所不同的是,这种实在论不再是把科学理论理解成是提供关于世界的某种镜象图景的、以强调语言与命题的真理符合论为基础的那种实在论,而是把科学理论理解成是通过先对世界的模拟,然后,与真实世界趋于一致的、依赖于测量语境的实在论。不同的理论模型和测量语境可以提供对世界的不同描述。但是,通过进一步的观察或实验,我们可以判断哪一个模型能够更好地与世界相一致。在这里,理论模型与世界之间的关系是一种相似关系,而不再是相符合的关系;测量结果与对象之间的关系是在特定条件下的一种境遇性关系,而不再是一种纯粹的再现关系。我们把这种与量子力学的整体性特征相一致的量子实在论称为“语境实在论”。用语境实在论的观点取代传统实在论的观点,必然带来思维方式的根本转变。需要以整体性的语境论的思维观取代传统思维观。这种思维方式的逆转主要通过下列几个方面体现出来:

首先,在本体论意义上,用普遍的本体论的关系论(global-ontological relationalism)的观点取代传统的本体论的原子论(ontological atomism)的观点。承认关系属性或倾向性属性的存在,承认概率的实在性,承认世界中的实体、属性与关系之间的整体性。传统的原子本体论总是把世界理解成是由可以进行任意分割的部分所组成,整体等于部分之和,牛顿力学是这种本体论的一个典型范例;关系本体论则把世界理解成是一个不可分割的整体,整体大于部分之和,量子力学是这种本体论的一个典型范例。与原子本体论中认为实体可以独立地拥有自身的属性所不同,在关系本体论中,实体及其属性总是在一定的关系中体现出来。这里存在着两层关系:一层是实体之间的内在关系属性;另一层是实体固有属性表现的外在关系条件。前者具有潜存性,后者为潜存性向现实性的转变创造了有利条件。 其次,在认识论意义上,用理论模型的隐喻论的观点取论模型的镜象论的观点。传统的模型镜象论观点把理论理解成是命题的集合,命题与概念的指称和意义是由对象决定的,它们的集合构成了对对象的完备描述;而模型隐喻论的观点虽然也认为理论能够以命题的形式表示出来,但是,理论不是命题的集合,而是包含有模仿世界的内在机理的模型集合。理论与世界之间的关系不是传统的相符合关系,而是在一定的语境中,理论描述的可能世界与真实世界之间以相似为基础的一致性关系。理论系统的模型与真实系统之间的相似程度决定理论的逼真性。这样,真理不再是命题与世界之间的符合,而是成为理论的逼真性的一种极限情况。或者说,当理论所描述的可能世界与真实世界相一致的时候,理论的真理才能出现。这是对基本的认识论概念的倒转:传统的逼真性理论是用命题或命题集合的真理作为基本单元,来衡量理论距真理的距离,即理论的逼真度;而现在正好反过来,是通过对逼真性概念的理解来达到对真理的理解。

第三,在方法论意义上,用语义学方法取代传统的认识论方法。在传统的认识论方法中,是用命题的真理或图象与世界之间的逼真度的术语来表达科学实在论的一般论点。然而,这种方法使我们从开始就需要清楚地辨别对一些解释性描述的理解。例如,在相同的研究领域内,我们为什么能够说,一个理论比与它相竞争的另一个理论更逼近真理或更远离真理?对于诸如此类的问题,如果没有一个明确的和可辩护的回答方式,那么,逼真性概念要么是空洞的;要么就是不一致的。结果,对理论的逼真性的论证反而成为对“认识的谬误(epistemic fallacy)”的证明,并在某程度上支持了认识论的怀疑论观点。但是,如果我们在语义学的语境中,通过对逼真性概念的分析与辩护,然后,衍生出理论的真理,对上述问题的理解方式将不会陷入如此的认识论困境。并且从认识论的怀疑论也不会推论出语义学的怀疑论。

第四,在经验的意义上,用现象生成论的测量观取代现象再现论的测量观。所谓现象再现论的测量观是指,把物理测量结果理解成是对对象固有属性的一种再现,测量仪器的使用不会对对象属性的揭示产生实质性的干扰,它扮演着一个单纯意义上的工具角色。理论术语能够对这些观察证据进行精确的表述。观察证据的这种纯粹客观性成为建构与判别理论的逻辑起点;而现象生成论的测量观则认为,测量是对世界的一种透视,测量结果是在对象与测量环境相互作用的过程中生成的。测量结果所表达的经验事实,不是纯粹对世界状态的反映,因为经验事实存在于我们的信念系统之中,而不是独立于观察者的意识或论述之外与世界的纯粹符合,只是在特定的测量语境中的一种相对表现,是相互作用的结果。或者说,测量语境构成了对象属性有可能被认识的必要条件。

