首页 > 文章中心 > 量子力学知识点

量子力学知识点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学知识点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子力学知识点范文第1篇

关键词 量子力学 量子教育学 主观性

中图分类号:O413.1 文献标识码:A

量子力学所涵盖的一些思想,在哲学的研究中体现比较广泛,也对教学理论方面起了重要的作用,可以说量子力学对哲学思想的发展有着重要的促进作用。量子力学着重利用图景等表象来认识周围的世界,强调因果关系的认识,对后期形成的教育学理论具有参考性。但是,借助量子力学所形成的“量子教育学”则有很大的不同,这一教育学对原来的量子理论认识存在较大的偏差,充分强调自然科学。

1量子力学的缘起

1900年,量子假说出现在众人的认知里,现在的量子力学仍在不断完善,为后期的科学发展提供了重要的理论基础,可以说量子力学是量子理论的中心,它促进了原子能等一些先进技术的发展,为社会的重大发明打下基础,使人们更加清晰地认识到微观世界,并利用微观运动来更好地服务社会,是人类的重要发现,也是社会的伟大进步。

2量子力学的宇宙观

在宇宙世界中,对量子理论有较多的探讨,从已经存在的氢原子中,找到了量子级别的状态。对于电子而言,比原子更为复杂,这就要求必须要满足求解该原子的特定的方程来解出,并且要求其 场刚好环绕原子核产生驻波而求得。此外,量子态与别的驻波不一样,都有自己特定的频率,并与所蕴含的能量有关,每种量子状态都有所表征的能量。这就是说,预期任何一个态的能量都是一个具体量子所确定的,并不是模棱两可的,只要是有理论依据,就可以科学地估测态的能量多少。由于质子与电子之间存在着相互吸引的力,要想移动一个电子就必须要克服引力做功。

3量子的思维方式

人类思想总是处于不断发展中,当两种思想发生交集时,就会形成一个比较完整的、令人惊叹的思想成果,正如牛顿的世界观与量子理论产生彼此弥合的交集,才会让思想发展得如此迅速,才会让社会发展如此的快。量子思维方式给人类一个重要的启示,要求以人为中心,以人为主体。随着时代的进步和经济发展,信息技术逐渐融入了人的智慧和思想,他们彼此都是看不见的,没有确定的形状,但彼此交汇起来以后,就成了一种可以量化的物质,这是由于物质性比较弱。其实,量子物理学所产生相关的科学智慧,是人类社会发展的重要因素,也是文明进步的重要保障,可以说,量子物理学是计算机重要的组成部分,所形成的计算机芯片是重要的思维体现,量子物理学不仅是科学进步的前提,更是信息发展的重要保障,量子思维更是现代社会发展的必要方式。

4“量子教育学”的唯心主义

从产生量子力学后,“量子教育学”也随之不断发展,虽然也涉及到一些教育学方面的观点,但这些观点都是被众人早就接受了。如:学习是一个整体的过程,在这个过程中各知识点是相互联系、彼此交错的,以及还谈到了关键词:服务、个性化、互补等,但是,这些所谓的观点及结论不是原汁原味的,也不是从量子力学中演变而来,而是与它的原理相悖,从本质上讲,“量子教育学”就是一种唯心主义的表现。

贝克莱比较重视经验,认为所学的知识来源于经验,但是他却犯了一个致命的错误,认为感觉是世界真正存在的东西,其他的都是看不见的。他认为,知识是一切力量之源,但感觉是我们去探索未知世界,追求至高真理的唯一手段,只有能感觉到,才能被发现。也就是说:我们的主观性决定了我们所看见的世界,这也是量子教育学诠释的观点。他认为,只要消除了事物与观念的差异,认同事物等同于所谓的观念,并且观念可以感知任何世界上存在的事物,这样才会让我们的知识更加具有生命力。

5“量子教育学”的曲解

正所周知,量子力学不可能槲ㄐ闹饕搴筒豢芍论创造理论基础,而“量子教育学”却是唯心主义的重要思想来源,这是“量子教育学”对量子力学核心思维的歪曲,或者说对量子力学没有正确的认识,造成思想上出现截然不同的主张,另外,“量子教育学”过分强调感觉和经验,导致偏向于不可知论,与量子力学的思想相悖而驰。

