前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学的性质范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词 整体护理 脑出血 生活质量
AbstractObjective:Exploring the improvement of cerebral hemorrhage patients' quality of life with holistic nursing as well as providing feasible and effective evidence for improvement of cerebral hemorrhage patients' quality of life.Methods:60 cases patients with cerebral hemorrhage were divided into the holisti nursing care group (observation group) and usual nursing care group(control group).Two groups of patients were given conventional therapy,the holisti nursing care group patients were given continuous throughout holisti nursing,meanwhile the usual nursing care group patients were given conventional nursing.All patients were given evaluating by daily living scale(BI) to assess quality of life.Results:The holisti nursing care group patients' activities of daily life are better than the control group after hospitalization(P<0.05).Conclusion:The holisti nursing care could play an important role in the improvement of patients' quality of life.
Key Wordsthe holisti nursing care cerebral hemorrhage quality of life
自发性脑出血并发症较多,治疗上采取综合性治疗措施,合理准确的整体护理可明显促进病情稳定,改善自发性脑出血患者的生活质量。现报告如下。
资料与方法
按照1995年全国第4届脑血管学术会议制定的诊断标准[1],2005年4月~2007年4月收治自发性脑出血患者60例,其中男33例,女27例;年龄56~78岁,平均64±6岁。原发疾病:原发性高血压24例,糖尿病l5例。按病案号单双随机分观察组、对照组,观察组33例,对照组27例,两组性别、年龄、文化程度、病情等均无统计学差异(P>0.05)。
护理方法:对照组按内科护理常规进行护理。观察组施行整体护理:①护理评估与诊断:实施整体护理的患者由专人负责,实行24小时负责制,在患者入院后2小时内进行评估,取得全面、详细的资料。根据评估结果作出护理诊断,制定护理计划、具体护理措施及目标。②做好病情观察。③用药护理:输液速度严格按医嘱执行,警惕电解质紊乱。用药期间严密观察血压、心率、尿量等的变化,注意不良反应,加强用药安全。④生活护理:让患者充分休息,加强病房管理、保持环境舒适,夜间注意病室内光线强度及各种监护仪器音量的调节,保证患者的睡眠时间和质量。合理安排膳食,给予低盐、低脂、低胆固醇、低热量、富含维生素、清淡、易消化而产气少的食物,为减轻心脏及胃部负担,鼓励少食多餐,避免过饱。保持大便通畅,鼓励定时排便,便秘时可每天清晨饮蜂蜜20ml加水,多做腹部顺时针按摩,必要时使用开塞露、口服缓泻剂、灌肠排便。主动协助和督促患者排尿,若患者确实存在排尿困难,经热敷等无效,可予以留置导尿,定期冲洗尿管,防止尿道感染。⑤康复护理:根据患者病情决定休息或适当运动功能锻炼,重度患者应绝对卧床休息。当患者病情逐渐好转恢复时,可在床上或起床活动,活动应循序渐进。协助患者翻身、拍背;指导家属给患者做肌肉按摩及肢体各关节被动运动,以减轻局部受压及肿胀,预防压疮,减少下肢深静脉血栓、肌肉萎缩等并发症。⑥做好心理护理,使患者积极主动配合治疗,树立战胜疾病的信心。
生活质量评估方法:采用日常生活活动量表(Barthel指数)。最高分100分,最低分0分,分值高为优,分值低为差。0~20分极严重功能缺陷;25~45分严重功能缺陷;50~70分中度功能缺陷;75~95分轻度功能缺陷;100分能自理。
统计方法:所测数值均用(X±S)表示,P<0.05为差异有显著性,全部统计方法用SPSS11.5统计分析软件完成。
结 果
观察组的日常生活活动量表中进餐、洗澡、修饰、穿衣、可控制大便、可控制小便、用厕等各项指标均比治疗前明显改善(P<0.05);观察组各项指标的改善均明显优于对照组(P<0.05),见表1。
讨 论
整体护理目标是根据人的生理、心理、社会、文化、精神等多方面的需要,提供适合人的最佳护理。脑出血后中枢神经系统在结构和功能上具有可塑性和重组能力[1],患者同时往往有抑郁或焦虑情绪[2]。整体护理提高了患者对相关知识的理解能力和健康指导依从性,患者得到了更多的疾病相关信息,并能配合进行正确有效的康复训练,改善肢体功能和日常生活能力,饮食更科学,服药更合理,进而有效提高了其生理和心理健康状况。通过生活质量评估发现,自发性脑出血患者生活质量明显下降,实施整体护理干预后患者BI评分均有不同程度的增高,分值明显高于实施常规护理的对照组,提示整体护理明显地改善了患者心理健康状况,使其能更积极、乐观地配合治疗和康复计划。
参考文献
1 胡永善,朱玉连,杨培君,等.早期康复治疗对急性脑卒中患者运动功能的影响[J].中国康复医学杂志,2007,17(3):145.
关键词: 量子力学 教学方法改革 创新思维
量子力学是研究微观粒子运动规律的科学,自诞生以来它就成功地说明了原子及分子的结构、固体的性质、辐射的吸收与发射、超导等物理现象。作为物理学专业的专业理论课,量子力学在物理学专业中具有极其重要的地位。现代物理学的各个分支,如高能物理、固体物理、核物理、天体物理和激光物理等都是以量子力学为基础,并且已经渗透到化学和生物学等其他学科。同时量子理论还具有巨大的实用价值,半导体器件和材料、激光技术、原子能技术和超导材料等都是以量子力学原理为基础的。
通过对量子力学的学习,学生可以掌握现代科学技术最重要的基础理论,还可以提高科学素质和思想素质,但是量子力学中的概念和解决问题的方法与经典物理有着本质的不同。学生普遍反映量子力学抽象、枯燥、难理解、抓不住重点,学习起来非常困难。针对以上问题,我对教学进行了思考和探讨,采用了一些切实可行的措施,提高了学生的学习兴趣,使学生更好地掌握了量子力学知识,同时培养了学生的创新思维。
一、教学过程中存在的问题
在量子力学的教学过程中,我发现以下几个问题。
1.量子力学是一门十分抽象的课程,其中许多概念、原理都不好理解,并且量子力学从概念到解决问题的方法跟经典物理有着根本性的区别,但是很多学生习惯性地用经典的思想去理解量子力学,这样就不自觉地增加了难度。比如“波粒二象性”,经典物理认为波动性和粒子性是互不相关的、相互独立的,而量子力学认为波动性和粒子性是微观粒子同时具备的两种属性。
2.学习量子力学,数学知识是必不可少的。量子力学中有着繁杂的数学知识,例如,数学分析中的微积分,代数学中的矩阵论,数学物理方程的微分方程,复变函数,等等。在教学过程中发现,不少学生对已学过的数学知识掌握得不是很牢固,在推导公式的过程中忘记了公式所描述的物理内涵,影响了对量子力学知识的理解。
3.由于量子力学的课时紧张,教学过程中采用了传统的教学模式,由教师到学生的“单向传授”的教学形式。学生失去了主体地位,只能被动地接受知识,学习的兴趣和积极性不高,导致教学效率降低。
二、量子力学的教学方法改革
1.采用多种教学手段相结合的教学模式。由于量子力学的内容抽象难懂,又是建立在一系列基本假定的基础之上,不少学生很难接受,甚至认为这门课程没有用处。在量子力学的教学过程中,由单一的教师讲授过渡到板书、录像、课件、演示实验等各种手段相结合的教学模式,将图、文、声、像等信息有机地组合在一起,形象、直观、生动,容易激发学生的学习兴趣。同时,通过网络技术,学生可以享受到本校的教学资源,还可以突破空间的限制,享受到全国高水平的教学资源,从而丰富学生的资料库,也为各学校的师生讨论交流提供一个很好的平台。
随着科学技术的迅速发展,知识更新非常快。在教学中,教师应及时将与量子力学相关的科技前沿和高新技术引入教学中,介绍与量子力学密切相关的课题,阐明科学技术中所蕴含的量子力学原理。如我们在讲解一维无限深势阱时,将其与半导体量子阱和超晶格这一科学前沿相联系;在讲解隧道效应时,将其与扫描隧道显微镜相联系,进而介绍扫描探针操纵单个原子的实验。同时在教学中,我们理论联系实际,多介绍量子力学知识与材料科学、生命科学、环境科学等其他学科之间的密切联系,重点介绍在材料科学中的广泛应用,包括新材料设计、开发新材料、材料成分和结构分析技术等。通过这种方式,学生对这一部分的知识有了直观的认识,从而不再感到量子力学的学习枯燥无味,同时也提高了接受新知识、学习新知识的意识和能力。
2.结合数学知识,把物理情境的建立作为教学的重点。量子力学可以说无处不数学,这门学科对高级数学语言的成功运用,正是它高深与完美的体现。数学虽然加深了物理问题的难度,却维护了理论的严谨性和科学性。当然这不是要求老师从头到尾、长篇冗重地推演计算,合理地修剪枝杈既能让学生抓住重点,又免使学生感到量子力学只是数学公式的推导。对于学习量子力学的同学,可以着重于对物理概念的剖析和物理图像的描绘,绕过数学分析难点,通过简化模型、对称性考虑、极限情形和特例、量纲分析、数量级估计、概念延拓对比等得出结论。定量分析尽量只用简单的高数和微积分、常见的常微分方程,对复杂的数学推导可以不做讲解,只对少数优秀生或感兴趣的同学个别辅导。例如,在求解本征方程时,只介绍动量、定轴转子能量本征值的求解;对无限深势阱情况,薛定谔方程可类比普通物理中的简谐振动方程;对氢原子和谐振子的能量本征值问题,只重点介绍思路、方法和结论,不作详细推导。
3.充分应用类比法,讲述量子力学。经典力学是量子力学的极限情况,在教授过程中,应尽可能找到“经典”对应,应用类比方法讲述量子力学中抽象的概念和物理图像,有助于正确理解量子力学的物理图像。用光的单缝、双缝衍射、干涉说明光的波动性,用光电效应、康普顿散射说明光的粒子性,运用这种方法有利于学生掌握光的波粒二象性。在将量子力学与经典力学类比的同时,还要清楚量子力学与经典力学在观念、概念和方法上的区别。例如,经典力学用位矢、速度描述物体的状态,而量子力学用波函数描述系统状态;经典力学用牛顿第二定律描述状态变化,量子力学用薛定谔方程描述状态的变化。另外对于量子力学中的波粒二象性、态迭加原理、统计原理等都要与经典力学中的相关概念区分开来,类比说明,阐明清楚其真正内涵。
4.改变传统教学模式,采用以学生为主体的教学模式。量子力学的现代教学多以“教师讲授”为主,同时配合多媒体课件辅助教学,教学模式较传统教学有所变化,多媒体课件教学虽然能够在一定程度上激发学生的学习兴趣,但仍然是“填鸭式”的教学法,没能真正地改变传统教学的弊端。因此在教学过程中,要避免课堂成为教师的一言堂,鼓励学生提问,激发学生的逆向思维和非规范性思维等,通过创设问题情境使师生互动起来,提高学生学习量子力学的积极性,加深学生对这门课程的理解。还要组织学生开展相关课题讨论,引导学生自主能动地思考,激发学生的学习兴趣。
三、结语
“量子力学”是物理类专业基础课程中教学的难点和重点,建立新的教学模式,有利于学生学习、理解和掌握这门课程。
参考文献:
[1]曾谨言.量子力学[M].科学出版社,1997.
[2]周世勋.量子力学教程[M].高等教育出版社,1979.
[3]胡响明.浅谈量子概念的理解[J].高等函授学报(自然科学版),2004,(2):29.
关键词:量子力学;教学探索;普通高校
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)50-0212-02
一、概论
量子力学从建立伊始就得到了迅速的发展,并很快融合其他学科,发展建立了量子化学、分子生物学等众多新兴学科。曾谨言曾说过,量子力学的进一步发展,也许会对21世纪人类的物质文明有更深远的影响[1]。
地处西部地区的贵州省,基础教育水平相对落后。表1列出了2005年到2012年来的贵州省高考二本理科录取分数线,从中可知:自2009年起二本线已经低于60%的及格线,并呈显越来越低的趋势。对于地方性新升本的普通本科学校来讲,其生源质量相对较低。同时,在物理学(师范)专业大部分学生毕业后的出路主要是中学教师、事业单位一般工作人员及公务员,对量子力学的直接需求并不急切。再加上量子力学的“曲高和寡”,学生长期以来形成学之无用的观念,学习意愿很低。在课时安排上,随着近年教育改革的推进,提倡重视实习实践课程、注重学生能力培养的观念的深入,各门课程的教学时数被压缩,量子力学课程课时从72压缩至54学时,课时被压缩25%。
总之,在学校生源质量逐年下降、学生学习意愿逐年降低,且课时量大幅减少的情况下,教师的教学难度进一步增大。以下本人结合从2005至10级《量子力学》的教学经验,谈一下教学方面的思考。
二、依据学生情况,合理安排教学内容
1.根据班级的基础区别化对待,微调课程内容。考虑到我校学生的实际情况和需要,教学难度应与重点院校学生有差别。同时,通过前一届的教学积累经验,对后续教学应有小的调整。在备课时,通过微调教学内容来适应学习基础和能力不同的学生。比如,通过课堂教学及作业的反馈,了解该班学生的学习状态,再根据班级学习状况的不同,进行后续课程内容的微调。教学中注重量子力学基本概念、规律和物理思想的展开,降低教学内容的深度,注重面上的扩展,进行全方位拓宽、覆盖,特别是降低困难题目在解题方面要求,帮助学生克服学习的畏难心理。
2.照顾班内大多数,适当降低数学推导难度。对于教学过程中将要碰到的数学问题,可采取提前布置作业的方法,让学生主动去复习,再辅以教师课堂讲解复习,以解决学生因为数学基础差而造成的理解困难。同时,可以通过补充相关数学知识,细化推导过程,降低推导难度来解决。比如:在讲解态和力学量的表象时[2],要求学生提前复习线性代数中矩阵特征值、特征向量求解及特征向量的斯密特正交化方法。使学生掌握相关的数学知识,这对理解算符本征方程的本征值和本征函数起了很大的推动作用。
3.注重量子论思想的培养。量子论的出现,推动了哲学的发展,给传统的时空观、物质观等带来了巨大的冲击,旧的世界观在它革命性的冲击下分崩离析,新的世界观逐渐形成。量子力学给出了一套全新的思维模式和解决问题的方法,它的思维模式跟人们的直觉和常识格格不入,一切不再连续变化,而是以“量子”的模式一份一份的增加或减少。地方高校的学生数学基础较差,不愿意动手推导,学习兴趣较低,量子力学的教学,对学生量子论思维方式的培养就显得尤为重要。为了完成从经典理论到量子理论思维模式的转变,概念的思维方式是基础、是重中之重。通过教师的讲解,使学生理解量子力学的思考方式,并把经典物理中机械唯物主义的绝对的观念和量子力学中的概率的观念相联系起来,在生活中能够利用量子力学的思维方式思考问题,从而达到学以致用的目的。
4.跟踪科学前沿,随时更新科研进展。科学是不断向前发展的,而教材自从编好之后多年不再变化,致使本领域的最新研究成果,不能在教材中得到及时体现。而发生在眼下的事件,最新的东西才是学生感兴趣的。因此,我们可以利用学生的这种心理,通过跟踪科学前沿,及时补充量子力学进展到教学内容中的方式,来提高学习量子力学的兴趣。教师利用量子力学基本原理解释当下最具轰动性的科技新闻,提高量子力学在现实生活中出现的机会,同时引导学生利用基本原理解释现实问题,从而培养学生理论联系实际的能力。
三、更新教学手段,提高教学效率
1.拓展手段,量子力学可视化。早在上世纪90年代初,两位德国人就编制完成了名为IQ的量子力学辅助教学软件,并在此基础上出版了《图解量子力学》。该书采用二维网格图形和动画技术,形象地表述量子力学的基本内容,推动了量子力学可视化的前进。近几年计算机运算速度的迅速提高,将计算物理学方法和动画技术相结合,再辅以数学工具模拟,应用到量子力学教学的辅助表述上,使量子力学可视化。通过基本概念和原理形象逼真的表述,学生理解起来必将更加轻松,其理解能力也会得到提高。
2.适当引入英语词汇。在一些汉语解释不是特别清楚的概念上,可以引入英文的原文,使学生更清晰的理解原理所表述的含义。例如,在讲解测不准关系时,初学者往往觉得它很难理解。由于这个原理和已经深入人心经典物理概念格格不入,因此初学者往往缺乏全面、正确的认识。有学生根据汉语的字面意思认为,测量了才有不确定度,不测量就不存在不确定。这时教师引入英文“Uncertainty principle”可使学生通过英文原意“不确定原理”知道,这个原理与“测量”这个动作的实施与否并没有绝对关系,也就是说并不是测量了力学量之间才有不确定度,不测量就不存在,而是源于量子力学中物质的波粒二象性的基本原理。
3.提出问题,引导学生探究。对于学习能力较强的学生,适当引入思考题,并指导他们解决问题,从而使学生得到基本的科研训练。比如,在讲解氢原子一级斯塔克效应时,提到“通常的外电场强度比起原子内部的电场强度来说是很小的”[2]。这时引入思考题:当氢原子能级主量子数n增大时,微扰论是否还适用?在哪种情况下可以使用,精确度为多少?当确定精度要求后,微扰论在讨论较高激发态时,这个n能达到多少?学生通过对问题的主动探索解决,将进一步熟悉微扰论这个近似方法的基本过程,理解这种近似方法的精神。这样不仅可以加深学生对知识点的理解,还可以得到基本的科研训练,从而引导学生走上科研的道路。
4.师生全面沟通,及时教学反馈。教学反馈是教学系统有效运行的关键环节,它对教和学双方都具有激发新动机的作用。比如:通过课堂提问及观察学生表情变化的方式老师能够及时掌握学生是否理解教师所讲的内容,若不清楚可以当堂纠正。由此建立起良好的师生互动,改变单纯的灌输式教学,在动态交流中建立良好的教学模式,及时调整自己的教学行为。利用好课程结束前5分钟,进行本次课程主要内容的回顾,及时反馈总结。通过及时批改课后作业,了解整个班级相关知识及解题方法的掌握情况。依据反馈信息,对后续课程进行修订。
通过双方的反馈信息,教师可以根据学生学习中的反馈信息分析、判定学生学习的效果,学生也可以根据教师的反馈,分析自己的学习效率,检测自己的学习态度、水平和效果。同时,学生学习行为活动和结果的反馈是教师自我调控和对整个教学过程进行有效调控的依据[6]。
四、结论
量子力学作为传统的“难课”,一直是学生感到学起来很困难的课程。特别是高校大扩招的背景下,很多二本高校都面临着招生生源质量下降、学生学习意愿不高的现状,造成了教师教学难度进一步增大。要增强学生的学习兴趣,提高教学质量,教师不仅要遵循高等教育的教学规律,不断加强自身的学术水平,讲课技能,适时调整教学内容,采取与之相对应的教学手段,还需要做好教学反馈,加强与学生的沟通交流,了解学生的真实想法,并有针对性的引入与生活、现实相关的事例,提高学生学习量子力学的兴趣。
参考文献:
[1]曾谨言.量子力学教学与创新人才培养[J].物理,2000,(29):436.
[2]周世勋,陈灏.量子力学教程[M].高等教育出版社,2009:101.
[3]杨林.氢原子电子概率分布可视化及其性质研究[J].绥化学院学报,2009,(29):186.
[4]常少梅.利用Mathematica研究量子力学中氢原子问题[J].科技信息,2011,(26):012.
[5]喻力华,刘书龙,陈昌胜,项林川.氢原子电子云的三维空间可视化[J].物理通报,2011,(3):9.
在建立科学理论体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学研究自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。
要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以分析。
作为一种形式化理论的近现代科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。
这一自在的实在具有由它的“自明性”所保证的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保证的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。
上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学哲学家所认为的纯粹出于主体间的共同约定。科学的最高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。
在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少目前还不能完全放在客观实在的背景上。因此,在科学认识的层次上,思维形态完全可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有完全相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保证,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。
科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。
二、数学语言
数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释问题。在自然科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的应用。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。
爱因斯坦曾分析过数学的公理学本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样,欧几里德几何学才成为对刚体行为的一种描述。
爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。
首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。
其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。
由此可见,数学与自然科学的不同仅表现在对于它们的结果的可靠性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。
事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。
三、物理学语言
虽然物理学是严格数学化的典范,但物理学语言的历史却比数学应用于物理学的历史要久远得多。
在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保证一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学计算,它是人类世代传承的关于世界的知识的基元。
然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个电子,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。
当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。
可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。
上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。
四、量子力学的语言问题
上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着时代的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了绝对时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。
量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。
量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不精确的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有规律地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕
量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(Beruhigunsphilosophie)〔3〕或“文学”〔4〕,这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机内容。薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释,一种全新的语言是可以考虑的。他建议将N个粒子组成的体系的波函数解释为3N维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。
固然,几率波的解释使得理论的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种科学语言而获得充分的意义。
玻姆的隐序观念与薛定谔的解释在语言问题上是相似的。他所说的“机械序”〔6〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物理学的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。
这里所说的“基础”指的是,一种全新的语言涉及主客体间完全不同的相互介定。它涉及对客体的完全不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和方法的学科所能为的。
可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。
五、量子力学何种程度上是“革命性”的
量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种应用上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。
正统的量子力学学者们都意识到应该通过发展思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。
另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。
这些努力在很大程度上是具有保守性的。
我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的分析,建立起时间、空间和运动的协变关系,从而了绝对时空、绝对同时性等旧观念,并代之以新的时空观。重要的是,在这里,绝对时空和绝对同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于历史和偶然因素形成的一些含混概念,并给出了更加准确明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。
量子力学的情况则不同。它的保守性主要表现在:
第一,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。
第二,不完全连续性、非完全决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关哲学解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保证的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。
第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。
第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。
本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。
海森堡等人与新康德主义哲学家G·赫尔曼进行讨论时,赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保证,逻辑是它的抽象和提升。
在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?
如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是目前形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情完全是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕
参考文献和注释
〔1〕〔3〕〔4〕《爱因斯坦文集》第一卷,商务印书馆,1994,第137、241、304页。
〔2〕〔5〕〔9〕〔13〕〔14〕〔15〕海森堡:《原子物理学的发展和社会》,中国社会科学出版社,1985,第141、84、82、131、47、112页。
〔6〕玻姆:《卷入——展出的宇宙和意识》,载于罗嘉昌、郑家栋主编:《场与有——中外哲学的比较与融通(一)》,东方出版社,1994年。
〔7〕玻恩:《关于因果和机遇的自然哲学》,商务印书馆,1964年。
〔8〕〔12〕玻恩:《我这一代的物理学》,商务印书馆,1964,第65、192页。
关键词:多媒体;量子力学;教学效率
一、前言
《量子力学》课程是物理学科的一门重要的基础课。量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,还在化学等相关学科和许多近代技术中得到了广泛的应用。
由于《量子力学》课程的重要性,其相关的教学得到了相当的重视,通常每周是4个学时的课程量。众所周知,《量子力学》是一门既难学又难教的课程,一是因为其中涉及的概念和我们日常生活(或者说常识)相距甚远,二是所学习的数学课程比较多,主要有高等数学、数学物理方法、线性代数等,几乎包括了物理专业学生所学过的全部数学课程。概念抽象,远离日常经验,计算复杂,使《量子力学》成为一门难学难教的课程。
随着电气化教学的发展,现在有越来越多的课程开始使用多媒体教学,并且取得了一定的成效,当然同时也显露了一些问题。本文拟对《量子力学》课程中使用多媒体教学的优缺点进行分析,并就如何在传统板书教学和多媒体教学之间达到最好的效果给出一些建议。
二、在《量子力学》课程中使用多媒体教学的利弊
众所周知,多媒体教学是教学手段创新的重要内容之一。多媒体教学是现代科学技术在教育工作中的运用,即应用先进的技术手段,把录音机、电视机、录像机、视频展示台、投影机、多媒体计算机等引进课堂,将通讯技术、网络技术、电子邮件、卫星远程通讯、传真通讯、虚拟现实等新的教育媒体逐步运用于教学,充分发挥其优势,增加教学的密度,调动学生的学习积极性。其主要的优点有:
(1)有利于提高课堂教学效率。传统的课堂教学,教师展示知识的空间只是一块容量有限的黑板,教学时间有限,教师不得不将很大一部分精力放在板演文字、绘画等低效的劳动上。这样的课堂教学往往呆板、僵化,缺乏生机与活力,效率不高。运用多媒体教学,可以将大量的教学信息预置在计算机内,随时调用,任意切换,将相关的图形、图像,生动、直观地投影到屏幕上,学生可从视觉、听觉等多方面感受知识,加深对教学内容的理解。
在《量子力学》课程中,如对于氢原子各级波函数,就可以直接使用图像形象地表示出来,可以给学生以强烈的印象,使物理结果更易于理解,同时也容易激起学生的学习热情。若使用传统板书手工绘制电子云图,一则手工画图速度慢,二则不很准确,直接影响教学效率。有的Flash格式的课件,可以通过输入和调整主量子数、角量子数、磁量子数,即时把原子轨道轮廓图和径向分布图表示出来,用色鲜艳,对比强烈,给人以深刻的印象,这样效果是很明显的。
(2)能够激发学生的学习热情。多媒体技术因其图文并茂、声像俱佳的表现形式和跨越时空的非凡表现力,大大增强了学生对事物与过程的理解与感受,体现了极强的直观性,能够全方位、多角度、多层次地调动学生的情绪、注意力和兴趣,使学生能够主动地学习。
在《量子力学》课程中,比如在绪论部分,可适当地介绍一下在量子力学发展史上一些著名科学家的简历,如普朗克、爱因斯坦、玻尔、泡利、海森堡、费曼等,使用多媒体可通过文字、音像资料充分表现,这可以活跃课堂气氛,有助于促进学生对科学的热爱,包括对《量子力学》课程的兴趣。
(3)多媒体教学可以拓展教学时空。学生也可以通过拷贝电子教案和网上阅读电子教案进行课后复习,逐渐改变学生过于依赖课堂、过于依赖教师的传统教学模式,加强学生获取知识的能力,有助于创新人才的培养和学生个性的发展。事实上,我们可从网络上看到许多名师的教学课件,通过对课件的学习,无论对于学生还是教师都是有益的。这不论对《量子力学》课程还是其他课程都是一样的。
(4)动态交互性强。人机交互、立即反馈是多媒体技术的显著特点,也是任何其他媒体所没有的。在这种交互式学习环境中,教师通过创设形象直观、生动活泼的交互式教学情境,为学生提供更多的参与机会。教师与学生的交流、学生与学生交流、人机交流的良性互动,能激发学生的学习兴趣及参与意识,可以充分发挥学生的主观能动性,使学习更为主动,从而有利于学生形成新的认知结构。
(5)理论联系实践的功能大大增强。运用多媒体技术可以采用虚拟实验实现对普通实验的扩充,甚至现实环境很难实现或无法实现的实验项目,可以用图形、图像等多媒体形式,模拟实验全过程。借助有关的教学软件,通过对真实情景的再现和模拟,学生可以随时在电脑上“重温”实验过程。
在《量子力学》课程中涉及的实验不多,主要有黑体辐射、电子衍射实验、Stern-Gelach实验等。在展现实验过程和结果时,多媒体可发挥其优越性。如电子衍射实验,通过减弱电子流强度使粒子一个一个地被衍射,粒子一个个随机的被打到屏幕各处,显示粒子性,但经过足够长的时间,所得衍射图样和大量电子同时衍射所得图样一样,从而引出波函数的统计诠释。使用多媒体动画,我们可形象地展现电子一个一个打到屏幕上最后得到衍射图样的过程。这是在黑板上自己手工画图的效果所不能比拟的。
以上我们讨论了使用多媒体教学体现出的优越性。开展多媒体教学时一定要处理好内容与形式的关系。形式为内容服务,这是教学的一个基本原则,多媒体教学也不例外。教学体现的是教师和学生之间的一个沟通过程,在此过程中,如何恰当地使用多媒体技术应引起我们的注意。如果我们仔细分析,可以发现在多媒体教学中,特别是在《量子力学》教学中同样存在着较多的问题,值得引起我们的注意。
(1)忽视双向交流。在多媒体教学中,如果不注意的话,教师可能会较多的注意桌面点击,表演课件,而在一定的程度上忽视和学生的双向交流。不过相对来说,这一点只要讲课老师适当注意,就能够减小这方面的不利影响。
(2)数学推导的欠缺。
在《量子力学》课程中,由于涉及到的数学计算较多,在讲课过程中无法避免地会出现较多的数学推导。面对整个多媒体中大片的公式,学生很容易感到疲倦,甚至失去兴趣,从而使教学效果大打折扣。
从某种意义上来说,如果学了一门理论物理的课,学生却不能够把公式推导出来,就教学效果而言,是一个很大的遗憾。使用板书可让学生真实地看到教师如何把结论一步一步地推导出来,与使用多媒体相比,学生更容易掌握板书的推导,且学生本身的数学推导能力也能较快地提高。甚至教师在推导过程中偶然的失误也会促进学生的了解,至少可以让学生知道哪些地方如果不注意的话可能会弄错。
不过,过于复杂且教学大纲又不作要求的数学推导可以通过多媒体进行,一是让学生看到了结论是如何出来的,二又避免了把过多的时间投入于此,毕竟课堂时间是有限的。比如一维谐振子波函数,氢原子角向波和径向波函数。在教科书上,对氢原子角向波函数,常常直接说在《数学物理方法》课程中已经得到解,为球谐函数,然后就直接给出了结论,由于课时的原因,不可能对此进行详细的阐述。事实上学生有可能已经遗忘了相关内容,因此相应的复习还是必要的。通过多媒体简略地展示下相关推导过程可能是一个比较好的选择。
三、结论
前面我们分别讨论了在《量子力学》课程中使用多媒体教学中存在着的优缺点。为了有效提高教学效果,笔者认为应当综合的使用传统板书教学和多媒体教学,在讲授基本概念和有较多的图表时,可多使用多媒体教学,但应适当使用,而在讲数学推导时仍应使用传统板书,少用甚至不使用多媒体。
参考文献
[1]韩芳.多媒体教学存在问题及对策分析[J].重庆工学院学报,2004,(18):143.
[2]唐利军.多媒体教学的思考[J].吉林广播大学学报,2005,(69):1.