所以,理论的逼真度与科学进步之间的联系,应该在经验的意义上来确立。科学进步的记录并不是真命题的积累,而是从模型系统与真实系统之间的相似性出发,用逼真度的概念衡量科学研究纲领接近真理的程度。在这里,相似性不是一个命题,也不是两个世界之间的一种固定不变的关系,而是依赖于语境的一个程度性的概念。它的内容将会随着我们对世界的不断深入的理解而发生变化。所以,科学进步不是真命题积累的问题,而是理论的成功预言与经验事实的函数。

第五,在语义学的意义上,用整体论或依赖于语境的隐喻语言范式取代非隐喻的字面真理范式(literal-truth paradigm)。从17世纪开始,非隐喻的字面真理的范式就已经被科学家广泛地接受为是理想的语言。其动机是期望把理论模型的言语和论证,建立在优美而简洁的数学和几何的基础之上。当时的理性论者和经验论者把科学语言当成是理想的合乎理性的语言,或者说,把科学的经验和知识看成是人类经验和知识的典范。这种观点认为,所有的知识与真实世界之间的关系是根据表征知识的命题方式来讨论的,科学语言与概念的意义由它所表征的世界来确定,它们不仅在本质上具有固有的字义,而且语言本身的字面意义就是使用词语的标准。语言的意义不仅与语言的用法无关,而被认为是客观地对应于世界的各个方面。科学的话语总是关于自然界的现象、内在结构和原因的话语。

然而,在整体论的隐喻语言范式中,理论所讨论的是由科学共同体提出的关于世界的因果结构的信念,知识与真实世界之间的关系是根据可能世界与真实世界之间的相似关系来讨论的。在这里,两个世界之间的相似程度的提高是它们共有属性的函数。在隐喻的意义上,语言与概念的意义是极其模糊的和语境化的,隐喻的表达通常并不直接对应于世界中的实体或事件:即,按照字面的意义理解隐喻的陈述常常是错误的。例如,在理解量子测量现象时,实验已经证明,或者强调使用粒子语言,或者强调波动语言都是失败的。这也是玻尔的互补性原理在量子力学的时期岁月里容易被人们所接受的高明之处。从本文的观点来看,关于微观世界的粒子图象或波动图象只不过是传统思维惯性的一种最显著的表现而已。事实上,这两种图象都只是一种隐喻意义上的图象,而不代表微观世界的真实图象。隐喻与其它非字面的言词是依赖于语境的。正如后期维特根斯所言,语言与概念的意义依赖于活动,使用一个符号的充分必要条件必须包括对活动的描述。

在这种整体论的思维方式的基础上,我们可以把语境实在论的主要观点,总结为下列六个基本原理:

本体论原理:在物理测量的过程中,物理学家所观察到的现象是由不可能被直接观察到的过程因果性地引起的。这些不可能被直接观察到的过程是独立于人心而自在自为地存在着的。

方法论原理:对一个真实过程的理论模型的建构,是对不可能被观察到的真实世界的机理和结构的模拟。对于真实世界而言,它在现象学意义上的表现与它的内在结构或机理在定性的意义上具有一致性。即,理论模型具有经验的适当性。