“量子教育学”对量子力学概念和方法认识的偏差表现有。为了进一步认识光的本质特性,提出了波粒二象性的观念。此后,玻尔提出了“气补原理”,再一次诠释了波粒二象性的本质。“测不准”原理而是在某一个方面有较大的缺陷,不是粒子在宏观世界的不适用,只是说明不能单一地应用某一个方面,只有同时应用时才能为物理现象提高全面的解释。玻尔认为,波粒二象性在整个量子力学中的地位较高,它是一种可以很好地描述一种物理现象的原理,也可以说是解释因果关系的一种原理,它可以相互促进、相互排斥,这种互斥的关系不可或缺,这种互补关系后来被广大学者所接受。

6结语

近年来,量子力学逐渐被广大研究者重视起来,探讨量子力学的基本原理以及与量子教育学的重要关系,在量子理论的发展过程中,这已经留下了较多的论争。可以肯定的是量子力学对于科学的进步贡献了一份力量,把微观世界与宏观世界联系起来,而量子教育学并不是量子力学的正确认识,就本身的发展情况来看,量子教育学认同了后现代主义,成为了唯心主义的重要依据。

参考文献

[1] 贺天平.量子力学多世界解释的哲学审视[J].中国社会科学,2012(01):48-61,207.

[2] 乌云高娃.量子力学发展综述[J].信息技术,2006(06):154-157.

[3] 母小勇.量子力学与“量子教育学”[J].教育理论与实践,2006(07):1-5.

量子力学知识点范文第2篇

1目前面临的形式

大学物理课程是高等职业学院各工科学生的公共基础课程。物理学是科研和各现代技术工程的基础。大学物理课程包含了大量的物理学知识和物理学原理,既是非常重要的基础理论课程也是科学素质教育不可或缺的组成部分。大学物理课程的学习不但有利于培养学生的职业能力和职业素养,更加为学生学习专业的技术能力打下了坚实的基础。因此对于高职学生来说大学物理课程的学习是非常重要的。然而在目前阶段,高等职业的大学物理课程的教学基本类似于普通的高等学校的教学模式,即更加重视基础的物理学知识和物理学原理的讲授,缺乏学生的动手实践能力的培养。另一方面,高等职业学院的学生普遍存在入学分数较低,物理学基础知识薄弱,理解接收新知识的能力有限,主动学习能力较差等特点[4]。在进行大学物理教学过程中,传统教学主要采用基础知识讲授、教师实验反复演示,一讲一练、课后再练的方式巩固知识。主要注重于传授知识、偏重于解题技巧和解题方法的训练。这对于课时充足时是可行的也是有效的,但是随着社会经济的发展,知识和信息的不断丰富,学校开设的课程不断增多,学生需要学习的知识更加广泛,同时大学物理和其它的课程一样,课时大大削减,再加上物理演示实验仪器的有限性与物理科学技术的瞬息万变形成了鲜明的对比,继续沿用原来的教学方法就造成了学生听不懂,教师教不会,学生听懂了不会灵活运用的结果。这些在一定程度上影响了大学物理教学质量的进一步提高。近几年各高职院校在大学物理教学的内容、方法上都有了很大的改进,出了一些比较优秀的教材,也制作了不少教学课件,本文综合这些成果,从教学的内容和方式方法上,提出了全面提高大学物理课程教学质量的一些措施。

2整合内容体现技术性

大学物理课程的教学内容主要包括力学、电磁学、光学、热学、量子力学和相对论等内容。在传统的物理教学中关于经典物理学内容即力学、热学、光学和电磁学中的理论知识是重要讲授的内容,同时对于近代物理学内容即量子力学和相对论也会做非常详细的讲授。但是对于高职教育中“必须够用”的原则,对于量子力学和相对论这样的理论知识内容来说,在讲授的过程中只需要简单介绍,使学生知道量子力学解决什么问题,相对论的主要内容是什么即可。应当将大量的课时用来介绍经典物理学的内容。在讲授力学、热学、光学和电磁学的过程中,应当联系实际的力学问题,向学生传授力学知识,对于一些理论性非常强而实际技术应用中较少的物理学原理的介绍要适当减少。例如,在力学中关于摩擦力的讲授可以分析摩擦力作为阻力时的实例和作为动力时的实例,让学生切实体会摩擦力的本质。在讲授光学中关于光线的波长和光的颜色时给学生分析,人眼对于光的不同颜色的敏感度是不同的,如交警和学生校服上荧光物质的颜色时草绿色,因为人眼对这种波长的光最为敏感,从而激发学生学习的兴趣,在学生感兴趣的基础上适当介绍光谱分析等技术。在讲授电磁学的过程中,结合电磁技术让学生明白理论与实践是如何联系的。通过这样的理论与实践结合的方式讲授,就可以避免理论知识的枯燥性,可以提高学生学习物理学的兴趣。在学生具有较高学习兴趣的基础上展开教学,教学效果可以显著提高。

