前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学的核心理论范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:量子力学;材料类专业;教学探索
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)08-0122-02
对于普通高校的材料类本科教学来说,要求学生具有数学、物理、化学等方面的基本理论和基本知识,掌握材料设计、性能优选、工艺优化的原则,以及材料的组成、结构和性能关系。这就需要学生具有材料学科的完整的知识体系,量子力学是半导体、固体物理以及计算材料学、材料测试表征技术等学科的基础,在材料科学体系中有着非常重要的地位。然而其由于本课程的学习是基于高等数学、大学物理、数学物理方法等前期课程学习的基础之上的,学生对这些基础课程的掌握情况参差不齐,而大部分学生对前期课程多有遗忘,课程内容的学习过程中需要理解的知识点很多,所以要学好这门课程需要充分发挥学生的主观能动性,及时复习前期基础课程和预习相关知识。由于知识间衔接紧密,需要逻辑推理内容非常多,学生稍有走神或缺课就会跟不上教师的教学进度,从而对后续知识的学习也丧失信心。此外,对于工科大环境下的学生群体来说,学生普遍对实用的专业课程较感兴趣,而对基础理论课程不够重视,认为学习非常枯燥也没有大多的用处。种种原因造成了在工科大环境下的理论物理教学特别是量子力学课程的教学困难重重,因此将理论教学与专业特色相结合,探索具有专业特色的量子力学的教学方法具有重要的意义。如何消除学生对本课程的畏惧心理,如何调动学生的学习积极性,让学生在课堂上有收获的同时也要自觉利用好课余时间学习是解决本课程教学的关键。本文结合材料类专业的综合情况,经过实践探索,总结几点较为实用的教学方法。
一、与专业课程体系相结合,突出课程的重要性
备课之前先熟悉所授课专业的培养方案,了解学生的已修课程、同学期开设的专业课程以及后续的专业课程。材料类专业的量子力学课程一般在第四学期开课,在此之前学生已经修完了高等数学、大学物理、线性代数、数学物理方法等前期课程。同时学生开始接触一些材料类的专业课程,例如材料科学基础、高分子物理、物理化学等,在之后的第五以及第六学期将有大量的学科专业课,如材料分析测试技术、计算材料学等。教师在对本专业的课程设置以及知识框架有了整体的了解以后,有针对性地翻阅一下一些核心专业课程的教材,将专业课程当中涉及量子力学基础的内容筛选出来以备用。在给学生讲授第一堂课时既将本课程的重要地位告知学生,哪些课程在后续课程种会涉及到相关知识,哪些领域会用到本课程的知识,以及量子力学对本专业以及相关专业的研究生入学考试以及继续深造时的必要性。让学生一开始对本课程的学习有心理上的重视。在具体教学的过程中,注意将量子理论与专业内容相结合,包括已修课程和后续课程。通过多学科的渗透将整个材料学专业的课程内容进行贯穿,凸显出量子理论的重要性和实用性,让学生意识到量子力学并不是高高在上毫无用处的理论公式,同时也使得量子力学的教学更加丰富和生动。
二、与前沿科学相结合、活跃课堂气氛
当下的高校教师除了教学很大一部分时间精力都用于科学研究。平时实验或看文献时可以将所涉及的一些前沿科技成果加以搜集,课堂上通过多媒体以图片、音响等直观的方式将其进行简要的介绍。活跃课堂气氛的同时有可以加深对该理论的理解,激发学生的学习积极性。在给学生讲解理论知识的同时注重结合理论的应用领域,结合材料学科的特点以及学校的特色。作者所在的本校是有着交通特色专业背景,本校材料类专业也有水泥混凝土、沥青混合料等工程材料方面的课程,学生就业也有很大比例在交通相关领域。结合本科的这一特征,教师讲课时可以作一些前沿材料在交通领域的最新进展。在讲解知识基础的同时穿插该部分知识的应用方面的展望,展示过程中采用借助多媒体以图片、音响和板书讲解相结合的方式。通过多种途径让量子力学这种看似“高大上”的学科也有“接地气”的一面,不至于全是枯燥的理论和生硬的公式,有利于对学生学习动力的激发。对于自己的科研课题也可以作一些介绍,还可以挑选部分基础较好的感兴趣的本科生参与到课题的研究或者参观学习,零距离的接触前沿科学,对调动学生的学习积极性也有一定的帮助。
三、多种教学手段相结合,调动学生的学习积极性
在教学的过程中采用多种教学手段相结合。鉴于量子力学的理论抽象、知识量大、数学推理公式繁多,在教学过程中教师的讲授以基本概念的理解、基本物理思想的和基本的物理模型的建立为主,对于需要推理演算的部分可以引导学生利用课余时间自学。首先可以拓展多样化的考核方式。课程考核的成绩以期末考试为主但是学期内平时的表现也是必要的。可以考虑适当增大平时考核的分数比例,便于调动学生充分利用课余的时间。其中平时表现又可以分为多个方面来考核,充分调动学生的自主学习激情。课堂教师讲授为主,适时设问作为课外思考作业,作业以书面形式或者学生在下一次课作简短的展示的方式。才外还可以给学生布置小论文,鼓励学生多进图书馆,查阅相关文献书籍写一两篇小综述。在第一堂课即向学生说明考核的方式和比例,在考分的压力下学生自然会积极准备相关内容。在应对这些平时作业的过程实际上就是学生自主学习的过程中,既巩固了量课程知识,又锻炼了学生自主学习的能力和思维。在教学当中采用多媒体和传统的板书相结合的方式,多媒体信息涵盖量较大,对一些复杂又必须的推导过程可以采用PPT作快速的展示,而对于一些重要的公式及定理则需要采用板书加以强化,通过教师边书写边口诉讲解,学生有足够的时间消化理解。同时可以采用多媒体多展示一些图片、动画等内容,尽量在枯燥的理论讲授过程中增添一些有趣的小插曲,例如该理论提出的科学家的肖像及简介、名言名句,小故事等。在W习原子的波尔理论以及氢原子模型的时候,使用PPT展示基本公式和理论,再辅以教师在黑板上作图的方式讲解。可以将原子内电子的运动类比于在操场跑步以及天体的运动,在做计算近似时甚至可以将近似级类比于上课教室内的座次对个人学习效果的影响、人际关系的亲疏对个人情感生活的影响程度等。此外还可以鼓励学生多接触一些科普书籍以及最新出版的一些学术专著,例如上帝掷骰子就是很通俗的前沿物理科普书籍。通过多种渠道将量子力学枯燥难懂的教学过程生动化、有趣化。
作为材料类专业核心课程的量子力学一直都是教和学双方都感到很困难的课程。由于量子力学的理论性较强,学习过程相对枯燥,学科的实用性不是很明显,学生容易厌学。教师在教学过程中需要不断的探索适合本专业学生的教学方法。通过与专业课程相结合,与学校特色想结合,采取多种教学手段,结合最新的前沿科学研究,多方面入手使理论知识深入浅出,使教学过程生动有趣、调动学生学习热情,对提高教学质量有非常有益的帮助。
参考文献:
关键词:经典相对论;宇宙学;量子引力;概念解释;形而上学
正如巴特菲尔德和厄尔曼编撰的《物理学哲学》一书所言,近半个世纪以来,物理学哲学充满活力有两个重要的原因,第一是与所分析的科学哲学的形成期相关,第二则是近半个世纪以来物理学自身的研究有关。也正因此,在物理学哲学发展的进程中,其研究的论题和研究方法也随着科学哲学和物理学自身的论题和方法进行着改变。在很长一个历史时期内,物理学哲学曾经关注经验物理学领域,物理学哲学的探讨与对客观性、真理性以及科学合理性的辩护分不开。而在当前宇宙学、量子引力发展的前沿时刻,《物理学哲学》一书体现了当代物理学哲学研究的新特点。本书与以往物理学哲学书籍最大的不同之处就在于,在以往物理学哲学著作往往重点讨论统计物理学、相对论和量子力学的哲学问题的基础上,增加了新的领域:“这些支柱的结合”———量子引力,并运用决定论和对称性这两个“能架起联结物理学理论间(甚至三大支柱间)鸿沟的桥梁”的主题,把最终的讨论由具体引向一般,从而让我们看到两个结论:第一,物理学哲学和物理学之间并不存在清晰的界限。第二,物理学概念的复杂化,想要借由物理学去丰富哲学,并非容易。本文主要就书中的“经典相对论”、“宇宙学中的哲学问题”和“量子引力”等内容进行分析,指出它们所揭示的物理学概念解释的新特征以及物理学理论理解的新特征。