认识论原理:理论描述的可能世界与真实世界只具有的相似性,它们之间的相似程度是它们具有的共同特性的函数。这些共性是在实验与测量语境中找到的。

语义学原理:在一定的语境中,理论模型与真实系统之间的相似关系决定理论的逼真性。在理想的情况下,真理是理论描述的可能世界逼近真实世界的一种极限。

价值论原理:科学理论的建构在最终意义上总要受到实验证据的制约,科学理论的发展总是向着越来越接近真实世界机理的方向发展的。

伦理学原理:包括人类在内的自然界具有不可分割的整体性,关于人类行为的评价标准应该建立在人与自然的整体性关系上。

4.科学进步的语境生成论模式

探讨科学进步的模式问题一直是科学哲学研究中的重大理论问题之一。不同的学派提出了不同的观点。逻辑实证主义者继承了自培根以来的哲学传统,认为科学的发展在于对经验证实的真命题的积累。理论所包括的真命题越多,它就越逼近真理。波普尔把理论逼近真理的这种性质称为“逼真性”,逼真性的程度称为“逼真度”。他认为,理论是真内容与假内容的统一,理论的逼真度等于理论中的真内容与假内容之差。而真内容由理论中那些得到经验确认的真命题所组成。真命题越多,理论的逼真度就越高。在所有这些观点中,逼真性的主要特性是用命题与事实的符合作为近似真理的基本单元。换言之,是用命题真理的术语来理解理论的逼真性。在这里“符合”没有程度上的差别;逼真性与真理之间的关系是部分与整体之间的关系。这种“符合”或“与事实相符”包含着四个方面的关系:其一,句子的主语与谓词之间处于相互联系的状态;其二,事态(the state of affairs)与主语之间的指称关系;其三,谓词表达与被选择的事态之间的指称关系;其四,说话者所选择的对象与事态之间的相适合关系。[1]

然而,这种以真命题的多少来衡量理论的逼真度的方法,似乎没有办法回答诸如下面的那些问题:如果一个理论最后被证明是与事实不相符,那么,这个理论怎么可能接近真理呢?比如说,在当前的情况下,量子场论还是一个不成熟的理论,它在未来一定会被加以修改,那么,我们能够说,量子场论不如牛顿力学与事实更相符吗?此外,“符合事实”这个概念也会遇到同样的问题:如果某个理论根本就是错误的,我们又怎能说,它与事实符合的更好或更糟呢?也许有些在表面上曾经显示出具有某种逼真性的理论,实际上,它却在根本意义上就是错的。例如,化学中的“燃素说”、物理学中的“地心说”,等等,这些理论都曾经在科学家的实际工作中,起到过积极的作用。但是,后来的发展证明,它们都是错误的假说。另一方面,这种方法还无法解释为什么在前后相继的理论中使用的同一个概念,却具有不同的内涵这样的问题。例如,经典物理学中的质量概念不同于相对论力学中的质量概念;量子力学的中微观粒子概念也比经典物理学中的粒子概念拥有更丰富的内涵。库恩在阐述他的科学进步的范式论模式时,为了避免上述问题的出现,走向了彻底的相对主义。

如果我们用强调理论描述的物理模型与世界之间的相似性比较,取论中包含的真命题的比较来理解理论的逼真性,那么,上述问题就很容易得到解决。在特定的语境中,并存着的相互竞争的理论,分别描绘出几个相互竞争的可能世界,这些可能世界与真实世界之间的相似程度决定理论的逼真性。逼真度越高的理论,将会越客观、越接近于真理。真理是理论的逼真度等于1时的一种极限情况。例如,牛顿力学比伽里略的力学更接近真理的真正理由是,因为牛顿物理学所描绘的世界模型比伽里略物理学所描绘的世界模型与真实世界更相似。而不应该把这个结论替换成是,在每一个方法中通过真命题的计数来使它们与精确地说明真实世界的真命题的总数进行比较后作出的选择。前后相继的理论中所使用的共同概念的意义也是依赖于可能世界的。不同层次的可能世界虽然赋予同一个概念以不同的内涵。但是,由于更深层的可能世界更接近真实世界的内在结构,所以,对为什么同一个概念会有不同内涵的问题就容易理解了。

我们把由理论描绘的可能世界逼近真实世界的过程,以及前后相继的理论之间的更替关系总结为:

前语境阶段——语境确立阶段——语境扩张阶段——语境转换阶段

——新的语境确立阶段……

在科学进步的这个模式中,前语境阶段是指,当科学进入一个新的研究领域时,面对不可能被旧理论所解释的有限数量的实验证据和存在的重要问题,科学家首先是进行大胆的创新和积极地猜测,提出可能与证据相一致的相互竞争的理论或假说。这些理论或假说分别描绘出了相互竞争的各种可能世界的图象。这个时期,科学家在建构理论时,通过模型与现象的比较来约束他们的想象。或者说,他们的富有创造性的想象力是一种意向性的想象,而不是完全随意的想象。这种意向性的信息直接来自不可能被直接观察到的对象本身。科学家在相互竞争的理论中作出选择时,依赖于两个主要的归纳根据:其一,相信任何一个理论模型的建构都是为了尽可能准确地模拟真实世界的结构和机理;其二,依据模型所产生的信念能够作为成为设计新的实验方案的基础,这个实验方案的设计是为了探索世界,和检验模型与它所表征的世界之间的类似程度。在特定领域内和一定的历史条件下,根据一个理论的信念所设计的实验越新颖,在得到应用之后,越能够证明理论的成功性。同时,理论的调整总是向着与新的实验结果相一致的方向进行的。而新的实验结果是由自然界中某种未知的因果机理引起的。