3提高大学物理教学质量的手段

在上述学生具有对物理学较高兴趣的基础上可以从教学方法和教学手段两方面提高教学质量。在教学方法方面尝试进行下面的教学探讨:①通过教师对一些物理学原理的演示实验、对一些物理学现象进行多媒体视频资料播放等直观的教学,可以充分调动学生的学习积极性,同时加深学生对物理概念的理解。②通过进行读书指导,教会学生自学。通过给定学生某个知识点的问题,让学生带着问题去读书,去图书馆查阅相关资料,要求学生在自己读书的调研之后能够给出自学提纲,同时能整理出知识点;让学生通过对这些问题的讨论及改变问题中初始条件的变化来的结果学会举一反三,通过知识点间的联系学会触类旁通。这个方法的学习过程也是教会学生开展研究性学习的基础。③通过学生动手进行实验操作、完成实习作业等教学方法,增加学生主动参与教学活动的意识,促进学生积极思考。这些方法的使用在实际的教学过程中大大提高了学生学习物理学的兴趣,同时调动了学生的主动性、积极性和创造性,起到了较好的教学效果。例如机电1班的同学在物理讨论课后谈到:“为了解决老师在课堂上提出的问题,我不仅看了课本,在网上查阅了相关的文献资料,还去图书馆看了许多资料,…”在教学手段方面,采取传统的教学手段,教师课堂演示、网络教学辅导系统、学生实验等丰富多彩的立体化教学手段。在课堂讲授时大量使用演示实验、多媒体课件和计算机动画插播等手段,使学生直观的了解到相关的实验现象,以及发生这些现象所要求的条件。随后通过启发、课堂讨论和学生互动实验等方式,提高课堂教学效果。课后通过布置学生作业、督促学生使用网络资源、要求学生完成某一小论文和以寝室为单位的学生自学讨论交流,帮助学生进行自主式、互动式、研究式学习。同时积极搭建教师备课平台,有效支持教师充分恰当利用电子教案、电子讲稿、素材库等现代化教育技术手段进行个性化教学,使得一些不容易用语言描述的物理过程和概念一目了然,有效地提高教学效率,激发学生学习的兴趣,扩大信息量。

4结束语

量子力学知识点范文第3篇

关键词:玻尔理论;能级;跃迁;光谱

中图分类号:G633.7

文献标识码:A

文章编号:1003-6148(2008)1(S)-0014-3

1 “能级”的来历――玻尔理论

19世纪,人们已经知道物质是由原子组成。1911年E.卢瑟福提出原子核式模型,这一模型与经典物理理论之间存在着尖锐矛盾。按照经典物理理论会得出原子将不断辐射能量而不可能稳定存在的结论;原子发射连续谱,而不是实际上的离散谱线。玻尔着眼于原子的稳定性,吸取了M.普朗克、A.爱因斯坦的量子概念,于1913年考虑氢原子中电子圆形轨道运动,提出原子结构的玻尔理论。

1.1 玻尔的假设

理论的两条基本假设是:①定态假设:原子系统中存在具有确定能量的定态,原子处于定态时,电子绕核运动不辐射也不吸收能量。原子的定态可通过经典力学和角动量量子化条件得出。②跃迁假设:原子系统从一个定态过渡到另一个定态,伴随着光辐射量子的发射和吸收。

1.2 玻尔理论对氢原子光谱的解释

玻尔由基本假设出发,计算出氢原子的轨道半径和能量公式如下:

氢原子的轨道半径为

可见,氢原子的轨道半径和能量都不是连续的,即是量子化的。

把这种量子化的能量值称为原子能级(简称能级)。当氢原子由一个能级跃迁到另一能级时,就产生一条谱线。玻尔的计算结果与实验数据符合的很好。

1.3 玻尔理论的成功及局限性

玻尔理论对氢原子光谱的解释获得了很大的成功,在原子理论和量子力学的发展过程中起到了很大的作用。然而,玻尔只考虑了电子绕原子核的运动,实际上分子、原子、电子、原子核的运动是相当复杂的。所以玻尔理论对复杂的碱金属光谱就难以解释,对谱线的强度、色散现象、偏振等问题更无法处理。直到1926年,薛定谔等人建立了量子力学,人们才对微观粒子的运动规律有了更全面、深刻的认识。