一相对论、宇宙学和量子引力哲学概要
巴特菲尔德在引言中指出,数学的相对论者在不断深化我们对广义相对论基础的理解。大卫•马拉蒙特的“经典相对论”[1]一文就明显具有这样的特点,并不讨论经典相对论的历史发展及其实验依据,而是以微分几何的语言,从概念和形式化的角度对相对论的结构以及相对论引发的一些基础问题进行了分析和讨论。首先从描述相对时空的结构开始,相对论的弯曲时空是一类几何模型(M,gab)表示的相对时空,其中M为一个平滑的连续的四维流形,gab是M中的一个平滑的半黎曼度规。其中每个模型都代表一个与理论的约束条件相容的可能世界。M可以解释为世界中点事件的流形,而gab的解释则关乎四个物理学解释性原理,由点粒子和光线的行为决定,由此把引力和时空几何效应等同起来。当粒子只受到引力作用时,它的轨迹为弯曲时空的测地线。而任何质量粒子的加速度即偏离测地线的轨迹,由引力以外的力决定。马拉蒙特详细地描述了gab的解释性原理和限定条件。在此基础上分析了本征时间、某一点的空间时间分解及粒子动力学、物质场、爱因斯坦方程、类时曲线的汇与“公共空间”、基灵场与守恒量等内容。经典相对论中所有发生的事件都可以用物质场F表示,为时空流形M中的一个或者多个平滑张量或旋量,满足包含gab的场方程。Tab为与F相关的能量-动量场,时空的弯曲受物质分布的影响,任意区域的时空度规和物质场会发生动力学相互作用,遵循爱因斯坦方程。在专题讨论部分,关于闵可夫斯基时空中的相对同时性的地位,试图还原爱因斯坦定义同时性对标准关系选择的特定背景;关于牛顿引力理论的几何化,将引力化的牛顿理论与爱因斯坦相对论进行了结构上的对比;关于时空的整体“因果结构”,关注了什么程度上时空的整体几何结构能够从其“因果结构”中得到。“宇宙哲学中的问题”[2]的作者是乔治•F.R.埃利斯。宇宙学哲学的部分在书中起着承上启下的作用,因为一方面,宇宙学哲学的研究基于爱因斯坦广义相对论引力理论时空曲率和宇宙的演化由物质决定的思想,用广义相对论描述宇宙远古时期之后的演化;另一方面,由于在黑洞以及宇宙大爆炸初期物质高密度状态下无法忽略引力问题,因而无法避免引力理论。总的来说,整篇文章把当代宇宙学看作是观测宇宙学、物理宇宙学、天文宇宙学与各种形式的量子宇宙学共生共长、互惠互补的综合理论系统,想要给出一个“描绘真实宇宙起源和演化的理论”。主要内容分为两大部分,第一部分为宇宙学概论,包括基本理论、热大爆炸、宇宙观测、因果和可视世界、理论的发展、暴胀、极早期宇宙、一致性模型等内容,并澄清了关于宇宙暴胀和超光速等问题的一些误解。在埃利斯看来,“宇宙学正在由一种猜测性的事业向真正的科学转变,这不仅带来了与科学革命相近的多种哲学问题,也使得其他哲学问题更加紧迫,例如关于宇宙学中的说明和方法等问题。”因此文章第二部分进行的问题讨论围绕这些说明和方法问题展开,讨论了宇宙的唯一性、宇宙在空间和时间上的巨大尺度、早期宇宙中的无约束能量、宇宙起源的解释问题、作为背景存在的宇宙、宇宙学明确的哲学基础、有关人类的问题:生命的精细调节、多元宇宙存在的可能性和存在的本质等九大问题。在此过程中,埃利斯提出了34个论点,关涉到这9个问题的方方面面,包括人择原理和多重宇宙存在的可能性等。这些论述关乎几何学、物理学和哲学,它们构成了宇宙学面面临的哲学问题的环境及其与局域物理学之间的关系。埃利斯期望通过这一系列讨论改变人们认为宇宙学只不过是确定一些物理参数的简单看法。“量子引力”[3]一文的作者是卡罗尔•罗韦利,内容大致可分为四个方面。第一,量子引力的研究方法,包括早期的历史和方向、目前的主要尝试性理论等。量子引力的早期思想可以概括为“用一个理论来描述引力的量子特性”。期间出现的第一种方法是罗森菲尔德等人的“协变化”方法,通过引入一个虚构的“平坦空间”来考虑周围度规的微小涨落,并且运用电磁场中的方法来对这些波进行量子化;第二种是伯格曼等人的“正则化”方法,研究和量子化整个广义相对论的哈密顿函数,而不只是量子化其围绕平坦空间的线性化函数;第三种是米斯纳等人的路径积分方法。目前主要的尝试性理论主要介绍了基于协变化方法发展起来的弦理论和基于正则化方法发展起来的圈量子引力理论以及它们之间的争论。第二,关于量子引力研究方法论问题。指出量子引力研究的理由包括经验数据的缺乏和对引力是否应当量子化的思索。分析了当前量子引力研究中的各种态度以及科学知识的累积性和科学哲学的影响。第三,空间和时间的本质,包括广义相对论的物理意义、背景无关性、时间的本质等。第四,与其他未决问题之间的关系,包括统一、量子引力学的解释宇宙学常数、量子宇宙学等等。这些章节的详细内容不是本文的重点,我们想要做的,是分析作者的研究方式所代表的当代物理学哲学研究的视野和方法的转变。本书的研究方式明显地具有两个特征:第一个特征关乎物理学概念的解释:物理学的概念解释脱离不开数学形式化下的整体系统;第二个特征关乎新的物理学理论的理解:在理论的发展中处处显示物理学和形而上学的交织统一。这两个特征与这些物理学研究领域实验检验的缺乏以及理论构造的特征密切相关。
二物理学概念解释的新特征:数学形式化整体系统中的关联解释
巴特菲尔德相信当前基本物理学中的基础问题会为物理学哲学提供从最为有趣且最为重要的问题,而我们关注的是本书处理这些基础问题的方式。虽然从章节上来看,物理哲学的论题被划分为若干个领域,但从内容上,完全可以看到作者的用心,站在当代数学物理学发展的高度用整体微分几何等数学语言对物理学系统进行重新形式化和解释,每一章节的紧密联系使得物理学作为一个整体系统得以呈现。其中对每一个物理概念解释的细节,正是物理学哲学追求的基础问题的答案。可以说,概念解释居于本书的核心地位,物理学哲学解释问题的最重要的方式就是处理当代物理学中的概念和解释问题。
(一)物理学概念的解释:我们理解世界的基础
物理学的发展时时刻刻影响着人们对世界的理解方式,其途径就是物理学概念的解释。经典物理学、相对论和量子力学曾极大地改变我们对世界的看法,它们在经验上的有效性曾经强化过我们对科学理论客观性和真理性的观点,也曾让很多物理学家追求理论的实用性而认为有些基础性的问题毫无意义。但当前宇宙学和量子引力理论的提出,使人们重新注视广义相对论和量子力学的不相容性的时候,从广义相对论以来的一些基础性问题和哲学问题得以重新复兴。相对论为我们宇宙的时空结构确定了一类几何模型,其中每个模型都代表了一个与理论的约束条件相融的可能世界或区域。而我们对时空的理解涉及整体时空结构和爱因斯坦方程的约束条件等等。宇宙学和量子引力的研究则让我们明白,改变我们对空间和时间的理解的广义相对论是在可以忽略引力的量子特性时对引力进行描述的场理论,那么真正的空间和时间的本质又是如何呢?我们对宇宙起源的理解绕不开量子引力方法的尝试,但这种尝试要受到很多约束,比如成熟量子引力理论的缺乏、量子力学基础问题,比如测量问题、波函数的塌缩问题等。现在人们期望得到的成功量子引力的路径基于目前理论的发展,比如惠勒-德维特方程和宇宙波函数思想、来自弦论思想的高维时空方法,或者圈量子引力的应用等。但这些问题是否能真正解决宇宙起源的问题却并没有确切的答案,比如维兰金的创生虚无的真理论的理解要依赖于量子场论的精致框架和粒子物理学标准模型等很多结构,而这些基础本身也是需要解释的。可以说,我们理解世界的基础就在于我们用于理解它的那些概念的意义。
(二)概念解释的新特点:数学形式化下整体系统中的关联解释