然而,说明的成功(explanatory success)只是理论逼近真理的一个象征或一个结果,或者说,说明的成功只是理论逼近真理的一个必要条件。凡是逼真的理论都必定能够对实验现象作出成功的说明。但是,并不是每一个拥有成功说明的理论都是逼真的理论。在理论的说明中,理论的逼真性与不断增加的成功之间的联系应该是一个认识论问题,而不是一个语义学问题。一个完整的科学理论从产生到成熟通常要经过三个阶段:其一,对现象的描述阶段,这个阶段得到了在经验上恰当的模型。例如,在量子力学之前,玻尔等人提出的各种原子模型;第二个阶段是建立一个理论的说明模型。例如,现有的量子力学的数学形式体系。第三个阶段是为成功的说明模型寻找一种可理解的机理,或者说,对说明模型提供语义学的基础。相对于一个成熟的科学理论而言,现象——模型——机理三者之间的相互关系具有内在的不可分割的整体性。这也就是为什么原子物理学家在理解量子力学的内在机理的问题上没有达成共识时,产生了量子力学的解释问题的原因所在。

在这里,我们所说的模型是指物理模型而不是仅仅指数学模型。物理模型除了包括数学模型之外,还包括理解世界的构成机理的模型。物理模型是为数学模型提供一个语义学基础。例如,分子运动论模型是解释压强公式的语义学基础;场的观点是理解引力理论的语义学基础。所以,物理学中的模型是指真实物理系统的替代物,它既具有解释的作用,也能够把抽象的数学系统翻译为一个可理解的论述。正是在这个意义上,物理学模型是指一个模型簇。由这些模型簇所描绘的可能世界的结构与真实世界的结构之间的相似关系,在选择理论时是很重要的。一方面,它能够使理论在科学实践中被不断地修改和扩展以适应新的现象,而不是静止的和孤立的;另一方面,它使相互竞争的理论之间的选择在科学实践的规则与活动之内自然地得到了求解。这时,被淘汰掉的理论并非必须要被证伪(尽管证伪也是因素之一),而是如同生物进化那样是自然选择的结果。

在这里,把逼真度作为选择理论的标准,与要么强调经验证实,要么强调经验证伪的标准不同,它永远是动态的和依赖于研究语境的概念。它既有助于把淘汰掉的理论中的某些合理化因素进行再语境化,也能够确保科学描述和与此相关的实验技巧与独立于人心的世界之间建立起一种物理联结,从而坚持了存在着一个不可能被观察到的独立于人心的世界的本体论的实在论观点。大体上,衡量可能世界与真实世界之间的结构或机理的相似程度可以通过它们之间的共有属性(或共同特征)来进行。如果用S(A ,B)表示两个世界之间的基本特征的相似关系,用 A∩B表示共有属性,A – B和 B - A表示它们之间的差异,那么,在定性的意义上,这些量之间的关系可以定性地表示为:[1]

S(A ,B)= C1F(A∩B)- C2F(A - B)- C3F(B - A)

这个公式说明,两个世界之间的相似关系是它们的共性与差异的函数。当C1远远大于C2和C3时,两个系统之间的共性将比差异处于更重要的支配地位。其中,三个系数C1、C2和C3 的值是通过实验来确定的。这样,我们就有可能在经验的意义上来研究相似关系。在经验的意义上,如果相互竞争的理论中的某个理论的描述和说明模型能够完全依据当前的实验结果和本体论概念被加以校准,那么,我们就可以认为,这个理论是似真的(plausible)。理论越拟真,它就越逼真。

在一个特定的语境中,当一个理论的说明与理解模型能够完全经得起经验的考验时,科学共同体将认为理论描绘的可能世界与真实世界之间达到了某种一致性。这时,科学的发展进入了语境确立的阶段。这个阶段相当于库恩的常规科学时期或范式形成时期。这时,科学家不仅拥有共同的信念和共同的语言,而且拥有对真实世界的共同图象。他们相信,理论描绘的可能世界代表了真实世界的内在机理;理论描绘的图象就是不可观察的真实世界的图象。为了进一步探索真实世界的精细结构,科学家常常会根据现有理论提供的信念和约定,设计新的实验规划,预言新的实验现象,特别是运用成熟理论中的理论实体进行实验操作,从而形成了一个相对稳定的语境阶段。但是,这个相对稳定的语境边界是非常不确定的。