2 教材对玻尔理论内容的处理

本章“量子论初步”分五节。第一、二节介绍光的波粒二象性,初步接触量子化、二象性、概率波等概念,第三节介绍能级概念,第四节介绍物质波的概念,第五节介绍不确定关系。

第三节“能级”分以下几部分讲述:

①引入:简述有核模型与经典物理理论之间的矛盾,玻尔理论提出的科学历史背景;

②玻尔理论的内容介绍和评判:介绍轨道量子化的概念和定态假设的内容,分析玻尔理论的成功和局限性;

③能级:提出能级、基态、激发态、电离的概念;

④光子的发射和吸收:讲述玻尔理论跃迁假设的内容,介绍能级图以及跃迁公式;

⑤“原子光谱”部分:介绍氢原子光谱,分析玻尔理论对氢原子光谱的解释。

3 教学中对教材的利用和改进

我认为在教学中应把教材中那些过时的,远离学生实际的材料、知识舍弃。对教材中主干知识和体现物理方法的内容,针对重点、难点,结合学生实际,结合物理学、科技的新发展花大力气进行拓展延伸。使学生能熟练地理解、掌握这些基本概念,基本规律和方法。对于非主干知识的拓展,只限于科普式的介绍一些最新的、正确的观点、材料,只要求学生知道是什么,不要求知道为什么,更不用介绍技术和操作的细节,起到扩大学生知识面和视野的作用即可。特别是在这个信息时代,应让学生用有限的时间和精力去高效的学习正确、有用的知识,而不是探索、重复前人的错误。应该吸收其优秀成果,走捷径去继承并加以发展。

3.1 关于“量子”

本节课整篇围绕“量子化”展开,可在全文却没有给出“量子”的概念或解释。“量子”一词来源于拉丁文,原意是“分立的部分”或“数量”。所谓量子或量子化,本质是不连续性。在宏观领域中,这种量子化(或不连续性)相对宏观尺度极微小,完全可以忽略不计。我认为,在接触玻尔理论之前搞清楚“量子”含义,对本节内容的理解有很大帮助。

3.2 引入部分

教材指出,根据卢瑟福原子模型和经典电磁理论推出原子应当不稳定和辐射电磁波的频率是连续的这一结论与实验事实相矛盾。可以让学生体会到,正是这个矛盾,推动了能量量子化理论的提出,促进了量子力学的建立和发展,从而达到对学生进行辩证唯物论、认识论和方法论的教育目的。教学中可让学生阅读自主学习。

3.3 玻尔理论的内容介绍和评判部分

教材中将玻尔的“定态假说”称为“原子结构假说”。按照经典电磁理论,原子应是不稳定的,但实际情况不是这样,这一点,教材并未强调,原因是学生过去并没有“做加速运动的带电粒子要辐射能量”这样的认识。相应地,教材也没有提到玻尔理论中“定态”这个概念。讲到轨道量子化的时候,教材重点描述了“量子化”,有意淡化了“轨道”,没有采用过去教材中常用的以同心圆代表氢原子轨道的插图。这样做,避免了强化轨道的图景。为了使学生更深刻理解玻尔理论的这部分内容,我让学生总结,这些假设解决了经典电磁理论和卢瑟福原子模型的哪些矛盾?学生在逐条对比中加深认识。

然而在下面的类比分析中,教材还是用了地球和人造卫星这个例子。它确实可以帮助学生理解原子状态的不连续性,但也更容易使学生产生电子做匀速圆周运动的错误认识,也在无形中强化了“轨道”的概念。所以在教学中有必要对学生解释,经典的理论在这里已经不再适用,其实氢原子中的电子是没有轨道的,电子在原子中运动的“轨道”这样的说法,表达的只是一种可能性。

3.4 “能级”和“光子的发射和吸收”部分

主要讲解玻尔理论中“跃迁假设”的内容。教材突出了最有积极意义的能量量子化的观点,舍去了能级公式的推导和计算,直接给出了氢原子的能级图和一些可能的能量值,可能的跃迁方式。这样做就是为了提高学生的学习效率,体现课改和素质教育的精神。在一些习题中还会看到关于能级公式的计算,我认为应该大胆舍弃。高考考察的重点是能级跃迁的规律,这部分内容应当做适当的拓展。

