首页 > 文章中心 > 量子力学的应用

量子力学的应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子力学的应用

量子力学的应用范文第1篇

关键词 变分法;量子力学;最优控制

中图分类号:G712 文献标识码:B

文章编号:1671-489X(2014)02-0122-03

20世纪二三十年代,奥地利物理学家薛定谔提出一种可以进行微观粒子体系运动行为的一波方程,被人称之为薛定谔方程。通过进行薛定谔方程求解,可以获得体系波函数,应用体系波函数,可以确定体系性质,此后有学者对相对论效应狄拉克方程的确定进行了研究。这些研究成果的出现,让人们认为量子力学其普遍理论似乎已经基本完成,人类已经基本知晓了绝大部分物理学及物理定律。解决问题困难及关键仅在于如何将这些定律进行现实应用。狄拉克认为,随着体系的不断增加,薛定谔方程或狄拉克方程几乎是不可解的。

针对这种现象,求解其方程的近似方法不断被研究。在物理量子学领域,进行薛定谔法方程求解,其主要方法包括微扰法及变分法。束缚定态是建立于不含时间的薛定谔方程,即在能量变分原理的等价性基础上,能量本征值方程解是通过对能量极值的求解来完成的。在进行具体问题处理的过程中,通过波函数中一些特殊变化将最普遍任意变分进行替代,通过这种方法可以获得依赖于波函数特殊形式的一种近似解,这种解决问题的方法被称之变分法。变分法用在解决如量子力学等物理问题领域。变分法的应用,其优势在于运用变分法进行方程求解并不会受到限制,在保证变分函数良好的基础上,即可实现对体系基态性质的研究。

1 变分法概述

变分法与处理数函数普通微积分表现出相对立关系。泛函是通过位置函数导数及相应位置函数积分来实现相应构造。变分法应用的最终目的在于找出更好的极值函数,通过变分法,获得泛函最大值或最小值。欧拉-拉格朗日方程式属于变分法最重要定理。通过变分法,可以获得相应泛函临界点,在处理量子力学及其他物理问题时应用优势十分明显。

在解决量子力学问题时,解决微扰问题最为广泛的方法是应用微扰法及变分法。如应用微扰法进行量子力学问题的解决,其条件则为体系的哈密顿算符。可以分为及两个部分,则有:

= +

在微扰法中,本征函数及本征值属于已知,则很小,如在解决问题时其满足微扰法求解问题的基本条件,则可以实现量子问题求解。然而在实际应用中,进行全体必要的矩阵元求和计算是十分困难的,其解决问题存在着一定的局限性。应用变分法则不会受到条件限制。如将体系哈密顿算符本征值由小到大进行排列,其顺序如下:

E0,E1,E2,…En,… (1)

计算这些本征值对应本征函数,则有:

Ψ0,Ψ1,Ψ2,…,Ψn,… (2)

在公式中,E0代表的是基态能量,Ψ0代表的是基态波函数。为便于研究,假设与本征值En是保持对立的,本征函数Ψn组成正交归一系,则有:

Ψn=En+Ψn (3)

在公式中,设Ψ属于任意归一化波函数,将公式展开后获得:

(4)

在进行Ψ状态描述时,其体系能量平均值则为:

(5)

通过公式整理,则可以获得:

(6)

因E0代表的是基态能量,为此,则有E0

(7)

=E0属于Ψ归一条件,则有:

(8)

公式(8)不等式说明,在进行任意波函数Ψ求解时所获得的平均值总是较之基态能量较大,在进行Ψ平均值求解时,其中最小平均值与E0最接近。当Ψ作为体系中Ψ0基态波函数时,此时基态能量E0则与平均值保持一致。由此,实现变分法基态能量及基态波函数体系求解。

2 量子力学变分原理

如下,为某个微观体系薛定谔方程:

(9)

该薛定谔方程为变分问题欧拉微分方程,其变分问题求解则是对其能量积分进行求解,则有:

(10)

能量积分极小值为:

(11)

将体系哈密顿量设为H,则有:

(12)

在满足归一化条件的基础上,进行公式整理,则有:

(13)

实践证明,经过欧拉微积方程整理,可以获得薛定谔方程,证明微观体系薛定谔方程是可以让能量积分获得极值时的欧拉微分方程。以上公式,则为量子力学中变分原理。

3 变分法在量子力学中的应用案例

在量子物理或经典物理中,一维谐振子与很多物理现象存在较大关系,甚至可以将任何体系在稳定平衡点位置所进行的运动看作一种近似一维谐振子,如核振动、晶体结构离子及中原子振动等。本文在分析量子力学变分原理的基础上,进行一维谐振子研究。将谐振子质量设为m,并沿x轴进行直线运动,则谐振子所受到势能为,可以通过以下公式进行哈密顿量表示:

(14)

体系试探波函数为,按照归一化条件,可以获得。则有:

(15)

通过公式调整,可以获得以积分公式:

(16)

通过计算后获得:

(17)

并获得体系最低能量值为:

(18)

相应函数简化后为:

(19)

通过检验后发现,这种计算结果与求解结果相同,证明所选取的变分函数良好。图1为典型a下线性谐振子波函数及位置几率密度分布图。

波函数能够满足高斯型分布,在x=0位置,存在明显峰值,随着a逐渐降低,其峰值降低,且峰宽度逐渐增加。从图1中可以看出,波函数几率密度分布状况与波函数、分布曲线形状基本保持一致。应用变分法所求解出的波函数几率分布存在一定差异。由此可以看出,应用变分法解决量子力学问题时,虽然其可以简单方便地进行体系基态性质求解,但其属于解决问题的近似方法,其近似程度随着参数变化发生变化。只有保证所选择的波函数满足边界条件及归一化条件,参数越多时,其结果越好。

变分法其应用的优点在于其求解过程并不受到什么限制,但其结果好坏完全是由尝试波函数选择来确定。为此,在应用结构变分法解决物理量子力学问题时,应保证变分法所选择的尝试波函数的合理性及科学性。

4 结语

当前,微扰法及变分法是处理物理量子力学问题常见的方法。微扰法求解存在一定局限性,变分法求解并不受到任何限制,变分法属于处理函数的一种方式,与处理数的函数的普通微积分保持着相对立关系。应用变分法,可以实现泛函临界点对应。变分法在解决物理问题中发挥着十分重要的作用,尤其是在量子力学领域。本文在概述变分法的基础上,对量子力学变分原理进行分析,并通过一维谐振子对变分法在量子力学中的应用进行分析。通过实践证明,变分法在处理量子力学问题方面具有较大优势,保证尝试波函数选择合理性,是实现变分法效果的关键。

参考文献

[1]邓小辉,许成科,汪新文,等.变分法在量子力学中的应用[J].衡阳师范学院学报,2013,34(3):146-148.

[2]陈霞,唐晨.量子力学基态能量计算的改进蚁群优化算法[J].计算物理,2010,27(4):624-632.

[3]额尔敦朝鲁,乌云其木格,宝日玛,等.量子棒中强耦合磁极化子基态能量的磁场和温度依赖性[J].中国石油大学学报:自然科学版,2010,34(6):177-180.

[4]蒋逢春,苏玉玲,李俊玉,等.量子尺寸效应对

InGaN/GaN量子点中的类氢杂质态的影响[J].郑州轻工业学院学报:自然科学版,2012,27(2):102-104.

[5]叶霄凌.内抛物柱形量子线的电子基态能量[J].科技风,2011(21):49-50.

量子力学的应用范文第2篇

Introductionto Quantum Mechanics

Schrodinger Equation and Path Integral,

2nd Edition

2012,950 p

Hardcover

ISBN9789814397735

Harald J W MüllerKirsten著

薛定谔在1926年建立了以他的名字命名的方程,开创了量子力学进入严格的和近似定量计算的新局面,促进量子力学迅速扩展了应用能力和范围。20年之后费曼提出了量子力学的路径积分形式,并证明了与薛定谔方程的等价性。它不仅能够解决量子力学中的一般的定量计算问题,而且在随后几十年的量子场论和规范场论的发展过程中起了不可替代的重要作用。这两种定量处理方法各有优劣,薛定谔方程对于量子力学问题的处理无疑具有极大的优点,其图像清晰而且在数学上有许多为物理学家熟悉的成熟处理方法,受到物理学家的普遍欢迎。相比之下,路径积分方法的使用要麻烦得多。但近年来,人们越来越发现路径积分方法在很多应用中有着独特的优越性。对于这两种方法,已经有许多优秀的量子力学教科书以及专著分别给出了非常详细的讨论。但是将两种方法对同一问题的解决办法进行相互对照与比较,从而对于各自的优点和特定的应用范畴有更深刻的理解的著作还十分罕见,本书填补了这一空白。

这是一部量子力学的教科书,它涵盖了作为导论性课程所有的主要内容,不但详述了各种位势下薛定谔方程的微扰解,介绍并算出了对应的路径积分的解,而且还详细地考虑了微扰展开的高阶行为,这在其他类似的书籍中很少见到。本书的另一特点是没有提供习题,而是结合课文的内容选用了大量例题,给出了非常详细的计算细节,对于读者的学习十分有利。

本书的第1版出版于2006年。第2版中,添加了许多重要的应用和很多实例。特别是关于Coulomb势的一章被扩充到包含了化学键的介绍,而周期势的一章补充了关于金属和半导体能带论的一节,而在高阶行为的一章添加了关于渐进展开中成功地计算收敛因子的例证。

全书共分成29章:1.导言;2.哈密顿量子力学; 3.量子力学的数学基础;4.狄拉克的右矢和左矢形式体系; 5.Schrdinger方程和Liouville定理;6.谐振子的量子力学; 7.Green函数;8.时间无关微扰论; 9.密度矩阵和极化现象; 10.量子理论:一般形式体系; 11.Coulomb 相互作用; 12.量子力学穿透;13.线性势; 14.经典极限和WKB法; 15.幂次势; 16.屏蔽Coulomb势; 17.周期势; 18.非简谐振子势; 19.奇异势;20.微扰展开的高阶行为;21.路径积分形式; 22.经典场组态; 23.路径积分和瞬子; 24.路径积分与沿一条线上的弹跳; 25.周期性的经典组态; 26.路径积分和周期性的经典组态;27.约束系统量子化;28.量子-经典跨接作为相变;29.结束语。

本书对物理系的大学生和研究生以及数学和粒子物理的研究人员非常适用。对希望扩大自己量子力学技巧的理论物理学家和想要更进一步钻研量子力学的其他专业的研究生以及所有对微扰方法、路径积分及其在经典场伦中的应用感兴趣的读者都具参考价值。

丁亦兵,教授

(中国科学院大学)

量子力学的应用范文第3篇

本书从简要概述经典物理、统计物理与量子力学之间的明显不同开始,论证为什么量子力学的应用可以超出物理学的范围,并且定义了量子社会科学。指出所谓的量子社会科学并不是要用适用微观尺度的量子力学原理重新表述社会,而是尝试借助量子力学的一些形式理论和概念,研究社会科学中的一些问题,包括在心理学、经济学与金融学中量子概率效应的存在,提出并解答了一些基本问题。他们论证了社会科学体系中的信息处理在一定程度上可以利用量子力学的数学工具形式化的奇妙方法。本书建议了一种类-量子方法可以作为理解经济学与金融学中心对象决策问题的有效工具。两位作者还论证了概率相干性能够用来解释著名的Ellsberg决策佯谬中总概率规律的破坏,本书两位作者对这一新奇的研究领域做出了一些领先的贡献。

两位作者深知这样一本书所讨论的内容是与直觉相反的,他们要把解释亚原子行为发展起来的物理学理论用于解释我们日常生活世界。尽管我们掌握了很多亚原子世界的精确知识,但是从来没有关于这个世界的直接经验。把微观世界有效的理论用于宏观世界可信度如何?这样奇特的做法会不会令人担忧?感兴趣的读者都可能提出这类问题。两位作者的想法是,关于他们开创的这种做法的可行性,应该由读者在读过该书之后自己得到答案。

本书陈述的模型可以称之为类-量子的,他们与量子物理没有直接关系。作者强调指出,对于复杂的社会系统所做的信息处理可以通过量子力学的数学工具描述。正是在这个意义上,本书阐释了金融市场、行为经济学和决策问题。

把精确科学与社会科学联系起来不是件轻而易举的事。其中最为困难的问题是消除这样的一种误解,即似乎在物理学与社会系统模拟之间本来就应当存在一架桥梁。实际上,在一些特殊的社会系统中,所得结果的“物理等价物”几乎毫无意义。

全书内容分4个部分,共15章。第1部分 社会科学中的物理概念,含第1-3章:1.经典、统计和量子力学,三合一概览;2.经济物理学; 3.量子社会科学。第2部分 数学与物理的预备知识,含第4-6章: 4.矢量的微积分学及其他数学预备知识;5.量子力学基本要素;6.Bohm力学的基本要素。第3部分 心理学中量子概率效应:基本问题及其答案,含第7-9章:7.简略概述;8.心理学中的干涉效应——导论;9.决策的类量子模型。第四部分 经济学、金融学与脑科学中的其他量子概率效应,含第10-15章:10.危机中的金融学/经济学理论;11.金融与经济学中的Bohm力学;12.BohmVigter模型和路径模拟;13.对于经济学/金融学理论的其他一些应用;14.大脑的类-量子处理的神经心理学起源;15.结论。

本书是面向经济学和心理学以及物理学的研究人员的一部具有新颖、独特观点的专著,很具启发性和创新性,对于希望开拓新的研究领域,特别是交叉学科相关领域的研究生以及研究人员很有参考价值。作者概述了进入该领域所需的数学预备知识和量子力学的基本概念以及社会科学相关的基础知识,这对那些对这一问题感兴趣并打算阅读该书的读者很有益处。

丁亦兵,教授

(中国科学院大学)

量子力学的应用范文第4篇

本书是由两位在此领域中有颇多成果的意大利著名专家根据这方面的最新进展所写的一本新的教科书性质的专著,它包括了热动力学,统计力学和多体问题的经典课题和这方面的最新进展。

19世纪末,开尔文公爵发表著名的演说,其中提到以经典力学、经典热力学和经典电磁理论为基础的物理学大厦已经建成,后人只需要做些小修小补的工作。然而在明亮的物理学天空中飘着两朵乌云,其中之一便是黑体辐射问题。实验发现黑体辐射无法用连续能量的观点来处理,这对经典的物理学提出了巨大的挑战。为解决这一问题,一个崭新的学科――量子力学应运而生。它是由普朗克最先提出,由爱因斯坦、波尔、薛定谔、狄拉克等天才的物理学家们发展完善,是公认的20世纪物理学最伟大的突破之一。本书回顾了量子力学的发展历史,介绍了量子力学的基本知识,是一本优秀的量子力学教材。

全书共12章,分4个部分。第一部分 量子力学的提出与建立,包括第1章。分析了经典物理学对处理黑体辐射、光电效应和康普顿散射的困难,介绍海森堡不确定性原理、波尔对应原理、含时的与定态的薛定谔方程、物理实际对薛定谔方程解的限制、本征波函数与本征值、波函数的完备性与正交性、叠加原理、互补原理以及相位的概念。最后明_了量子力学的几个基本假设,强调了薛定谔方程本质上是一种假设。第二部分 使用薛定谔波动方程处理量子力学问题,包括2-7章:2.求解一维无限深势阱;3.自由粒子;4.线性谐振子;5.一维半无限有限高势垒;6.势垒隧穿处理α粒子衰变;7.一维有限深势阱等模型的薛定谔方程的解。介绍球坐标空间,引入分离变量法,求解了氢原子的薛定谔方程。第三部分 使用海森堡矩阵力学处理量子力学问题,包括第8-10章:8.介绍角动量理论和自旋算符理论;9.介绍微扰理论;10.定态一级微扰和二级微扰,并成功应用于解释Stark效应。最后介绍含时微扰,给出了费米黄金规则公式。第四部分 弹性散射理论,含第11-12章:11.并以刚球散射和方势阱散射模型为例,求解散射振幅与微分截面;12.介绍狄拉克发展的酉算子和酉变换。

本书内容简单,利于理解,适合作为物理系本科生的专业教材。与常见的量子力学教材相比,本书有两个优势,一是求解的数学过程完整且准确,可以帮助读者建立坚实的数学基础;二是在每一章的前言部分,都有对量子力学发展历史的介绍,其中对当时的物理学家们的言行描写尤为生动,妙趣横生。如果读者阅读英文有困难,也可以参考北大曾谨言教授编写的《量子力学》,两本书内容相近,可以互为辅助。

本书内容涉及2个领域:热力学和经典统计力学,其中包括平均场近似,波动和对于临界现象的重整化群方法。作者将上述理论应用于量子统计力学方面的主要课题,如正规的Feimi和Luttinger液体,超流和超导。最后,他们探索了经典的动力学和量子动力学,Anderson局部化,量子干涉和无序的Feimi液体。

全书共包括21章和14个附录,每章后都附有习题,内容为:1.热动力学:简要概述;2.动力学;3.从Boltzmann到BoltzmannGibbs;4.更多的系统;5.热动力极限及其稳定性;6.密度矩阵和量子统计力学;7.量子气体;8.平均场理论和临界现象;9.第二量子化和HartreeFock逼近;10. 量子系统中的线性反应和波动耗散定理:平衡态和小扰动;11.无序系统中的布朗运动和迁移;12.Feimi液体;13.二阶相变的Landau理论;14.临界现象的LandauWilson模型;15.超流和超导;16.尺度理论;17.重整化群方法;18.热Dreen函数;19.Feini液体的微观基础;20.Luttinger液体;21.无序的电子系统中的量子干涉;附录A.中心极限定理;附录B.Euler 伽马函数的一些有用的性质;附录C.Yang和Lee的第二定理的证明;附录D.量子气体的最可能的分布;附录E.FeimiDirac和BoseEinstein积分;附录F.均匀磁场中的Feimi气体:Landau抗磁性;附录G.Ising模型和气体-格子模型;附录H.离散的Matsubara频率的和;附录I.两种液流的流体动力学:一些提示;附录J.超导理论中的Cooper问题;附录K..超导波动现象;附录L.TomonagaLuttinger模型确切解的抗磁性方面;附录M.无序的Fermi液体理论的细节;附录N.习题解答。

本书适于理工科大学物理系的大学生、研究生、教师和理论物理、材料物理、超流和超导以及相变问题的研究者参考。

量子力学的应用范文第5篇

理论物理作为大学物理系本科的必修课,在大学生用一年到两年的时间学完普通物理之后开始学习。传统的所谓四大力学,即理论力学、热力学和统计力学、电动力学、量子力学,应该在第三年和第四年学完。这四门课的分量都很重,用到的数学知识很多超过基础的高等数学的范围。因此,合适的教材对于师生都很重要。著名教材为数不少,最著名的像兰道和他的助手撰写的大部头巨著,堪称经典;但其难度通常超过一般大学生的接受水平,因而一些导论性的教程更受欢迎。而随着现论物理学不断向着更高水平、更深层次和更为广泛的领域的发展,教材的内容也不断地更新。本书正是在这种思想指导下编写而成的。

作者从事大学理论物理学位课程教学30多年,积累了丰富的经验,对传统的理论物理的讲授模式形成了自己一些独特的看法。他尝试以5个模块形式,把他认为应该掌握的理论物理内容以一种统一的和自成体系的形式纳入到单独的一卷教程之中。这5个模块涵盖了20世纪理论物理学的所有重要分支,包括非相对论量子力学,热与统计物理、多体理论,经典场论(包括狭义相对论和电磁学)以及相对论量子力学和夸克与轻子的相互作用的规范理论。

本书把这5个模块分成20章。第一模块为非相对论量子力学,含第1-4章: 1. 量子力学的基本概念;2.表象理论;3. 近似方法;4.散射理论。第二模块为热与统计物理,含第5-12章:5. 热力学基础;6. 量子态和温度;7. 微观状态的概率和熵; 8.单原子理想气体; 9. 经典热力学的应用; 10. 热力学势及导数; 11.物质转换和相图; 12. FermiDirac和BoseEinstein统计。第三模块为多体理论,含第13-16章:13. 多粒子系统量子力学和低温热力学; 14. 二次量子化; 15. 相互作用电子气; 16. 超导。第四模块为经典场论和广义相对论.含第17-18章:17. 场的经典理论;18. 广义相对论。第五模块为相对论量子力学和规范理论,含第19-20章:19. 相对论量子力学;20. 夸克和轻子相互作用的规范理论。

本书的一个突出特点是完整地给出了所有重要结果的详细数学证明,使一个完成了高中数学课程和大学第一年物理学学位课程的学生能够理解和欣赏理论物理很多重要结果的导出过程。只要是完成了较高一点水平的数学课程,读者都会发现,书中的每一部分都是他们所需要的。

本书描写的理论概念和方法通常包含在一年级研究生的课程中。本书附录中列出了一份推荐阅读的书目清单,以便读者参考。