当科学家把成熟理论所揭示的世界机理作为一个范式和信念的基础,延伸推广到解释其它相关领域的现象时,科学的发展进入到语境的扩张阶段。其中,既包括理论研究的信念与方法的扩张,也包括以它的基本原理为基础的技术与实验的扩张。例如,在牛顿理论确立之后,不论是物理学还是化学家,他们都用牛顿力学的基本思想解释他们所面临的其它领域内的新的实验现象,并且成功地制造出了许多测量仪器;同样,现代技术的崛起和分子生物学、量子化学等学科的产生都是量子力学的基本原理成功应用的结果。所以,语境扩张的过程实际上是已有语境膨胀的过程。当科学共同体在语境扩张的过程中,遇到了与理论信念相矛盾的而且是他们料想不到的实验事实时,他们才有可能开始对理论的信念产生怀疑,这时,理论的应用边界,或者说,语境扩张的边界逐渐地变得明确起来,科学的发展开始进入语境转换阶段。在这个阶段,旧语境的扩张受到了限制,新的语境处于形成与培育当中。新的理论竞争也就随之开始了。随着新理论竞争的开始,科学共同体的信念也在不断地发生着改变,直到一个全新的语境形成为止。

当新的语境确立之后,不仅科学家确立了新的信念,而且他们对问题的求解值域也随之发生了改变。这时,原来前语境中的一些不合理的偏见,在新语境中得到了纠正。在前语境中是真理的理论,在后语境中失去了它的真理性。后语境的形成是伴随着新理论的确立而完成的。由于新语境比旧语境揭示出了更深层次的世界结构或机理。所以,它在理论信念、方法和技术层次的扩张与渗透力将会比旧语境更强、更彻底。这也就是,为什么量子力学的产生所带来的理论、方法与技术革命会比牛顿力学更深刻、更广泛的原因所在。但是,前后语境之间的界线是连续的。这时,就像新理论是对旧理论的一种超越一样,新语境也是对旧语境的一种超越。由于语境的变迁和运动是不断地向着揭示世界的真实机理的方向发展的。因此,在语境中生成的理论也使得科学的发展与进步向着不断地逼近真理的方向进行。本文把科学发展的这种模式称为“语境生成论模式”。

这里包括两个层次的生成,其一,理论的形成与完善是在特定的语境中进行的;其二,科学进步也是在语境的变更中完成的。但是,值得注意的是,强调语境化并不意味着使科学进步成为无规则的游戏。把理论系统放置于特定的语境当中,强调了系统的开放性和连续性。在这个意义上,语境论的事实也是一种客观事实。运用语境论的隐喻思考与模型化方法,不仅能够使科学进步过程中的微观的逻辑结构与宏观的历史背景有机地结合起来,而且能够使基本的内在逻辑的东西在历史的发展中内化到新的语境当中,从而使得语境在自然更替的同时,一方面,完成了理论知识的积累与继承的任务;另一方面,揭示出更深层次的世界机理。所以,语境生成论的科学进步模式既不会像库恩的范式论那样,走向相对主义,也不会像普特南那样,走向多元真理论。科学进步的语境生成论模式,既能够包容相对主义的某些合理成份,又能够坚持实在论的立场。

5.结语

从量子力学的认识论教益中抽象出的语境实在论的观点,是一种具有更广泛的解释力,并且有可能把许多观点有机地融合在一起的实在论观点。它不仅能够赋予量子力学以实在论的解释,而且为解决科学实在论面临的许多责难,理清上世纪末围绕“索卡尔事件”所发生的一场震惊西方学坛的科学大战,[1] 提供了一条可能的思路。法因曾经在《掷骰子游戏:爱因斯坦与量子论》一书中断言“实在论已经死了”。[2] 然而,我们通过对量子力学与实在论的分析,在放弃了传统的真理符合论之后,运用隐喻思考与模型化方法所得出的结论则是,“实在论还活着,而且活的很好”。

[1] D.Bohm and B.J.Hiley, The Unpided Universe: An ontological interpretation of quantum theory, Routledge and Kegan Paul, London (1993).

[1] Jeffrey Alan Barrett, The Quantum Mechanics of Minds and Worlds, Oxford University Press (1999).

[1] Jerrold L. Aronson, Rom Harré & Eileen Cornell Way, Realism Rescued: How Scientific progress of possible, Gerald Duckworth & Co.Ltd (1994): 136-137.

[1] Jerrold L. Aronson, Rom Harré & Eileen Cornell Way, Realism Rescued: How Scientific progress of possible, Gerald Duckworth & Co.Ltd (1994): 133.