原子跃迁是一个比较难理解的知识点。在教学中,我先讲授了跃迁的概念及跃迁公式hν=Em-En,让学生阅读教材,然后请他们例举生活中与原子跃迁相似的事件,交流他们对此知识点的理解。学生举出了非常好的例子:能级就好比台阶,原子跃迁就好比一个人在跳台阶。人可以从上跳到下,也可以从下跳到上,可以跳一级,也可以跳多级,但是不可能跳到某两级之间。向上跳相当于原子由低能级向高能级跃迁,跳的台阶越多,需要的能量就越大,如果上跳时具有的能量在到达二级与三级之间,他就无法到达第三级台阶而是落在第二阶上。这样一个类比,形象生动地描述了原子跃迁的过程,很容易突破了难点。但它也有一个缺点,生活中的台阶大多是高度一致的,而能级图中每两个能级的差是逐级递减的。目前还没找到更合适的例子,我就让学生记住这个区别。

3.5 “原子光谱”部分

玻尔理论的一个重要贡献就是正确解释了氢原子光谱。教材中“原子光谱”这部分内容也可以看成是玻尔理论的应用。可以围绕几个问题展开:

①能量量子化的观点怎样解释原子光谱是线状光谱?

②为什么各元素的原子光谱不同?

③为什么可以用光谱分析确定样品中有哪些元素?

④光谱分析有什么优越性?光谱分析在现代科学,如地质、冶金、石油、生物医学、地球化学、材料和环境科学等各个领域内获得了广泛应用。可向学生做简单介绍,使其了解物理在科技进步以及社会发展中发挥的重要作用。

4 有待解决的问题

一些学生在学完整章会有这样的烦恼:“学完能级,对原子结构有了清晰的认识,但是学了物质波,看了氢原子的电子云好像又变得糊涂了。”其实,对电子等微观粒子,由于不能用确定的坐标描述他们在原子中的位置,因此,电子在原子中运动的“轨道”这样的说法其实是没有意义的。电子云表示的是电子在原子核各个位置出现的概率。

我想学生之所以会有这样的疑惑,是因为学习能级这节中“轨道量子化”时留下了错误的前概念。这部分内容建立在卢瑟福的核式结构模型之上,本身就是不完善的,教材出现它的目的应该是为“能量量子化”做准备。

这块“鸡肋”,舍掉,学生该如何理解能级?不舍,错误概念又怎样消除呢?

参考文献:

[1]杨福家.原子物理学.北京:高等教育出版社,1991

[2]戴剑锋.物理发展与科技进步.北京:化学工业出版社,2005

量子力学知识点范文第4篇

(一)简介材料计算模拟软件Materialsstudio是美国Accelrys公司为材料科学领域开发的一款科学研究软件,用于帮助用户解决当今材料科学中的一些重要问题。MaterialsStudio软件包集成了Visual-izer、CASTEP、Dmol3、Reflex等二十几个计算模拟模块,是一款强有力的计算模拟工具。用户可以通过Visualizer可视化模块进行一些简单的界面操作来建立材料分子的三维结构模型,之后通过软件包中相应的计算模块,对材料分子的构型优化、性质预测、X射线衍射分析及量子力学方面进行计算。通过计算得到的结果可以对各种晶体、无定型与高分子材料的性质及相关过程进行深入的分析和研究,其计算的结果精确可靠。CASTEP是CambridgeSequentialTotalEnergyPackage的缩写,最早由英国剑桥大学的一个凝聚态理论小组开发,是广泛用于计算周期性体系性质的一个先进量子力学程序。它可用于金属、半导体、陶瓷等多种材料的相关计算,可研究晶体材料的光学性质(折射率,反射率,吸收及发射光谱等)、缺陷性质(如空位、间隙或取代掺杂)、电子结构(能带及态密度)、体系的三维电荷密度及波函数等。