巴特菲尔德在经典力学的辛约化中指出,经典力学的核心理论原理已经被欧拉、拉格朗日、哈密顿和雅可比等改写,“我们已经认不出来了,因此对它们的哲学反思也发生了变化。”因此引入辛几何、李代数等语言对理论进行形式化,旨在利用辛约化理论使连续对称和守恒量之间产生联系的特征,从理论结构上显现经典力学与量子物理学的联系,这是运用数学形式化系统展现物理学理论的对称性本质。相对论、宇宙学和量子引力哲学部分,情况也是如此。整本书是站在当代数学发展的高度,运用拓扑学、群理论和微分几何等重新形式化物理学的整个体系,并对其概念进行剖析的一个过程。而对基本问题的理解,则建立在概念剖析的基础之上。在这些文章中,理论发展的历史状况和实验成果,只是系统阐释整个理论概念和解释的背景而已。作者们的重点则放在用数学领域的发展和物理学理论形式化的诉求,促进对物理学理论结构的探索,进而把论题转化为对其哲学问题的探讨。理论的形式化体系、概念结构和物理学解释是有机地结合在一起的。在牛顿引力的几何化中,也是站在当代物理学和数学发展的高度,重新形式化作为相对论弱场近似的牛顿理论,得到与广义相对论类似的数学结构,正是在这个意义上,才能够好地发现两个理论在何种条件和何种程度上是相符的,又在何种条件和何种程度上是区别的。在这个形式化的整体系统中,对于物理概念的解释不再是孤立的解释,而是站在理论的数学结构的高度,成为一个整体系统中的关联解释。这在很大程度上突出了物理学哲学中语义分析方法的重要性,因为没有完全独立的概念,物理学的概念定义之间互相依赖,只有在一个系统的语义结构中才能理解概念的意义。如普斯洛斯在这套爱思唯尔哲学手册的《一般科学哲学》一书中所言:“理论解释的唯一方式就是把它嵌入到同类概念的框架中,并尝试着解开它们的相互关联。”[4]
(三)旧概念重新解释的意义:还原理论创立过
程中概念选择的特定背景在物理学的发展中,每一次理论创新和进步都伴随着新概念的提出或旧概念的重新解释,站在理论发展的角度考虑,这样的解释会让我们更好地理解物理学理论的提出、发展和变迁的合理性。比如蒙特在经典相对论一文中对闵可夫斯基时空环境下相对同时性关系的重新考虑。蒙特指出,当相对于一个四维速度矢量将一点上的矢量分解为“时间”和“空间”分量进行讨论时,我们理所当然地相信包含正交性的相对同时性的标准认同。在解释这种认同的理由时,根据方便在闵可夫斯基时空结构即狭义相对论体系下进行分析。他援引霍华德•斯坦的论述,指出采用相对同时性的标准(ε=1/2)的惯例是需要特定背景的。在他们看来,爱因斯坦是为了解决我们无法检测到地球相对于以太的运动而采取的解决方案,以一种特定的方式(ε=1/2)来思考同时性,但如果并非从爱因斯坦最初的思路来考虑,而是从一个成功理论的高度来理解它,把相对论视为是针对时空结构不变性的论述时,其意义就完全不同了。这在很大程度上还原了爱因斯坦对同时性做出的“定义”中挑选出来的这种标准关系的实质,它可能并非一种自然的存在,而是理论选择的特定需要,还原这个过程,对我们更好地理解理论和概念的本质有着重要的意义。
(四)新理论的概念澄清:科学进步的必然现象
物理学史上每一个新理论的诞生都会引起旧的概念的澄清,量子引力就是个很典型的例子。量子引力是对空间和时间本质的探索,它引导我们重新思考关于时间、空间、“在某处”、运动和因果观测者的地位等很多问题。作为试图把广义相对论和量子理论结合的理论,我们需要以历史的眼光重新追问。我们都知道,广义相对论改变了我们对牛顿独立于物质运动的绝对空间和时间的理解。量子力学则用我们关于运动的一般性理论替代了经典力学,并改变了物质、场和因果性的观念。但量子力学的外在时间变量和量子场论静止的背景时空都是和广义相对论不相容的。而广义相对论中引力场被假设为一个经典决定论的动力学场,无法处理小尺度引力的量子特性。因此,想要把二者进行结合的量子引力就遇到了困难。正因为如此,罗韦利直言尽管基础物理学在经验上有效,但它正处于一种深刻的概念混乱的状态。虽然20世纪后半叶,物理学注重实用而忽略了这些基本问题,但量子引力告诉我们这些基本问题必须得到新的答案。但问题的澄清并没有一条唯一明确的路可以走,超弦理论和圈量子引力在假设、成就、具体结果以及概念框架上都有着显著的不同,但它们都有自己的代价,弦理论的思想基础是为了消除广义相对论的微扰量子化的困难,保留了量子场论的基本概念结构,其代价之一是放弃广义相对论的广义协变性。圈量子引力植根于描述广义相对论的协变性,但它的代价是忽略了理论的不完备性,放弃了幺正性、时间演化、基本层次上的庞加莱不变性以及物理学对象是在空间中局域化的且在时空中演化的概念。可以看出的是,新理论澄清概念的过程是科学理论进步的必然现象,而这一过程是通过分析在描述世界结构时所产生的概念上的困难来对以往科学的研究框架予以质疑或辩护,这涉及的是对世界本质更深刻的哲学和形而上的思考。
三物理学理解的新特征:物理学和形而上学的交织统一
记者:这次有人提出要“废除中医”,原因是“中医不科学”。而中医给人的印象,无论是诊断方法还是用药确实不像西医学那么严谨。
何裕民:这个问题话题比较长,首先,在近一百年来,科学对于中国是非常时髦的事,其实科学的含义是多样的。首先科学作为一种知识形态;其二,我们讲“科学的”,往往是相对于迷信而言的。
就知识形态而言,我认为中医是带有历史烙印的传统科学形态。至于中医科学不科学,那是毋庸置疑的,因为中医相对于迷信来说是科学的。就引申出一个更大的问题:怎么来看医学。
就“狭义的科学”来说,历史上或者目前所遵循的主要是指物理科学,物理科学是严格意义上的科学。它是用还原方法,进行定量分析,然后用数字化表达。从这个含义上来说,我说一句可能很多人都会吃惊的话“现代西方医学都不是科学”。
这是一个非常著名的科学哲学家说的,他叫库恩,美国人,这是他在50年前就发表的一种议论。他认为医学分两部分:一部分是基础,是生物科学,他认为生物科学尚够得上科学标准;医学的另一块,更为重要的,也是医学的主体――临床医学,却远远够不上科学的标准。
我们讲两个例子:一般人看病都喜欢找老医生,不管找老中医还是老西医,因为经验丰富。经验的东西就不是定量化可以表达的,充满着技艺之类成分,不是科学的问题。真正意义上的科学,比如说IT行业,原子物理,一般来说,30岁左右是最好的年龄段。因为科学是严格遵循还原方法论的,且不断更新,很快很快,医学却恰恰相反。
第二个证据,近十几年来医学领域兴起了一门新学科:循证医学。就是充分寻求可信的临床证据,因为我们光靠实验室得出来的这些证据,还不足以说明很多问题。循证医学的出现也表明医学主体目前还够不上一门严格意义的科学。
再如,揭示规律是科学理论的重要特征,物理科学认为规律是唯一的,无例外的。但生物科学领域并无严格意义上的规律,用著名现代生物科学哲学家迈尔的话来说:“生物学中只有一条定律,那就是所有概括都有例外。”
所有的物理科学,最后表达都是数字公式,比如自由落体定律,可以表达为H等于1/2gt2。但生命科学讲的都是概率、百分比,大概是多少。从这个意义上来说,即使生物科学也够不上严格意义上的科学。
这些生物科学家强调生物阶层在不同水平上都有不同的特征,需要不同的理论,从大分子到细胞器,到细胞、组织、器官、人的整体,每一阶层都导致独立的生物学分支产生,低层次的特征并不足以完全解释高层次生命活动的特点,但这在物理科学却是必然的,因此他们力主生物学必须与物理科学保持“持续的间隔”。生物科学可以充分借助物理科学的方法、手段,但还必须形成自己的方法体系。
再讲第三个含义,医学还是一门人学,还是一种生活方式。有个离休干部,他患高血压、糖尿病,每次都开同样两种药物。医院有三种号5块钱、15块钱、50块钱,他每次就挂50块钱,同样拿两种药。他说:“5块钱的,医生不听我说,不让我说;15块钱的,让我说,不听我说;50块钱既让我说也听我说,也和我交流。”你说这是科学问题,还是人学问题?所以我个人认为,关于医学科学问题的讨论,或者中医不是科学问题的讨论本身前提就是有点站不住脚的,缺乏一个常识,你想把医学严格定义为科学,那么这门医学肯定是没有人性的。
医学本身是科学的一个部分,医学本身带有一定的人文特征,如果我们带有这种观点来看的话,我觉得中医学的存在,对世界是一件幸事。
中医可称是“生态医学”
记者:有人说真理是唯一的,医学真理西方已揭示了,中医学就没有存在必要了。
何裕民:这句话很不妥,实际上是上世纪占主导地位的科学主义的核心观点。我只举一个例子,心理学研究的也是人的问题,心理活动也有物质基础,心理学却是存在着众多的学派与学说,从精神动力学、行为主义、格式塔、心理生理学到人本主义等等,就心身医学而言,日本也有自己的“森田疗法”。生命科学领域,远未达到可以肆谈统一、唯一的境界,我们完全应该宽容地珍惜传统精华,加以弘扬。
记者:现在西方医学已经非常发达,在社会生活中占主流地位,中医还有什么意义?