(二)教学环节设计1.知识点的设置。在材料科学的专业课中,如晶体物理、固体物理、半导体物理学、硅材料科学与技术等课程中,都会涉及材料的晶体结构,能带结构,带隙的分类,X射线衍射、缺陷,掺杂等知识点,也会涉及到材料的反射率、折射率、介电常数等材料的光学或化学性质。在完成这些基础知识点的讲解后,可以利用Mate-rialsStudio软件进行计算和演示,为这些基础理论给出直观形象的解释,把材料的宏观性质与微观机理衔接上,这样学生对材料科学的知识体系就会有一个整体的认识和了解。2.密度泛函理论及波函数的介绍。密度泛函理论是一种研究多电子体系电子结构的量子力学方法,其本质是以电子密度分布函数为变量代替波函数中的自变量来求解薛定谔方程,使求解复杂体系波函数的本征值成为可能。目前,密度泛函理论已广泛应用于物理、化学及材料相关领域,特别是用来研究分子和凝聚态的性质。目前密度泛函理论DFT(DensityFunctionalTheory缩写)被广泛应用到计算模拟软件中来求解薛定谔方程,可对材料的结构、性质、光谱、能量、过渡态结构和活化势垒等方面的进行计算研究。在与分子动力学结合后,在材料设计、合成、模拟计算等方面有明显进展,成为计算材料科学的重要基础和核心技术。3.软件的操作及相关内容的演示。MaterialsStudio程序包中的二十多个计算模块是通过Visualizer这个可视化核心模块整合在一起的,用户可以很方便地应用Visualizer模块构建有机、无极、聚合物、金属等材料分子、及周期性的晶体材料、表面、层结构等模型,通过鼠标控制这些分子构型,可从不同角度查看并分析体系结构,容易形成直观的概念。MaterialsStudio自带的数据库中的晶体结构可以用于教学演示,如在硅材料科学与技术和半导体物理等课程的教学过程中,需要用到单晶硅的晶体结构,可以很方便地从MaterialsStudio软件的Structures/semiconductors数据库文件夹中导入Si这个晶体数据文件,在课堂上为学生们演示,从(100)、(110)、(111)不同的晶面来进行展示(如图1),以说明硅单晶的晶体结构。也可以通过Visualizer模块中的菜单选项Build->Sym-metry->Supercell建立n×n超胞结构,通过调整角度,可以从不同晶向观察晶体的晶面,通过超胞结构也可以演示各种晶体的密堆积结构。这样就给学生一个生动、形象、直观动态的概念,使其易于在头脑中建立空间模型,理解所学知识点。通过Visualizer模块对硅单晶的元胞进行演示,我们可以知道每个硅原子至多与另外四个硅原子相连,借此可以说明硅原子的共价键取向及硅晶体属于金刚石型结构,源于硅原子的sp3杂化,形成了四个共价键。通过CASTEP模块对硅单晶的元胞进行计算,可以得出其能带结构和态密度,通过对计算结果的分析,可以得出硅单晶材料的带隙特点。在稀土化学的教学过程中,可以通过CCDC英国剑桥晶体数据库及WebofScience网站来获取稀土配合物的晶体结构,然后通过MaterialsStudioVisualizer读出晶体结构,用于课堂演示,有助于学生理解复杂的稀土配合物结构。在固体物理教学过程中,可以利用MaterialsStudio中的Re-flex模块模拟粉晶体材料的X光、中子以及电子等多种衍射图谱,可用于验证实验结果及演示教学。4.知识点的拓展。对于缺陷、杂质掺杂、空位等对晶体材料的影响,可以通过MaterialsStudio中Visualizer模块建立相应的模型,然后通过CASTEP计算模块进行计算。通过对计算结果的分析,说明这些因素对半导体材料性质的影响。MaterialsStudio软件同样可以计算材料的折射率、反射率、介电常数等性质。其计算的结果数据和图表可以与教科书或文献上的数据图表进行对比,来说明计算方法的正确性,以此为支点,采用同样的计算方法,我们可以尝试设计更多的新型材料并进行计算。通过这些详实的计算实例我们可以更生动地说明教学中的知识点,学生可以根据自己的兴趣爱好,尝试进行材料分子模型的设计并进行模拟计算。通过计算结果的对比,可以初步探讨晶体中缺陷、杂质、空位等因素对材料性质的影响,在此过程中增加了学生的学习自主性和兴趣。

二、GaussianView和Gaussian软件在教学中的应用

(一)简介Gaussian是一个功能强大的量子化学综合软件包。应用它可以计算分子能量和结构、过渡态的能量和结构、化学键以及反应能量、分子轨道、热力学性质、反应路径等等,功能非常强大。计算可以模拟气相和溶液中的体系,模拟基态和激发态,进而通过含时密度泛函研究材料分子体系的激发态,算出吸收和发射光谱。Gaussian扩展了化学体系的研究范围,可以对周期边界体系进行计算,例如聚合物和晶体。周期性边界条件的方法(PBC)技术把体系作为重复的单元进行模拟,以确定化合物的结构和整体性质。而GaussianView是一款为Gaussian设计的配套软件,其主要作用有两个:1.构建Gaussian的输入分子模型,2.以图形显示Gaussian程序的运算结果。

(二)知识点的设置1.在材料科学有机电致发光材料及稀土化学课程的教学过程中,会涉及到有机或稀土发光材料的吸收及发射机理。通过把Gaussian软件教学过程,我们可以很好结合这些算例讲解三重态,单重态发射过程,给出与发射过程相关的分子最高占据轨道HOMO和最低非占据轨道LUMO的电子密度图,这样就可以很形象地解释发射过程中的电子转移过程,对低能吸收和发射过程的电子跃迁性质进行判断。2.软件的操作及相关内容的演示。(1)通过CCDC晶体数据库或者WebofScience网站获得相应的配合物或者稀土配合物晶体的晶体结构(通常为cif文件)。(2)应用Mercury软件或者MaterialsStudio软件读取相应的晶体结构,转存为GaussianView程序可以读取的格式(一般选用*.cif、*.pdb、*.mol2格式),通过Gaussian-View转存为Gaussian输入程序(*.gif-Gaussianinputfile)。(3)采用Gaussian程序进行计算。(4)通过GaussianView程序读入Gaussian03/09计算结果,通常为log文件,或者fchk文件,GaussianView可以很方便地读取Gaussian的计算结果并且以图形的形式显示出来,并可应用它对计算结果进行分析。(5)通过GaussianView对计算结果的进行处理,通过它显示出发光材料的分子轨道电子云密度分布情况,吸收光谱,发射光谱等情况,结合这些图形信息,我们可以对有机电致发光材料或者稀土发光材料的发光机理进行教学。3.知识点的拓展。GaussianView是由Gaussian公司开发的一款非常好的分子建模及显示工具,学生可以通过对它的使用,很方便地进行分子设计并输入到高斯程序中进行计算。可以安排学生在基础发光材料分子的基础上,在分子配体的添加取代基或者改变配体,进行尝试,进行配合物分子的设计,增强其动手能力,为今后走进实验室进行有机合成做准备。

三、预期的效果

量子力学知识点范文第5篇

【关键词】固体物理 学科前沿 教学改革

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2012)07-0181-01

《固体物理》是大学物理专业一门重要的专业必修课。固体物理是研究固体的结构及其组成粒子(原子、离子、电子等)之间相互作用与运动规律,以阐明其性能与用途的学科[1,2]。同时,随着科技的发展,以固体物理为基础外向延拓的凝聚态物理成为当前重点研究的学科之一,是材料物理、半导体物理、新材料和新器件等新兴交叉学科的理论基础。固体物理的学习成为基础理论与应用学科之间的桥梁,在当今世界的高新科技领域起着不可替代的作用。本课程的主要学习任务是在大学物理、量子力学、统计物理等知识基础上学习晶格理论和固体电子理论、以及所涉及的学科发展的前沿和应用。因此有必要学习且学好这门课,这要求学生必须具备较强的物理思想、扎实的数学基础、良好的量子力学基础,而且这门课内容抽象且庞大,因此对授课的要求也相应地提出了挑战。从教师角度来讲,如果上好这门课,使学生深刻理解和掌握物理基本概念、所学内容,并能学以致用,培养学生解决实际问题的能力和创新能力,如何融合学科前沿知识于物理教学中,提高教学质量,值得我们深思。

笔者在教学中考虑到传统的固体物理教学内容和日新月异的固体物理前沿内容间的关联,在教学中引入学科前沿研究的具体问题,以期固体物理的教学能够与时展相结合,强化学生的基础知识学习,提高学生的学习兴趣,拓宽学生的视野,培养学生的科学态度、学习能力和创新能力。本文引用教学过程中选择的一个具体研究体系:即石墨烯体系来阐明如何在教学中建立基础知识与前沿间的关联的。石墨烯体系是2004年英国曼彻斯特大学的Geim和Novoselov等人通过机械剥离法获得了单层石墨烯片,这种二维材料仍保持了近乎完美的晶体结构和极高的稳定性。石墨烯材料展现出了诸如无质量的狄拉克费米子、弹道输运、室温量子霍尔效应等一系列新奇的物理性质成为近几年迅速发展起来的研究热点材料之一。2010年,Geim和Novoselov因为在石墨烯研究方面的卓越贡献获得了诺贝尔物理学奖金。选择石墨烯体系是因为:(1)它可以与固体物理众多基础知识点联系起来,使学生在学习中更加具体化;(2)在教学过程中结合一个研究问题,在学习过程中层层推进,既深刻理解了固体物理的基本知识点,又同时逐步了解了前科学科的研究内容、方法;(3)此教学过程可以激发学生的学习热情和兴趣,让学生感知学科发展的动力,认识科学的研究来源于基础知识的积累、学习。下面我们简要的梳理一下在教学过程中如何结合石墨烯体系进行教学的。