何裕民:所有科学探索活动都受制于哲学观念的指导。中国占主导的是自然观点元气论,西方占主导的是原子论。元气论驱使人们注重过程与状态,注重相互关联与互动;而原子论则促使人们注重结构,注重还原,重视细节与构造。中西医学理论解释的最深层次的分野也就在于此。因此,我们看到了中医注重整体的“气”,活体的经络,人与外界的互动,中医叫“天人相应”。而西医却汲汲于细胞、大分子、基因。而现代科学的走向是强调两者的有机互补与结合,特别是新兴的复杂性科学。
举个简单的例子,量子力学是二十世纪物理学的最伟大贡献之一,量子力学的理论解释至今就存在着“粒子说”与“波动说”,而“粒子说”就是原子论的经典体现,“波动说”似乎与中国(包括中医学)的气论更能对话。
这就回到了自主论生物学家的基点了:生物不同阶层,有着不同的特征,现代医学着重于揭示细胞、细胞器及基因层次的生物学特征,向上也兼及了器官、组织,但到此为止。而中医学却着重揭示粗略的脏腑之间,特别是生命整体及该生命体与其生存的环境(生态)之间的互动特征。
用我的话来归纳,可以这么说,中西医是以“不同的术语,揭示着生物不同阶层系统的不同特征”。尽管中医用的术语粗疏得多,甚至有许多荒谬之处,但你无法否定他的理论价值所在,就像整体层次的“经络”现象,就像是“气”所揭示的整体生命现象。
顺便说一句,有位著名的否定中医人士,口口声声说中医是伪科学,但他却从20世纪70年代就一直撰文充分肯定元气论的现代科学价值,因为这是无法否定的事实。
中医理论揭示更多的是整体与生态层次的生物问题,认为称中医为“生态医学”,亦无不可。
【关键词】意识 高阶表象 意识的高阶理论 无穷倒退 婴儿意识中图分类号:B022
文献标识码:A
文章编号:1007-9106(2012)02-0106-03
一、什么是意识的高阶理论
意识作为人类社会的一种精神现象而言是非常常见的,我们简直可以说,有人类的地方就有意识存在。因此,意识这个词的用途与含义也就非常复杂,不仅在日常生活中还是在哲学与心理学的文献中都是如此。在当代认知科学的领域内,意识问题更是讨论的核心问题,一些知名的学者都参与了意识问题的讨论。比如,1962年诺贝尔生理学或医学奖获得者克里克(Francis Harry Compton Crick)、1972年诺贝尔生理学或医学奖获得者埃德尔曼(Gerald Edelman)、英国著名的数学家与物理学家彭罗斯(Roger Penrose)等。在哲学史上,也有很多哲学家讨论过意识的含义,并试图对意识下一个定义,但直至今天,还并没有产生出一个公认的意识定义。这究竟是为什么呢?这是因为,这个问题异常困难,所牵涉到的问题以及学科也太多,大部分学者都对它束手无策、无从下手。许多认知科学中的实验研究,也只是旁敲侧击,并没有触及到意识问题的真正核心。以往有许多学者对之钻研一辈子,最后只留下一些零散的手稿,基本上可以说是进展不大。
关于意识的问题尽管纷繁复杂,但我们还是可以将它大致分为几类。其中一类是关于意识的本体论地位,也即意识与物理世界之间的关系问题,这是一个形而上学问题。对这一问题作出回答的,基本上是一些哲学家提出的理论。比如戴维森(Donald Davidson)的异常一元论(Anomalous Man—ism)、丘奇兰德(Churchland)夫妇的取消物理主义(Eliminative Materialism)、查尔默斯(David Chal-mers)的二元论、塞尔(John Searle)的自然主义进化论的意识理论等等。还有一类问题是关于意识是什么的问题,也即探究意识本质是什么的问题。企图对意识的本性作出描述与解释、企图回答意识的本质是什么的,其中有一些哲学家,也有一些科学家,他们提出了非常多的模型或是设想,比如埃德尔曼与托诺尼提出的意识的再进入的动态核心(Reentrant Dynamic Core)假说、彭罗斯等人提出的意识的量子力学解释等等,我们在这篇文章中要讨论的高阶意识理论也算得上是其中的一种。
高阶意识的观念由来已久。比如,洛克就曾说过:“所谓意识就是一个人心中所发生的知觉”。这种观点认为,使得某个心理状态成为有意识的,正是某种把该心理状态作为其对象的高阶表象(Higher-order-representation)@。比如说,某个心理状态A是有意识的,那么,必定存在着另一个把A作为对象的高阶表象。倘若我们把这一高阶表象称为B,那么,B就是心理状态A的元心理状态。举个例子:比如说现在我在电脑上打字,并且强烈地渴望能够尽,快完成这篇文章。这个时候,有个电话打过来,说让我去帮个忙。我满心懊恼地离开了电脑,走到门口时还回头看了一眼。这个时候我才突然意识到,自己是多么地渴望能够尽快完成这篇文章。在这里,这个强烈的渴望就是我的心理状态A;而对这个强烈渴望的突然意识,就是心理状态A的元心理状态,即高阶表象B。很显然,在一开始的时候,这个强烈的渴望并没有被我意识到或说被明确地意识到;到后来离开电脑的时候,这个强烈的渴望才被我很明确地意识到。在解释某一心理状态为何是有意识的时候,用另一个更高阶的心理状态来把此心理状态作为对象,以此解释。像这样一类解释方案,我们把它称为意识的高阶理论(Higher-order-theory of consciousness)。
二、高阶理论所遇到困难之一:无穷倒退问题
高阶理论首先遇到的一个最常见的驳难就是:高阶理论是一种循环定义的理论,它还会导致无穷倒退。比如说在意识的高阶理论中,意识是通过意识的高阶理论来得到定义的,这显然会导致循环定义。而另一方面,在意识的高阶理论中,心理状态A要成为有意识的心理状态,那么它就得需要一个高阶的表象B来把它作为对象;而这个高阶的表象B要成为有意识的,那么它就得需要一个更高阶的表象c来把它作为对象;……如此以致无穷。
意识的高阶理论的捍卫者们对这个驳难是这样回应的:当朝向外部世界事物的一阶心理状态是有意识的时候,朝向该一阶心理状态的二阶心理状态自身是无意识的。否则的话,就会导致循环定义与无穷后退。另外,当朝向一阶心理状态的二阶心理状态是有意识的时候,那么就存在着一个朝向该二阶心理状态的更高阶的心理状态,即三阶的心理状态,而该三阶心理状态自身是无意识的。在这里,有意识的高阶心理状态是通过内省这种方式来朝向低阶的心理状态的。因为当一个人内省的时候,他的注意力就会被拽回到自己的内心之中。比如说,使得我尽快地写完这篇文章的强烈渴望成为一种被我意识到的一阶心理状态的,正是另一种朝向该渴望的更高阶的心理状态,尽管后一种高阶心理状态可能是无意识的。在这个情形中,正是因为我的意识完全聚焦于这篇文章上,因此我并没有从第一人称的角度意识到自己拥有朝向此文章的更高阶的渴望。不过,当我对此渴望加以内省的时候,这时我就有了一个朝向此渴望本身的有意识的二阶心理状态,而此二阶心理状态同时还伴随着一种更高阶的即三阶的心理状态。
关键词:科学 审美主义 宇宙观
引言
在科学活动中,具有一种将科学研究审美化的趋向。从古希腊时代到20世纪,我们都可以在伟大科学家的行列中,找到例子,证明对科学揭示的自然美的追求,是科学发展的一个基本动机。法国数学家彭家勒(H.Poincaré)说:“科学家并不为了有用而研究自然。他研究自然,是因为他能从中获得乐趣;他之所以能获得乐趣,是因为自然是美的。如果自然不是美的,它就不值得认识,生活也不值得一过。”[1]彭家勒的科学观,在20世纪的科学家(尤其是数学家和物理学家)中有很大的代表性。爱因斯坦坚持与彭加勒同样的主张,并且更明确、更坚决。他认为,科学家从事艰辛的科学研究的根本动机是对自然的“预定和谐”的一种宗教式的虔诚情感,“渴望看到这种先定的和谐,是无穷的毅力和耐心的源泉”;科学家的最高使命是揭示自然世界的基本规律,并在此基础上,用数学形式为自然世界绘制一幅完全和谐、完整单纯的图像。科学家们是带着神圣的激情和伟大的想象力来探索和绘制这幅世界图像的,并从中获得发现和证实了自然世界的完美和谐的快乐(满足感)。[2]
我们可以把彭加勒和爱因斯坦的科学观概括为科学中的审美主义。它包含三个主要观念:第一,坚持对自然世界的和谐完美秩序的信念,认为自然规律本身必然是完美和谐的;第二,认为科学研究的内在动机,不是出于实用目的,甚至也不是为了认识自然真理,而是为了发现和展示自然世界和谐完美的秩序;第三,科学的审美感,既是引导和推动科学理论发现(创新)的力量,也是鉴别一个科学理论是否具有真理性(科学性)的主要标准。
本文将进一步探讨科学审美主义的基本含义是什么?它与艺术中的审美主义的差异是什么?科学审美主义对20世纪科学思想发展的主要影响是什么?它对于当代人类精神具有什么意义?
1
在讨论科学中的审美主义时,需要讨论的一个重要问题是:究竟什么是科学理论的审美性质?英国科学理论家麦卡里斯特(J.W. McAllister)曾将科学理论的审美性质概括为五种:对称性形式、模型的使用、形象化 / 抽象化、简单性和形而上学虔诚。[3]根据麦卡里斯特,使用模型是在两个理论之间建立类比关系,比如拉普拉斯的热力学理论给出了一个将热作为流体处理的模型;形象化则是指在一个科学理论与某种现象之间建立比喻关系,比如将DNA螺旋形象化为盘旋而上的楼梯;抽象化则是指借助数学的和其他抽象形式的工具描述现象。这三种审美性质(使用模型、形象化 / 抽象化),在科学审美主义中,并不是很重要的。重要的是对称性形式、简单性和形而上学虔诚。在这里,我们有必要对这三种审美性质逐一探讨。
首先,我们探讨对称性形式。在自然界中,从宏观到微观,普遍存在着对称性形式。左右对称(反射对称)和旋转对称,是与我们日常生活的空间相关的两种最基本的对称形式,也是最早被数学家和物理学家关注和普遍运用的两种对称形式。在物理学中,C(电荷共轭对称)、P(空间反射对称)、T(时间反演对称)对称是三种最基本的对称形式。[4]首先我们要明确的是,“对称”,是一个非常复杂的概念,它在生活、艺术和科学中的含义是不同的。在科学理论中,对称性涉及到两个概念:变换和不变性。麦卡里斯特说:“一个结构在一定的变换下是对称的,只要该变换能够使该结构保持不变。”[5]科学理论也从另一个意义上定义对称,即“不可观测性”。李政道指出:“实际上,所有对称都是以这个假定为前提的:确定的基本量是不能观测到的,这些基本量即称为‘不可观测量’。相反,当一个不可观测量变成了可观测量,我们就发现一个对称损坏。”[6]我们可以用一个简单的比喻来说明这个对称定义:我们一般认为我们的左手和右手是对称的,这是因为我们只是看到它们在外观上大致相同的量,没有观测到它们之间的更基本量的差异;如果观测到了这些更基本的量,我们就会发现左手与右手的对称并不存在(不是绝对对称的)。
对称性在自然界和人类生活中都占有非常重要的位置,科学家很早就运用对称性原理探索自然规则。但是,对称观念只有在现代科学中才产生重要作用,进入20世纪以后,对称观念变成了物理学、化学等诸多科学的中心概念。杨振宁指出,对称观念在现代物理学中的重要性,来自于两个原因:第一,到了20世纪,人们才发现守恒定律与对称性的密切联系——一种守衡定律对应着一种对称性形式;第二,量子物理学的发展需要利用对称性原理确定量子数和选择规则。根据量子物理学原理,世界各个不同的基本粒子之间有4种不同的相互作用:强相互作用,电磁相互作用、弱相互作用和引力相互作用。对称性是决定相互作用的主要因素。相互作用就是力量。“对称决定力量。”[7] 对称性在现代科学中的中心地位,从狄拉克对爱因斯坦的评价也可看出。他在1982年询问杨振宁,什么是爱因斯坦对物理学最重要的贡献?杨振宁回答说:“1916年的广义相对论。”狄拉克说:“那是重要的,但不象他引入的时空对称的概念那么重要。”对狄拉克这个与众不同的观点,杨振宁事后评论说:“狄拉克的意思是,尽管广义相对论是异常深刻的和有独创性的,但是空间和时间的对称对以后的发展有更大的影响。的确,与人类的原始感受如此抵触的时空对称,今天已与物理学的基本观念紧密地结合在一起了。”[8]
科学理论的对称性是和自然存在的对称性相对应的。“可以说一个科学理论具有某种对称性,如果对该理论的诸概念性组分(它的概念、公设、自变数、方程或其他元素)施加一个变换而该理论的内容或者主张保持不变。”[9]麦克斯韦电磁方程组、洛伦兹变换理论和爱因斯坦的广义相对论,都具有高度的对称性(相对变化的不变性)。杨振宁说:“从十分复杂的实验中所引导出来的一些对称性,有高度的单纯与美丽。这些发展给了物理工作者鼓励与启示。他们渐渐了解到了自然现象有着美妙的规律,而且是他们可以希望了解的规律。”[10]在科学理论中,对称性给予科学家在两个基本观念上的满足:相对性的不变性和逻辑的简单性。这两者的统一,是对称性美感的实质。由此我们涉及到科学理论的简单性审美性质。“简单性相等于美。”这是彭加勒、爱因斯坦、狄拉克和海森堡等现代科学家都坚持的信条,而且,他们相应把简单性作为评估科学理论的真理价值的一个基本标准。海森堡在与爱因斯坦讨论时曾表示,“如果自然让我们获得高度简洁而优美的数学形式,那种前人未曾见到的形式,我们会毫不犹豫地认为它们是‘真实的’,认为它们展示了自然的真面目。”[11] 爱因斯坦在一封通信中,更明确地说:“从有点象马赫那种怀疑的经验论出发,经过引力问题,我转变成为一个信仰唯理论的人,也就是说,成为一个到数学的简单性中去寻求真理的唯一可靠源泉的人。逻辑上简单的东西,当然不一定就是物理上真实的东西。但是,物理上真实的东西一定是逻辑上简单的东西,也就是说,它在基础上具有统一性。”[12]
科学理论的第三个重要的审美性质是表现一种形而上学虔诚。这就是说,科学家在他的理论体系中坚持并表达了他及其科学共同体遵从的形而上学世界观。在包括爱因斯坦在内的科学传统中,科学家的形而上学虔诚的核心是对自然秩序的确定性和不变性的信念。爱因斯坦尽管不满意牛顿用绝对不变的时间和空间观念来描述自然秩序,而把时间和空间结合成为时间-空间变换的相对体系,但是仍然主张自然秩序是一个时-空对称的体系,即时空相对论不变性的确定体系。他说:“相信世界在本质上是有秩序的和可认识的这一信念,是一切科学的基础。这种信念是建筑在宗教感情上的。我的宗教感情就是对我们的软弱的理性所能达到的不大一部分实在中占优势的那种秩序怀着尊敬的赞赏心情。”[13]爱因斯坦反对量子力学,不仅因为量子力学的数学方式不能满足他关于科学理论的对称性和简单性审美偏爱,而且因为量子力学的不确定性原理和量子跃迁原理在根本上瓦解了他的形而上学世界观的基础:自然秩序的确定性和连续性。他坚持用严格的因果关系看待量子运动,并且试图给这种运动以“明确的形式”。他说:“我觉得完全不能容忍这样的想法,即认为电子受到辐射的照射,不仅它的跳跃时刻,而且它的方向,都由它自己的自由意志去选择。在那种情况下,我宁愿做一个补鞋匠,或者甚至做一个赌场里的雇员,而不愿意做一个物理学家。”[14]
形而上学虔诚,是审美主义的理论归宿,审美主义所追求的对称性和简单性都是指向这个目的的。如果说科学传统的形而上学虔诚的中心是自然秩序的确定性和不变性,即自然是一个和谐统一的体系,对称性和简单性则是这个体系的统一性的最好保证。美国物理学家、爱因斯坦审美主义科学观的追随者阿·热(Anthony Zee)指出:“物理学家们梦想能对自然作一个统一的描述。对称性以它强大的力量把物理学中那些看上去毫不相关的方面捆在了一起,因而和统一的观念紧紧相联。”[15]对称在20世纪上半期物理学中的中心意义,主要原因是直到1956年之前,物理学家们都相信基本粒子间的四种相互作用(力)都分别遵守CPT定律。C指电荷共轭不变性,P指宇称(反映)不变性,T指时间反演不变性。如果四种相互作用都遵守CPT定律,则对称性成为世界秩序的最基本组织原理,世界无疑是一个和谐统一的对称体系。但是,1956年杨振宁和李政道揭示了弱相互作用不遵守宇称不变性,其后,物理学家们又发现了弱相互作用也不遵守电荷共轭不变性。宇称守衡定律的破坏,不仅破坏了物理学家用对称性最后统一世界的构想,也从根本上打击了科学传统关于世界统一性的形而上学虔诚。20世纪科学的进一步发展,否定了一个关于静态的均匀的宇宙观念,展示给我们的是一个膨胀的非均匀的宇宙。这个新的宇宙图景无疑是对科学审美主义的严峻挑战。
2
爱因斯坦说:“音乐和物理学领域中的研究工作在起源上是不同的,可是被共同的目标联系着,这就是对表达未知的东西的企求。它们的反应是不同的,可是它们互相补充着。至于艺术和科学上的创造,那末,在这里我完全同意叔本华的意见,认为摆脱日常生活的单调乏味,和在这个充满着由我们创造的形象的世界中寻找避难所的愿望,才是它们的最强有力的动机。这个世界可以由音乐的音符组成,也可以由数学的公式组成。我们试图创造合理的世界图象,使我们在那里面就象感到在家里一样,并且可以获得我们在日常生活中不能达到的安定。”[16]
爱因斯坦的话引起我们对科学的审美主义和艺术的审美主义两者关系的思考。在这段话中,爱因斯坦指出了艺术与科学(音乐与物理学)的两个共同目的:第一,企求认识和表达未知的东西,第二,在自己创造的世界图象中获得安慰和安定。亚里士多德在2300多年前就指出,艺术(诗艺)产生的原因有两个:第一,人从孩提时候起就有模仿的本能,并通过模仿获得了最初的知识;第二,每个人都能从模仿的成果中得到,甚至在现实中让人感到不快的丑的事物,也能通过模仿变得美,引起人的。[17]亚里斯多徳的观点正与爱因斯坦一致,都以求知为艺术和科学共同的目的,并且实际上都肯定了美与真的统一。无疑,艺术活动包括了认识自然的动机。但是,艺术还有将自然理想化和自由表现的动机。从艺术发展史来看,如果说共同的认识动机使艺术与科学曾经处于交差、统一的状态(古希腊将艺术与科学都作为自由的技艺,由缪斯女神统管),那么,艺术特有的理想化和自由表现的动机却将艺术与科学逐渐分离开来,甚至造成了两者的历史性对立。
在经典科学原则下,甚至在爱因斯坦这样的科学审美主义者的原则下,科学创造也不能被理解为对自然的理想化和自由表现。相反,科学的审美主义是反对自由意志,而坚持严格的确定性原则的。这就是爱因斯坦多次申明的:“我无论如何深信上帝不是在掷骰子。”[18]在现代艺术发展中,艺术创造的自由原则具有中心意义。正是在这个意义上,康德在对艺术作本质界定的时候,对科学和艺术作了严格区分:艺术是非认识的天才的自由创造活动,而科学是通过学习可以掌握的认识活动。康徳说:“那些一旦人们知道了应当做什么就能操作的活动,不是艺术;只有那些人们虽然完全掌握了它却并不相应就有操作能力的活动,才是艺术。”[19] 康徳的论述无疑包含了对科学创造性的偏见,许多科学家(牛顿、爱因斯坦、海森堡)的科学活动非常好地证明了科学的突破性发展是科学天才的伟大创造。但是,康徳揭示了科学与艺术的一个基本差异:即科学创造不以个性和自由表现为目的,这恰是艺术(尤其是现代艺术)创造的目的。当然,科学理论作为科学家个人的创造成果,总是在一定程度上带着他的个性和自由特征。德国数学家玻尔兹曼(Boltzmann)说:“正如一个音乐家可以在听到头几个音节就能判断他的莫札特、贝多芬或舒伯特,一个数学家也能够在读过头几页之后辨别出他的柯西(Cauthy)、高斯(Gauss)、雅可比(Jacobi)、亥尔姆霍兹(Helmholtz)或基尔霍夫(Kirchhoff)。法国作者表现出他们的极其形式化的优美风格,而英国作者,特别是麦克斯韦(Maxwell),却表现出他们的戏剧感。”[20]但是,与音乐家在音乐创作中的个性表现相比,科学家在科学创作中的个性表现不仅不是着意追求的目标,而且它的自由度受到科学规则的相当严格的限制。
具体到科学理论的审美性质,我们已论述,它主要表现为对称性、简单性,并归宿为对世界和谐统一的形而上学虔诚。在艺术中,这三种审美性质,即对称性、简单性和统一性(和谐),同样具有普遍和基本的审美价值,在古典艺术范围中,甚至可以说它们是一切形式美原则的基础。当代人类行为学研究成果表明,人类的形式美感是建立在人作为一个高等脊椎动物在这个世界中生存的基本生理-心理需要基础上的:秩序感和安全感。因此,人类视知觉有一种寻找统一和秩序的本能机制,这个机制不仅对一切统一而有秩序的形式产生满足感(),而且会自动创造秩序和统一,将对象审美化。对称性和简单性,无疑具有基本的秩序和高度的统一性。因此,它们具有普遍的审美价值。[21] 在这个基本意义上,我们看到科学与艺术对形式美追求的共同性,并且应当赞成爱因斯坦的观点,科学和艺术都在为我们创造和谐优美(合理)的世界图象,“使我们在那里面就象感到在家里一样,并且可以获得我们在日常生活中不能达到的安定”。但是,人并不能满足于只是生活在宁静安全的环境中,在寻找秩序和安全的同时,他还在自然环境和社会环境的影响下保持着一种对差异和变化的要求,有着好奇的本能冲动。德国人类行为学家爱波-爱伯斯费尔塔(I. Eibl-bibesfeldt)说:“一方面,人努力获得宁静和安全,但同时,他需要差异、激烈、和紧张,这也是必须满足的。”[22]艺术的形式美原则,不是单向地以对称、简单指向统一,而是同时要求着变化、差异和多样性;科学理论的审美性质却是单向地指向简单和统一的。“简单就是美”,这对于科学审美主义是一个具有真理性的原则,而对于艺术却必须在充分展示对象丰富性的意义上,才具有审美有效性。同样,在艺术中,对称性必须以变化和差异为基础,它应当体现为一种动态的知觉平衡(均衡,balance),而不是实在的物理守恒。正是在这个意义上,我们不仅在生动优雅的古希腊雕塑中,而且在相对僵硬机械的古埃及雕塑中,也找不到完全符合物理-数学对称性的造型。
正如科学理论的最终形式是数学模型,科学理论的审美性质归根到底是数学形式的优美和谐。爱因斯坦说:“我以为科学家是满足于以数学形式构成一幅完全和谐的图象的,通过数学公式把图象的各个部分联系起来,他就十分满意了,而不再去过问这些是不是外在世界中因果作用定律的证明,以及证明到什么程度。”[23]狄拉克说:“爱因斯坦可能觉得,于取得与观察一致相比较,在一种真正根本的意义上,数学根基上的美才是更重要的。”[24] 正是在这个意义上,即科学的美是数学形式的美的意义上,彭加勒指出,科学家所关注的美,不是感性现象的美,而是来自于事物的各部分和谐秩序的内在的美,换句话说,科学美是感觉不能把握,只能用纯理智才能把握的理性美。他明确说:“这种感觉能力,即对数学秩序的直觉,使我们能够窥见自然隐秘的和谐关系,但不是每个人都具有的。”[25] 这就是说,科学理论的美,不仅需要理智才能把握,而且只有具有数学直觉力的科学家才能把握。
科学追求使用数学符号和公式精确地表现自然秩序的统一性。它是对自然世界高度精密地简化描述。海森堡说:“美就是部分与部分之间、部分与整体之间的固有的一致。”[26]这个美的定义是以数学的精确性和统一性为基础的。彭加勒也对美(数学的美)给出了相同的定义。科学理论的美要符合数学精确性,因此是有客观标准的。但是,艺术美不具有数学的精确性,没有客观的标准。阿多诺说:“绝不能就象蔡辛时代的美学所做的那样,把形式概念归结为数量关系。” [27] 蔡辛(A. Zeising)是19世纪德国美学家,他认为21:34的比例,即黄金分割[28] 是一种标准的审美关系,是在整个自然界和艺术中占优势的比例。[29] 实验美学之父,德国美学家费希纳(G. Fechner)在1876年出版了他的《美学导论》(Vorschule der Ästhetik)。在书中,费希纳利用他的实验结果表示了对蔡辛的观点的支持。此后,黄金分割一度在美学中被认定为一种普遍的形式美原则。20世纪70年代以来,实验心理学对黄金分割是否是一种普遍有效的形式美规则,做了多次跨文化实验。被试对象包括欧洲居民和非欧洲居民,实验具有人类学意义。多次实验证明,无论在欧洲文化环境中,还是非欧洲文化环境中,黄金分割都不是具有审美优势的形式规则。心理学家艾森克(H. Eysenck)指出:“总而言之,黄金分割被证明并不是美学家或实验美学家的一个有效的支点。”[30]
英国学者库克(T. A. Cook)认为,遵守数学精确性不是美的原因,相反,“美的条件之一是对数学精确性的巧妙变动”[31]。无论自然事物的美,还是艺术的美,都是生命生长的形式(结果),都包含着数学公式无法描绘的复杂性和微妙变化。相对于数学公式的规则性而言,美与生命的形式永远是不规则的。库克说:“原创艺术的困惑因素在于它的美,这是一种与生命本质一样复杂的品质。因此,尽管简单的数学可以帮助我们鉴赏和归类所研究的现象,但并不能完整地表达生长。这说明,仅仅根据实际经验和数学构筑的物品一定不会完美。因为,完美,和自然生长一样,隐含着不规则变化和微妙的差异。”[32] 数学可以用中末比(黄金分割)或以此为基础的φ级数来描述希腊雕塑的形体比例关系,但是它无力揭示它的美的根源。因为这个描述只能是近似的,而且不能说明雕塑家对这个比例关系作的巧妙变动。建筑无疑是所有艺术形式中最需要遵守数学原则的艺术。但是,使建筑成为一种优美艺术的条件,正是它对数学精确性的巧妙变动。充分利用这个条件,是古希腊建筑达到极高的艺术成就的奥秘所在。不朽的帕特农神殿以沉重的大理石为材料,却壮丽而不失优雅,轻盈之至,“你几乎可以听到神殿震动翅膀的声音”[33]。是什么力量使那些无生命的石头获得了灵气呢?是建筑家对数学精确性的微妙改变。比如,神殿四周立柱从下到上向中心微小倾斜,各立面柱间距由中部向两侧逐渐增大,山墙下的横楣由两端向中间轻微隆起,基座水平线也有相应的曲度。这些非规则性的改变,是建筑家天才的创造,是数学公式不能确定的。然而,正是它们赋予了巴特农神殿的每一块大理石美妙而永恒的生命,乃至于它们今天在雅典阿卡普罗斯山上的废墟中仍然放射出至美的光辉。
爱波-爱伯斯费尔塔说:“艺术从一个新的、非常规的视角描述世界,揭示在日常生活中并不明显可见的关系。实际上,科学也在表现这样的新视觉。因而两个领域都在追求更深刻地洞见世界。艺术探索人的情感的深度,进而主要是表达信念和其他价值,而科学的目的是传达客观知识。这似乎是艺术与科学的基本差异。”[34]科学与艺术的基本出发点的不同,导致了科学与艺术对客体的基本态度和方式的不同。概括地讲,科学是以数学原理为基础,以抽象简化的方式描述对自然对象的认识,数学公式是它给予自然的最终图像;艺术是以生命-情感原理为基础,以具体感性的方式表达对自然对象的感受,艺术形象是它给予自然的主要表象。卡西尔说:“语言和科学是现实的减约;艺术是对现实的强化。语言和科学都建立在同一个抽象过程基础上,艺术却应被描述为一个具体化的持续过程。” [35]因此,尽管它可能包含复杂奥秘的内含,科学美仍然要表现出笛卡尔所要求的真理属性:清晰、明确;相反,艺术形象也可能由简单、明晰的形式构成,但是,艺术美的情致和美妙却总包含有无限的意味,是不可测度和透彻阐释的。我们可以说,关于自然,科学在无限丰富的世界中追求照亮了这个世界的同一个太阳,并且给予它明确的形式(秩序),而艺术在同一个太阳中展现出无限丰富的世界,表达人类自我对这个世界的深刻感受。在这个意义上,我们应当赞成卡西尔的观点:“艺术与科学不仅有不同的目的,而且有不同的对象。”[36]
3
当我们审视20世纪科学中的审美主义思潮时,我们必须同时考虑到与之相联系的科学思潮——科学观念的艺术形而上学转化。在本文中,我们前面的论述已经表明,我们在限定的(狭义)的意义上使用“科学的审美主义”,它的主旨是坚持宇宙的内在和谐和完整秩序,并且要求科学本身从理论形态到内容都表现这个宇宙的和谐和完整。现在,我们使用“科学的艺术形而上学”,目的是要概括20世纪科学观念的一个新变化:科学的艺术形而上学主张,科学理论与艺术品一样是人借助于直觉和想象力进行自由创造的结果,是对自然的理想化表现;因此,科学在表现自然的时候,必然也表现了人的主观因素和需要。
麦卡里斯特认为,科学审美主义者持一种保守的经典主义科学立场,因为它坚持静态的不变的宇宙信念,并且以此为基础坚信科学真理的客观性和确定性。[37]关于20世纪科学观念的艺术形而上学转化,美国学者斯帕里俄苏(M.Spariosu)认为,它是对自文艺复兴以来确立的、严密近似于宗教的的科学体制的一次浪漫主义革命——一次根本性的美学转向。这次美学转向,不仅将直觉、想像、游戏和审美诸观念引入科学,分享甚至取代了经验、理性、分析和推理等观念在科学中的传统位置,而且对科学立场进行了类似于哲学中进行的艺术形而上学的改变,赋予它(科学立场)一种前理性的品格。“这个认识[意识到科学的美学转向中的前理性品格——引者]将带来一系列的认识论结果,它们对于现代科学的基本理性宗旨和方法是太激进了,并且最终可能威胁到科学作为人类活动的一个主要领域的存在。” [38]
在美学中,审美主义与艺术形而上学具有复杂的联系,很难被区分开来,但是两者无疑是不能被等同的。在20世纪科学中,审美主义与艺术形而上学也是相互纠缠的。科学审美主义最重要的代表人物无疑是爱因斯坦,海森堡则可以视作科学艺术形而上学的一个典型代表。在本文限定的意义上,爱因斯坦与海森堡的冲突,可以视为审美主义与艺术形而上学的冲突。但是,爱因斯坦在限定的意义上也对科学持有艺术形而上学的观念,甚至我们可以说他对20世纪科学的艺术而上学(美学)转向起了重要推动作用。实际上,如爱因斯坦这样的彻底的科学审美主义者是不可能最终排斥艺术形而上学的,正如海森堡在相当深入的层次上主张科学的艺术形而上学,同时也在一定意义上认同审美主义的科学价值观。我们可以在下面三个层次分析20世纪科学中的审美主义与形而上学的联系和矛盾:
(1)科学方法论。在这个层次上,审美主义与艺术形而上学更多地表现了两者的一致性,它们共同针对经典科学方法论表现出一种革命意识。
经典科学的代表人物牛顿有一句名言,“我不杜撰假说”(hypotheses non fingo)。这句话意味着,科学的目的不是创造,而是发现自然规律。在这个目的下,经典科学的基本方法必然是:观察、实验、分析、推理(归纳、演绎)。这些方法将充分保证科学的真理价值:客观性、准确性和逻辑性。经典科学方法论的形而上学前提不仅是绝对信仰自然规律的客观性,而且是坚持笛卡尔确立的认识主体与客体绝对分离的二元论。
但是,爱因斯坦却持不同的主张。他认为,科学概念和思想体系不能通过归纳从经验中提取出来,只能靠自由发明来得到(人脑自由创造的结果);在科学理论和感觉经验世界之间,不存在先验(逻辑)的联系,只有“直觉”才能在两者之间建立联系;科学的规则,正如游戏的规则,是人定的,而不是客观先验的,它是科学正常进行的必要条件(正如游戏必须有规则才可能进行)。[39]爱因斯坦特别强调想象力(和直觉)在科学创造和科学判断中的重要作用。在与海森堡诸人论战中,他多次宣告“我的本能告诉我”、“我信赖我的直觉”。关于想象力对科学创造的作用,他这样说:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,推动着进步,并且是知识进化的源泉。严格地说,想象力是科学研究中的实在因素。”[40]在20世纪科学活动中,爱因斯坦当然不是第一位推崇直觉和想象力的重要科学家。然而,他将“直觉”、“想象力”、“游戏”和“自由创造”等本来属于艺术活动的概念结合为对科学方法论的基本描述,这个描述体系具有对笛卡尔二元论式的经典科学方法论的深刻挑战性,并且启发和鼓励了20世纪科学的浪漫主义革命。
海森堡正是在爱因斯坦的科学方法论的基础上,继续进行了对笛卡尔二元论式的经典科学方法论的革命。海森堡认为,科学与艺术一样,都是对自然联系的理想化表现,是人的语言的一部分:我们在与世界打交道的过程中形成了自己的语言,并以此回应自然的挑战。科学与艺术,是人与世界相互作用的产物,它们是与人的存在相关的,但都绝对不是主观任意的——两者都受到历史(时代精神)的制约,遵循时代设定的规则。海森堡用量子论的哥本哈根解释(Copenhagen interpretation of quantum theory)进一步阐述主观因素是科学理论的必要因素。他认为,不确定性原理从根本上揭示了科学理论的构成是与科学家使用的语言、实验目的和实验仪器不可分的。“自然科学并不只是描述和解释自然;它是自然和我们自己相互作用的一部分;它描述我们的提问方法所揭示的自然。”[41]哥本哈根解释否定了笛卡尔分隔人与世界(主体与客体)的二元论,否定了以此为前提的科学研究中的理想化的主体——先验的纯粹的认识者。海森堡说:“这样,正如玻尔(Bohr)所指出的,量子论提醒我们想起一个古老的格言:在追求生活的和谐的时候,一定不要忘记,在生存的戏剧中,我们自己同时是演员和观众。”[42]
(2)科学真理观。在这个层次上,审美主义与艺术形而上学展开了对立,爱因斯坦与海森堡的争论是两者对立的表现。代表审美主义,爱因斯坦表现了对经典科学真理观的坚守;代表艺术形而上学,海森堡则表现了对经典真理观的浪漫主义革命。
自文艺复兴以来,凭着实验科学和数学的发展,科学长期被认为是对自然规律的客观认识和精确描述——客观真理。这种科学真理观念,是17世纪以来,牛顿直到爱因斯坦等所有经典科学家的共同信仰。爱因斯坦说:“相信真理是离开人类而存在的,我们这种自然观是不能得到解释或证明的。但是,这是谁也不能缺少的一种信仰——甚至原始人也不可能没有。我们认为真理具有一种超乎人类的客观性,这种离开我们的存在、我们的经验以及我们的精神而独立的实在,是我们必不可少的——尽管我们还讲不出它究竟意味着什么。”[43]
爱因斯坦的科学真理观与他的科学方法论之间是存在矛盾的。这个矛盾是爱因斯坦科学思想中的方法论和价值论的矛盾:他的科学方法论是相对论的,他的科学价值观却是绝对论的。这个矛盾实质上也是科学审美主义暗含的主观性原则与经典科学的客观性原则之间的矛盾。问题是,当爱因斯坦承认了科学如艺术一样,是人的想象力“自由创造”,是在人定规则基础上的“游戏”,那么,他又凭什么保证科学真理的“超乎人类的客观性”?爱因斯坦说,作为一种游戏,科学的规则(概念、命题、公理)的选择是自由的;但是,这种自由是一种特殊的自由,它完全不同于作家写小说时的自由,而是近似于一个人在猜一个设计得很巧妙的字谜时的自由:他可以随意猜测,但只有一个字是真正的谜底。“相信为我们的五官所能知觉的自然界具有这样一种巧妙隽永的字谜的特征,那是一个信仰问题。迄今科学所取得的成就,确实给这种信仰以一定的鼓舞。”[44]
对经典科学真理观的致命打击是量子力学对微观世界的不确定原理的发现。这一发现不仅改变了经典科学对微观世界的实在性和确定性的信念,而且直接威胁到科学真理本身的客观性和确定性。因为根据不确定性原理,在微观世界中,基本粒子的运动不具有一种自然(确定)的因果关系,而只具有一种统计的因果关系——量子力学不能描述单个粒子运动的“轨迹”,只能描述它的几率波。这就是说,在世界构成的基本部分(微观层次)不具有经典科学所信仰的确定性和客观性。爱因斯坦坚持信仰世界存在完备的定律和秩序,始终不放弃科学的自然因果律和确定性原则。他认为,量子力学的统计性原则是对粒子实在不完备描述的结果。但是,海森堡则坚持认为,微观物理学定律的统计本质是不可避免的,因为基于量子论规律,关于任何“实际”的知识在其本质上都是一种不完备的知识。他认为爱因斯坦坚持的是一种唯物主义的本体论幻想。[45]
从艺术形而上学的角度,即从世界图景是人与世界相互作用的结果,是人使用自己的语言和规则“自由创造”的产品的角度,是不难接受不确定性原理的。但是,爱因斯坦遵从的是柏拉图式的理性主义的审美主义立场。在这个立场上,一切偶然和变化的因素都被排斥,只有必然和确定的秩序才被肯定和接受。与之相反,海森堡及其哥本哈根学派却从赫拉克利特式的前理性的艺术形而上学立场出发,不仅承认世界在本质上是充满变化和动乱的,而且将之视为人必不可分地参与其中的游戏。如果说两者都将世界图景看作一个游戏,那么,在爱因斯坦看来,世界是一个由理性控制的确定性的游戏,在海森堡看来,它则是一个由非理性的物理力量推动的非确定性的游戏。[46]
(3)宇宙图景。在这个层次上,审美主义与艺术形而上学的冲突进一步表现为基本宇宙观念的冲突,同时也涉及到科学理论选择的人文基础。
在西方科学史上,自亚里斯多德直到爱因斯坦都相信我们生存于其中的宇宙是静止不变的。它或者被认为已经并且将继续永远存在下去,或者被认为是以我们今天所看到的样子被创造于有限长久的过去。牛顿的引力定律本来包含了宇宙在引力作用下发生收缩(塌陷)的原理,但20世纪以前并没有人就此意识到宇宙是动态的;爱因斯坦在1915年发表广义相对时,仍然坚持宇宙是静态的信念,他为了在自己的理论中维持一个静态的宇宙模型,引入一个“反引力”的宇宙常数,以维持宇宙在引力作用下的平衡。[47]
如果说20世纪科学在与高技术的相互推动下进入了一个无限创新的浪漫主义革命时代,艺术形而上学冲击了经典科学的理性-实证原则,那么,维护秩序和统一的需要,作为人在世界生存的最内在需要,也相应地成为一个20世纪科学的强烈动机。爱因斯坦说:“人们感觉到人的愿望和目的都属徒然,而又感觉到自然界里和思维世界里却显示出崇高庄严和不可思议的秩序。个人的生活给他的感受好象监狱一样,他要求把宇宙作为单一的有意义的整体来体验。”[48]这就是爱因斯坦的宇宙宗教感。这个宗教感既是审美的,因为它坚持将内在的和谐作为宇宙存在的基本原则;又是人性的,因为它的根本动机是追求人的世界的意义和整体性。准确讲,审美主义通过爱因斯坦的论说成为整体性世界观的科学表达,表达了人要生存在一个和谐稳定的宇宙中的深刻渴望。
海森堡在晚年(1973)谈到伽利略坚持哥白尼学说而与罗马宗教法庭发生的冲突时,表达了对后者的保守和专制的新的理解。他说:“作为一个社会的精神结构一部分的世界观曾经在使社会生活和谐方面起过重要的作用,人们不应该过早地把不安定和不确定的因素带入这种世界观。”[49]他认为,社会的精神形式(世界观)在本性上是静态的,因此它才能成为社会永恒基础的精神根源;科学则是持续扩展和不断更新的,具有动态的结构。科学在揭示世界的部分秩序时,将影响、甚至打破人们既有的关于社会和世界的整体观念,“它可能带来这样的后果,当与整体联系的观点在个人意识中消失时,社会的内聚的感情就受损害了,并受到衰败的威胁。随着受技术支配的过程取代天然的生活条件,个人与社会之间的疏远也发生了,而这就带来了危险的不稳定性。”[50]
在这里,海森堡揭示了科学理论与社会精神结构的深刻关联,实际上指出了科学理论对人类世界观建设和维护的形而上学责任。发表这个思想时的海森堡无疑已经深刻感受到了20世纪人类在不确定性原理作用下的新世界图景前的悲伤和失落。他赞同歌德在两百年后仍以恐惧和敬慕的心情将人们承认哥白尼体系称为“作出了牺牲”:“他作出了牺牲,但不是心甘情愿的,虽然对他自己说来,他深信这个学说的正确性。”[51]继后,海森堡又说:“如果在今天的青年学生中有许多不幸,那么原因不在于物质上的贫乏,而是在于缺乏信任,这使得个人难以为他的生活找到目的。所以我们尝试着去克服孤立,它威胁着生活在被技术的实际需要所支配的世界中的个人。”[52]我相信,此时的海森堡也一定意识到了人们接受不确定性原理所付出的“牺牲”。因此可以说,如果在科学中海森堡仍然不赞成爱因斯坦的审美主义原则,那么在精神上他一定渴望人类重新有机会“将宇宙作为单一的有意义的整体来体验”。
科学的艺术形而上学转向推动并且更好地适应了20世纪科学(特别是物理学)的发展,它是对新科学精神和新宇宙图景的积极表现——充分展示了20世纪科学创造中的前理性的冲动和力量。这是艺术形而上学在科学中的浪漫主义革命的意义所在。与此相对,审美主义则以一种“宇宙宗教”的虔诚坚持经典科学的整体性和确定性原则,竭力维护传统稳定、和谐的宇宙图景。
结语
根据霍金在《时间简史》中的论述,不确定性原理、大爆炸理论、对称性破缺原理等20世纪的新科学(物理学)理论向我们揭示了一个新宇宙图景:我们生存在其中的宇宙是从一个非常随机的初始状态(大爆炸)开始,并且在膨胀状态中按照热力学第二定律(熵增加原理)不断从有序向无序的时间箭头运动的。在这个新宇宙图景中,人只是生活在一个非常狭小的,起伏较少、相对平滑的区域——一个适宜智慧生命存在的世界,享受着在不确定性原理极限内的秩序性和确定性。对于这个缺少确定性的宇宙,人类不能根本认识它,只能说:“我们只是以我们的存在为前提来理解这个宇宙。”[53]
在新宇宙图景中没有神的位置。因为只有当我们确信生存在一个确定不变的宇宙中,并且追问它是何以存在的时候,我们才需要一个创世者;相反,在一个随机产生而变化的宇宙中,一切现象都应该归于物理原因。[54]同时,这个新宇宙图景也取消了人的目的性,因为存在在根本上变成了物理力量的统计性的因果作用。因此,20世纪科学向我们展示的宇宙,不仅是一个没有确定性的、不能最终把握的宇宙,而且也是一个没有目的性、没有意义的宇宙。就此,我们可以理解为什么诺贝尔奖获得者温伯格(S. Weinberg)在《最初三分钟》的结尾时说:“这个宇宙越是看起来可以理解,它也就越是看起来不可思议。”[55]