1.晶格结构。《固体物理》教学的第一块内容是晶体结构以及对它的描述:基矢、倒格矢等。晶体结构是微观粒子的排列方式,抽象、枯燥。我们将Materials Studio软件应用于教学中,充分应用模拟软件的可视化功能,导入典型材料的晶格结构,通过旋转多角度的观察微观粒子的排列方式,分析结构特征。其中导入单层石墨烯结构:分析原胞,分析两个不等价的碳原子,用A、B表示,求解原胞基矢、倒格矢,分析每类原子的最近邻、次近邻等,为后续紧束缚近似从能级扩展到能带做铺垫。

2.能带理论。在晶体中,势函数满足周期性,状态波函数满足Bloch定理。求解石墨烯中载流子运动状态和能量满足的方程,考虑到碳原子核外电子在一个原子附近时,将主要受该原子场的作用,而把其它原子场的作用看成是微扰作用,因此采用紧束近似的方法。由于石墨烯中有A、B两种不等价碳原子,波函数可以写为ψ=C1?覫A+C2?覫B其中?覫A,?覫B 分别代表A和B的原子轨道对所有格点求和的波函数,在教师引导下让学生具体求解本征方程,具体计算结合书本,只保留到最近邻相互作用项,给出能带公式,分析能带图,提醒学生注意能带图殊的6个交叉点(即K,K’点),具体物理分析留待后面解释。

3.能态密度和费米面。能态密度以及费米面附近的载流子浓度是决定材料物性最基本的物理量。通过对石墨烯能带结构的分析,由6个K和K’点组成的平面即为零偏压下的费米面,忽略原子轨道间的重叠积分,在K/K’附件展开给出能量为波矢的线性关系,实验上可用角分辨光电子谱等方法对石墨烯的能带进行测量,向学生展示实验结果并对比理论进行分析。相应地描述石墨烯载流子行为的方程是Dirac方程,而不是薛定谔方程,这一点需向学生做进一步分析解释:区别传统自由电子气中描述载流子所采用的近自由电子近似,其中能量与波矢的关系成二次方项;而在单层石墨烯中载流子的速度约为106 m/s,类光子,采用Dirac方程描述。正是因为石墨烯中电子结构的特殊性为人们研究观察相对论量子电动力学效应提供了更加方便的手段和系统,使得人们可以利用低能的凝聚态物理来模拟一些量子场下所预言的相对论量子现象,用石墨烯来检验Klein隧穿效应等,拓宽学生视野,激发学习热情。

4.电子在电场和磁场中的运动。(1)通过能带理论解析导体、绝缘体或半导体的导电行为。针对石墨烯材料,同样由能带结构分析导电性能。尤其指出当门电压为零时,理论上载流子浓度为零,如何解释实验上观测到的最小电导率,向学生抛出问题,引导学生思考,最后总结目前文献中的相关解释。(2)采用经典理论和量子理论分析自由电子系统在外加磁场条件下载流子的运动特征,介绍传统的霍尔效应和整数量子霍尔效应现象。引入在石墨烯材料上室温下观测到的反常的量子霍尔效应现象。引导学生找出霍尔电导的反常性来源于材料结构的特殊性以及描述载流子运动方程的不同,并进一步给出在外加磁场下的状态方程和能量关系,分析实验现象。

5.其它。在课时允许的条件下,以专题的形式向学生介绍前沿知识。同样以石墨烯为例,介绍晶格振动实验和理论的结果;各种散射机制以及采用Boltzmann方程的方法如何处理散射问题,异质结的能带形成过程;光的吸收与层数的关系实验规律,分析光的吸收机制以及在透明导电薄膜领域的应用前景;以及石墨烯材料如何制备等等。当然我们也同样可以选择其它的学科前沿的事例结合固体物理的教学,在这里笔记主要是介绍通过石墨烯的研究内容来充实我们的教学内容。

总之,结合固体物理理论性强,并且学科飞速发展的特点,在课程内容上有必要增加学科前沿内容,传授研究方法,设计研究性课题,解决实际问题。从而培养有创新能力的学生。

参考文献: