首页 > 文章中心 > 天文学的理论

天文学的理论

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇天文学的理论范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

天文学的理论

天文学的理论范文第1篇

闻名于世的“诺贝尔奖”,每年一次授予在物理学、化学、生理学或医学,以及一些人文领域做出卓越贡献的人,至今已有100多年的历史。然而,诺贝尔并没有设立专门的天文学奖项,这导致了20世纪前70年天文学的成就与诺贝尔奖无缘。由于天体物理学的发展,特别是天文观测所发现的许多物理特性和物理过程是地面上的物理学实验所无法实现的,宇宙及各种天体已成为物理学的超级实验室。天体物理学的一些突出成果有力地推进了物理学的发展,这样,天文学成就获得“诺贝尔物理学奖”就成为很自然的事了。

诺贝尔奖与天文学的尴尬

诺贝尔奖是以瑞典著名化学家阿尔弗雷德·贝恩哈德·诺贝尔(Alfred Bemhard Nobel,1833年10月21日~1896年12月10日)的部分遗产作为基金创立的。诺贝尔奖包括金质奖章、证书和奖金支票。诺贝尔在他的遗嘱中提出,将部分遗产(920万美元)作为基金,以其利息分设物理、化学、生理或医学、文学及和平5种奖金,授予世界各国在这些领域内对人类做出重大贡献的学者。1968年,瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济学奖,并于1969年开始与其它5种奖同时颁发。诺贝尔奖还有一个规定,即只有先前的诺贝尔奖获得者、诺贝尔奖评委会委员、特别指定的大学教授、诺贝尔奖评委会特邀教授才有资格推荐获奖的候选人。

由于没有设立诺贝尔天文学奖,在很多年里,天文学家既没有推荐权,也不会被人推荐。在这个世界公认的科学界最高奖面前,天文学和天文学家的处境不免有些尴尬。

天文学与物理学相互促进

天文学是研究地球之外天体和宇宙整体的性质、结构、运动和演化的科学,物理学是研究物质世界基本规律的科学。研究各种物质形态都会形成相应的物理学分支,其中包括研究天体形态和特性的天体物理学。很显然,天文学与物理学的关系十分密切,相互关联,密不可分。天文学成就可以归入诺贝尔物理学奖的范围是在情理之中的,但是要使这个道理得到公认很不容易,花费了好几十年的时间。

20世纪初,物理学家根据物理学规律提出了许多天文学预言:如广义相对论预言星光在太阳引力场中的弯曲、水星近日点的运动规律和引力场中的光谱红移现象;预言中子星、微波背景辐射、星际分子和黑洞的存在等。这些预言在证实的过程中曾走过艰难的历程甚至弯路,这些伟大的预言推动着天文学家和物理学家们为之奋斗,并且发展了一个个新的分支学科。

天文观测为物理学基本理论提供了认识地球上实验室无法得到的物理现象和物理过程的条件。开普勒发现了行星运动三定律以后,牛顿为解释这些经验规律才导出万有引力定律,而在地球上的物理实验室中是总结不出万有引力定律的。此后,从对太阳及恒星内部结构和能量来源的研究中获得了热核聚变反应的概念;对星云谱线的分析提供了原子禁线理论的线索;从恒星演化理论发展出了元素形成理论。天文学观测的新发现也给物理学以巨大的刺激和桃战:中子星的发现推动了致密态物理学的发展,而类星体、星系核、Y射线暴等现象的能量来源迄今还很难从现有的物理学规律中找到答案。

随着物理学的发展,物理学家必然要把宇宙及各种天体作为物理学的实验室。物理学家涉足天文学领域的研究成为一种必然。而天文学家也会密切地注视着物理学的发展,以期用物理学原理来解释宇宙的过去、现在和将来。

一批历史性天文学成就无缘诺贝尔奖

在1901年开始颁发诺贝尔奖以后,天文学上有很多重大的发现,其科学价值可与获得诺贝尔物理学奖的一些项目媲美。1912年,美国女天文学家勒维特(Henrietta Swan Leavitt)发现造父变星的周光关系,从而得出一种估计天体距离的方法,这直接导致了河外星系的发现;1911年~1913年,丹麦天文学家赫茨普龙(Ejnar Hertzsprung)和美国天文学家罗素(Henry Norris Russell)各自独立地得到了恒星光度和光谱型的关系图,即赫罗图,赫罗图在恒星起源和演化的研究中起到了举足轻重的作用;1918年,美国天文学家沙普利(Harlow Shapley)发现银河系中心在人马座方向,纠正了太阳是银河系中心的错误看法;1924年,美国天文学家哈勃(Edwin P.Hubble)确认“仙女座大星云”是银河系之外的恒星系统,继而在1929年发现了著名的哈勃定律,证明宇宙在膨胀;1926年,英国天文学家爱丁顿(ArthurStanley Eddington)出版专著《恒星内部结构》,这本书成为恒星结构理论的经典著作。然而,这些成果无一例外地被诺贝尔物理学奖拒之门外。

就像1927年诺贝尔物理学奖得主威尔逊发明的云雾室成为研究微观粒子的重要仪器一样,望远镜的发展使我们能够观测到更遥远、更暗弱的天体及天体现象。但是没有一项光学望远镜的成就获奖。其中如美国天文学家海尔(Alan Hale)研制的口径1.53米、2.54米和5.08米三架大型反射望远镜,1930年施密特研制的折反射望远镜,以及20世纪90年代研制完成的10米口径凯克Ⅰ号和Ⅱ号望远镜等,它们都代表了天文学观测手段的历史性成就。获诺贝尔物理学奖的与天文相关的课题

随着物理学的发展,物理学家必然要把宇宙及各种天体作为物理学的实验室。在宇宙中所发生的物理过程比地球上所能发生的多得多,条件往往更为典型或极端。在地球上做不到的物理实验,在宇宙中可以观测到。物理学家涉足天文学领域的研究成为必然。

赫斯发现宇宙线191 1年~1912年,奥地利物理学家赫斯(Victor Francis Hess)用气球把“电离室”送到距离地面5000多米的高空进行大气导电和电离的实验,发现了来自地球之外的宇宙线。1936年,赫斯因此获得诺贝尔物理学奖。实际上,宇宙线的发现既是一项物理学实验,更是天文学观测成果。

贝特提出太阳的能源机制1938年美国物理学家贝特(Hans Bethe)研究核反应理论的过程中,提出太阳和恒星的能量来源于核心的氢核聚变所释放出的巨大能量。1967年,他因此项研究成果获得诺贝尔物理学奖。

汤斯开创分子谱线天文学美国物理学家汤斯(Charles Townes)利用氨分子受激发射的方式代替传统的电子线路放大,研制出了波长为1,25厘米的氨分子振荡器,简称为脉泽。他由地球上的“脉泽”联想到太空中的分子,预言星际分子的存在。并计算出羟基(-OH)、一氧化碳(CO)等17种星际分子谱线频率。1963年,年轻的博士后巴瑞特观测到了预言中的羟基分子谱线,成为轰动全球的20世纪60年代四大发现之一。汤斯由此成为分子谱线天文学的拓荒人和首创者。1964年,他因氨分子振荡器成功研制而获该年度的诺贝尔物理学奖,而这项研究的副产品开创了一门新兴的天文学科,其科学意义不逊于氨分子振荡器的研制成功。

物理学家涉足天文学的研究所取得的成果能够登上诺贝尔奖的大雅之堂,那么天文学家的研究成果,自然也应该被诺贝尔物理学奖容纳。

天文学理论首先与诺贝尔奖结缘

天文学家们密切注视着物理学的发展,并在天文学的研究过程中发展了物理学。瑞典天文学家阿尔文首先于1970年用他的“太阳磁流体力学”的出色成果叩开了诺贝尔物理学奖的大门,接着又有钱德拉塞卡的“恒星结构和演化”和福勒等几人合作的“恒星演化元素形成理论”的获奖。这三项诺贝尔物理学奖的理论性很强,但都是建立在深入细致的天文观测基础上的。光学望远镜的长期观测提供了极其宝贵的资料,所获得的统计规律给理论研究指明了方向,提供了解决问题的线索。这三个项目也体现了物理学理论和天文学最完美的结合。

首次获诺贝尔奖的天文学家在太阳上发生的一切物理过程都与磁场和等离子体有关。磁流体力学成为太阳物理最重要的理论基础。瑞典的阿尔文(Hannes Alfv6n)是磁流体力学的奠基人,他首先应用这个理论研究太阳,因此也称为太阳磁流体力学。由于这一理论也适用于宇宙中其它天体和星际介质,因而也就成为宇宙磁流体力学。阿尔文因为对宇宙磁流体动力学的建立和发展所做出的卓越贡献而荣获1970年度诺贝尔物理学奖,这是历史上第一次以天文学研究成果获诺贝尔物理学奖。

印度裔美国天文学家钱德拉塞卡奋斗终生的成就在钱德拉塞卡(Subrahmanyan Chandrasekhar)还是剑桥大学研究生的时候,就获得了“白矮星质量上限”这一研究成果。这一成果意味着超过白矮星质量极限的老年恒星的演化归宿可能是密度比白矮星更大的中子星或者黑洞,其意义不同寻常。但由于受到权威学者错误的压制,这一成果未能得到进一步深入研究。在这之后,他仍几十年如一日地研究恒星结构和演化理论。1983年,他在73岁高龄时以特别丰硕的成就获得该年度的诺贝尔物理学奖。

B2FH元素形成理论宇宙中存在的各种元素是怎样来的?这是个天文学家应该回答、却很难回答的问题。但是由天文学家霍伊尔(Fred Hoyle)、伯比奇(G.Geoffrey Burbidge)夫妇和核物理学家福勒(William Fowler)合作完成的研究课题却揭示了这个自然之谜。人们按论文作者姓氏字母顺序称之为B2FH元素形成理论。这篇论文解决了在恒星中产生各种天然元素的难题,被视为经典科学论文。这是天文学家和核物理学家合作研究天文学重大课题的典型例子。

1983年,上述论文的第三作者福勒获得了诺贝尔物理学奖,这个结果显得很不公平,备受质疑。福勒的贡献的确很大,但是另外三位天文学家的贡献也不是可有可无的,特别是霍伊尔作为这个研究课题的提出者和组织者,其前期的研究已经提出“恒星内部聚变产生元素”的创新思想,把他排除在诺奖之外很有些匪夷所思。

射电天文学成为诺贝尔奖的摇篮

射电天文学是20世纪30年展起来的天文学新分支,其特点是利用射电天文望远镜观测天体的无线电波段的辐射。和光学望远镜400多年的历史相比,它仅有几十年历史,但却很快就步入了鼎盛时期。20世纪60年代射电天文学的“四大发现”,即脉冲星、星际分子、微波背景辐射、类星体,成为20世纪中最耀眼的天文学成就。射电天文已成为重大天文发现的发祥地和诺贝尔物理学奖的摇篮。

赖尔的突破物理学中因发明新器件而获诺贝尔物理学奖的事例屡见不鲜。然而在20世纪前几十年当中,光学天文望远镜的发展很快,导致了不少重要的天文发现,但却没有一项得奖。1974年,英国剑桥大学的赖尔(Martin Ryle)教授因发明综合孔径射电望远镜而获得了诺贝尔物理学奖,这是天文学家终于实现因研制天文观测设备而获诺奖的突破。射电望远镜开辟了观测的新波段,但是刚刚发展起来的射电天文十分幼稚,最大的问题是空间分辨率很低,且不能给出射电源的图像。1952年,赖尔提出综合孔径望远镜理论,这是一种化整为零的射电望远镜,用两面或多面小天线进行多次观测就可以达到大天线所具有的分辨率和灵敏度。而且,还能得到所观测的天区的射电图像。1971年,剑桥大学建成的等效直径为5千米的综合孔径望远镜,其分辨率已和大型光学望远镜相当,获得了一大批射电源的图像资料。

休伊什和贝尔发现脉冲星脉冲星的发现证实了中子星的存在。中子星具有和太阳相当的质量,但半径只有约10千米。因此具有非常高的密度,是一种典型的致密星。中子星还具有超高压、超高温、超强磁场和超强辐射的物理特性,成为地球上不可能有的极端物理条件下的空间实验室。它不仅为天文学开辟了一个新的领域,而且对现代物理学发展也产生了重大影响,导致了致密物质物理学的诞生。英国剑桥大学的天文学教授休伊什(AntonyHewish)和他的研究生乔丝琳·贝尔(Jocelyn BellBurnell)女士一起发现了脉冲星。休伊什因发现脉冲星并证认其为中子星而荣获1974年的诺贝尔物理奖是当之无愧的,但贝尔博士未能和休伊什一起获得诺贝尔奖却是一件憾事,目前天文学家公认她是发现脉冲星的第一人。

彭齐亚斯和威尔逊发现宇宙微波背景辐射1963年初,彭齐亚斯(Arno Allan Penzias)和威尔逊(Robert Woodrow Wilson)把一台卫星通讯接收设备改造为射电望远镜进行射电天文学研究。在观测过程中意外发现了多余的3.5开温度的辐射。这种辐射被确认是宇宙大爆炸时的辐射残余,成为宇宙大爆炸理论的重要观测证据。由此,他们获得了1978年度的诺贝尔物理学奖。彭齐亚斯和威尔逊发现宇宙微波背景辐射,所获得的黑体谱并不精确,而且他们得到的微波背景辐射的空间分布是各向同性的,这与大爆炸宇宙学的理论有着明显的差别。

赫尔斯和泰勒发现射电脉冲双星继1974年休伊什教授因发现脉冲星而获得诺贝尔物理学奖之后,1993年美国普林斯顿大学的赫尔斯(RussellA.Hulse)和泰勒(Joseph H.Taylor)两位教授又因发现射电脉冲双星而共同获得该年度诺贝尔物理学奖,引起了全世界的轰动。他们发现的脉冲双星系统之所以重要,不仅因为是第一个,还因为它是轨道椭率很大的双中子星系统,成为验证引力辐射存在的空间实验室。他们经过近20年坚持不懈的努力,上千次的观测,终于以无可争辩的观测事实,间接证实了引力波的存在,开辟了引力波天文学的新领域。

新世纪天文观测再续辉煌

观测是天文学研究的主要方法。观测手段越多、越好,所能得到的信息就越丰富。进入21世纪仅仅10余年,已有4个天文项目获得了诺贝尔物理学奖,分别属于X射线、中微子、射电和光学观测研究领域。

贾科尼创立x射线天文学

1901年,伦琴(Wilhelm Conrad R6ntgen)因为发现X射线荣获诺贝尔物理学奖。时隔102年,X射线天文学的创始人里卡尔多·贾科尼(Rieeardo Giaeeoni)又获诺奖殊荣。由于地球大气对X射线和Y射线的强烈吸收,只能把探测器送到大气层外才能接收天体的X射线和Y射线辐射。20世纪30年代以后,特别是到了90年代,空间探测的发展使得X射线天文学得到了发展,实现了天文学观测研究的又一次飞跃。美国天文学家贾科尼由于对X射线天文学的突出贡献荣获2002年度诺贝尔物理学奖。

贾科尼对X射线天文学的贡献是全面的,瑞典皇家科学院发表的新闻公报把他的贡献归纳为“发明了一种可以放置在太空中的探测器,从而第一次探测到了太阳系以外的X射线源,第一次证实宇宙中存在着隐蔽的X射线背景辐射,发现了可能来自黑洞的X射线,他还主持建造了第一台X射线天文望远镜,为观察宇宙提供了新的手段,为x射线天文学奠定了基础”。贾科尼被称为“X射线天文学之父”当之无愧。

戴维斯和小柴昌俊发现太阳中微子中微子是组成自然界的最基本的粒子之一,中微子不带电,质量只有电子的百万分之一,几乎不与任何物质发生作用,因此极难探测。理论推测,在太阳核心发生的氢核聚变为氦的反应中,每形成一个氦原子核就会释放出2个中微子。太阳每秒钟消耗5,6亿吨氢,要释放1.4×1038个中微子。太阳究竟会不会发射如此多的中微子?只能由观测来回答。

美国物理学家戴维斯(Raymond Davis)是20世纪50年代唯一敢于探测太阳中微子的科学家。他领导研制的中微子氯探测器,放置在地下深1500米的一个废弃金矿里。在30年漫长的探测中,他们共发现了来自太阳的约2000个中微子,平均每个月才探测到几个中微子。而日本东京大学的小柴昌俊(Masatoshi Koshiba)教授创造了另一种中微子探测器。探测器放在很深的矿井中,并于1983年开始探测,1996年扩建,探测到了来自太阳的中微子。1987年,在邻近星系大麦哲伦云中出现了一次超新星爆发(SNl987A),理论预测在超新星爆发过程中会产生数量惊人的中微子。令人兴奋不已的是,他们成功地探测到了12个中微子。戴维斯和小柴昌俊因为成功地探测到中微子而荣获2002年度的诺贝尔物理学奖。

天文学的理论范文第2篇

    一. 天文学研究的历程

    朱熹对天文现象的思考很早就已开始。据朱熹门人黄义刚“癸丑(1193年,朱熹63岁)以后所闻”和林蘷孙“丁巳(1197年,朱熹67岁)以后所闻”,朱熹曾回忆说:“某自五、六岁,便烦恼道:‘天地四边之外,是什么物事?’见人说四方无边,某思量也须有个尽处。如这壁相似,壁后也须有什么物事。其时思量得几乎成病。到而今也未知那壁后是何物?”[ ]可见,朱熹从小就关心天文,直到晚年仍对此难以忘怀,并孜孜以求。

    然而,朱熹在其早期的学术生涯中,并没有进行天文学的研究。朱熹早年除读儒家经典外,“无所不学,禅、道文章,楚辞、诗、兵法,事事要学”[ ]。绍兴三十年(1160年,朱熹30岁),朱熹正式拜二程的三传弟子李侗为师,开始潜心于儒学,并接受李侗以“默坐澄心”于“分殊”上体认“理一”的思想。

    据《朱文公文集》以及当今学者陈来先生所着《朱子书信编年考证》[ ],朱熹最早论及天文学当在乾道七年(1171年,朱熹41岁)的《答林择之》,其中写道:“竹尺一枚,烦以夏至日依古法立表以测其日中之景,细度其长短。”[ ]

    测量日影的长度是古代重要的天文观测活动之一。最简单的方法是在地上直立一根长八尺的表竿,通过测量日影的长短来确定节气;其中日影最短时为夏至,最长时为冬至,又都称为“日至”。与此同时,这种方法还用于确定“地中”。《周礼?地官》载:“以土圭之法测土深,正日景以求地中。……日至之景,尺有五寸,谓之地中。”意思是,在夏至日中午测得日影为一尺五寸的地方,此地便是“地中”。而且,从“地中”向北,每一千里则影长增一寸;向南,每一千里则影长减一寸。这就是《周髀算经》所谓“周髀长八尺,勾之损益寸千里”。这一说法到南朝以后受到怀疑;唐朝的一行和南宫说通过不同地区日影的测量,进一步予以纠正。朱熹要其弟子林择之协助测量日影,显然是要比较不同地区日影的长短,其科学精神可见一斑。

    在同年的《答蔡季通》中。朱熹写道:“历法恐亦只可略说大概规模,盖欲其详,即须仰观俯察乃可验。今无其器,殆亦难尽究也。”[ ]

    蔡季通,即蔡元定(1135~1198年);建阳(今属福建)人,学者称西山先生;精于天文、地理、吕律、象数,着作有《律吕新书》、《大衍详说》等;为朱熹“四大弟子( 蔡元定、黄干、刘爚、陈淳)”之首。蔡元定的年龄仅比朱熹小5岁,并在天文学等科学上有所造诣,很受朱熹的器重。从以上所引《答蔡季通》可知,当时朱熹正与蔡元定讨论天文历法,并且认为,研究历法必须用科学仪器进行实际的天文观测。

    淳熙元年(1174年,朱熹44岁),朱熹在《答吕子约》中写道:“日月之说,沈存中笔谈中说得好,日食时亦非光散,但为物掩耳。若论其实,须以终古不易者为体,但其光气常新耳。”[ ]显然,朱熹在此前已研读过北宋着名科学家沈括的《梦溪笔谈》,并对沈括的有关天文学的观点进行分析。胡道静先生认为,在整个宋代,朱熹是最最重视沈括着作的科学价值的唯一的学者,是宋代学者中最熟悉《梦溪笔谈》内容并能对其科学观点有所阐发的人。[ ]

    淳熙十三年(1186年,朱熹56岁),朱熹在《答蔡季通》中写道:“《星经》紫垣固所当先,太微、天市乃在二十八宿之中,若列于前,不知如何指其所在?恐当云在紫垣之旁某星至某星之外,起某宿几度,尽某宿几度。又记其帝坐处须云在某宿几度,距紫垣几度,赤道几度,距垣四面各几度,与垣外某星相直,及记其昏见,及昏旦夜半当中之星。其垣四面之星,亦须注与垣外某星相直,乃可易晓。……《星经》可付三哥毕其事否?甚愿早见之也。近校得《步天歌》颇不错,其说虽浅而词甚俚,然亦初学之阶梯也。”[ ]可见,当时朱熹正与蔡元定一起研究重要的天文学经典着作《星经》和以诗歌形式写成的通俗天文学着作《步天歌》,并就如何确定天空中恒星的位置问题进行讨论,其中涉及三垣二十八宿星象体系。

    同年,朱熹在《答蔡伯静》中写道:“天经之说,今日所论乃中其病,然亦未尽。彼论之失,正坐以天形为可低昂反复耳。不知天形一定,其间随人所望固有少不同处,而其南北高下自有定位,政使人能入于弹圆之下以望之,南极虽高,而北极之在北方,只有更高于南极,决不至反入地下而移过南方也。但入弹圆下者自不看见耳。盖图虽古所创,然终不似天体,孰若一大圆象,钻穴为星,而虚其当隐之规,以为瓮口,乃设短轴于北极之外,以缀而运之,又设短轴于南极之北,以承瓮口,遂自瓮口设四柱,小梯以入其中,而于梯末架空北入,以为地平,使可仰窥而不失浑体耶?”[ ]在这里,朱熹设想了一种可进入其中观看天象的庞大的浑天仪。

    淳熙十四年(1187年,朱熹57岁),朱熹在《答廖子晦》中写道:“日之南北虽不同,然皆随黄道而行耳。月道虽不同,然亦常随黄道而出其旁耳。其合朔时,日月同在一度;其望日,则日月极远而相对;其上下弦,则日月近一而远三。如日在午,则月或在卯,或在酉之类是也。故合朔之时,日月之东西虽同在一度,而月道之南北或差远,于日则不蚀。或南北虽亦相近,而日在内,月在外,则不蚀。此正如一人秉烛,一人执扇,相交而过。一人自内观之,其两人相去差远,则虽扇在内,烛在外,而扇不能掩烛。或秉烛者在内,而执扇在外,则虽近而扇亦不能掩烛。以此推之,大略可见。”[ ]在这里,朱熹对月亮盈亏变化的原因作了探讨。

    淳熙十六年(1189年,朱熹59岁),朱熹在《答蔡季通》中写道:“极星出地之度,赵君云福州只廿四度,不知何故自福州至此已差四度,而自此至岳台,却只差八度也。子半之说尤可疑,岂非天旋地转,闽浙却是天地之中也耶?”[ ]在这里,朱熹试图通过比较各地北极星的高度及其与地中岳台的关系,以证明大地的运动。

    朱熹在一生中最后的十年里,在天文学研究上下了较多的功夫,并取得了重要的科学成就。南宋黎靖德所编《朱子语类》卷一“理气上?太极天地上”和卷二“理气下?天地下”编入大量朱熹有关天文学的言论,其中大都是这一时期朱熹门人所记录的。例如:《朱子语类》卷二朱熹门人陈淳“庚戌(1190年,朱熹60岁)、己未(1199年,朱熹69岁)所闻”:“天日月星皆是左旋,只有迟速。天行较急,一日一夜绕地一周三百六十五度四分度之一,而又进过一度。日行稍迟,一日一夜绕地恰一周,而於天为退一度。至一年,方与天相值在恰好处,是谓一年一周天。月行又迟,一日一夜绕地不能匝,而於天常退十三度十九分度之七。至二十九日半强,恰与天相值在恰好处,是谓一月一周天。月只是受日光。月质常圆,不曾缺,如圆球,只有一面受日光。望日日在酉,月在卯,正相对,受光为盛。天积气,上面劲,只中间空,为日月来往。地在天中,不甚大,四边空。……”[ ]

    《朱子语类》的其它卷中也有此类记录。例如:《朱子语类》卷二十三黄义刚“癸丑(1193年,朱熹63岁)以后所闻”:安卿问北辰。曰:“北辰是那中间无星处,这些子不动,是天之枢纽。北辰无星……。”义刚问:“极星动不动?”曰:“极星也动。只是它近那辰后,虽动而不觉。……今人以管去窥那极星,见其动来动去,只在管里面,不动出去。向来人说北极便是北辰,皆只说北极不动。至本朝人方去推得是北极只是北辰头边,而极星依旧动。又一说,那空无星处皆谓之辰……。”又曰:“天转,也非东而西,也非循环磨转,却是侧转。”义刚言:“楼上浑仪可见。”曰:“是。”……又曰:“南极在地下中处,南北极相对。天虽转,极却在中不动。”[ ]

    《朱文公文集》卷七十二朱熹所着《北辰辨》(大约写成于1196年,朱熹66岁)以及卷六十五朱熹所注《尚书》之《尧典》、《舜典》(大约写成于1198年,朱熹68岁)都包含有丰富的天文学观点。《北辰辨》是朱熹专门讨论天球北极星座的论文;在所注的《尧典》中,朱熹讨论了当时天文学的岁差、置闰法等概念;在所注《舜典》中讨论了早期的浑天说、浑天仪的结构,并详细记录了当时的浑天仪结构。

    这一时期朱熹所编《楚辞集注》(成书于1195年,朱熹65岁)之《天问》中也有一些注释反映了他在天文学方面的研究和造诣。

    二. 天文学的成就

    就朱熹研究天文学的方法而言,其最根本的研究方法是[ ]:

    其一,细心观察各种天文现象。朱熹是重视亲身观察、善于观察的人。他经常运用仪器观察天文现象;并运用观察所得验证、反驳或提出各种见解。

    其二,用“气”、“阴阳”等抽象概念解释天文现象。朱熹所采用的这一方法与中国古代科学家普遍采用的研究方法是一致的。

    其三,运用推类获取新知。朱熹经常运用“以类而推”的方法,用已知的东西、直观的东西,对天文现象进行类推解释。

    其四,阐发前人的天文学研究成果。朱熹研读过包括沈括《梦溪笔谈》在内的大量科学论着,对前人的天文学观点均予以评述,并提出自己的看法。

    从现代科学的角度看,朱熹的天文学研究方法,固然有其不足之处,这主要是由于古代科学所处的阶段而导致的。在古代科学的范畴中,朱熹的天文学研究方法应当属于合理。更为重要的是,朱熹运用这些方法在天文学上取得了重要的成就。

    朱熹在天文学方面的科学成就主要反映在他最后十年里有关的言论中。概括起来主要有三个方面:

    第一,提出了以“气”为起点的宇宙演化学说。朱熹曾经说:“天地初间只是阴阳之气。这一个气运行,磨来磨去,磨得急了便拶许多渣滓;里面无处出,便结成个地在中央。气之清者便为天,为日月,为星辰,只在外,常周环运转。地便只在中央不动。不是在下。”[ ]这里描绘了一幅宇宙演化途径的图景。

    在朱熹看来,宇宙的初始是由阴阳之气构成的气团。阴阳之气的气团作旋转运动;由于内部相互磨擦发生分化;其中“清刚者为天,重浊者为地”[ ],重浊之气聚合为“渣滓”,为地,清刚之气则在地的周围形成天和日月星辰。朱熹还明确说:“天地始初混沌未分时,想只有水火二者。水之滓脚便成地。今登高而望,群山皆为波浪之状,便是水泛如此。只不知因什么时凝了。初间极软,后来方凝得硬。……水之极浊便成地,火之极轻便成风霆雷电日星之属。”[ ]他根据直观的经验推断认为,大地是在水的作用下通过沉积而形成的,日月星辰是由火而形成的。

    将宇宙的初始看作是运动的气,这一思想与近代天文学关于太阳系起源的星云说有某些相似之处。1755年,德国哲学家康德提出了太阳系起源的星云说;1796年,法国天文学家拉普拉斯也独立地提出星云说。星云说认为,太阳系内的所有天体都是由同一团原始星云形成的。然而,在他们500多年之前,朱熹就提出了类似之说;尽管尚缺乏科学依据和定量的推算,但其通过思辩而获得的结果则是超前的。

    对此,英国科学史家梅森在其《自然科学史》一书中予以记述:“宋朝最出名的新儒家是朱熹。他认为,在太初,宇宙只是在运动中的一团浑沌的物质。这种运动是漩涡的运动,而由于这种运动,重浊物质与清刚物质就分离开来,重浊者趋向宇宙大旋涡的中心而成为地,清刚者则居于上而成为天。……”[ ]

    第二,提出了地以“气”悬空于宇宙之中的宇宙结构学说。朱熹赞同早期的浑天说,但作了重大的修改和发展。早期的浑天说认为:“天如鸡子,地如鸡中黄,孤居于天内,天大而地小。天表里有水,天地各乘气而立,载水而行”[ ]但是,当天半绕地下时,日月星辰如何从水中通过?这是困扰古代天文学家的一大难题。朱熹不赞同地载水而浮的说法,他说:“天以气而依地之形,地以形而附天之气。天包乎地,地特天中之一物尔。天以气而运乎外,故地搉在中间,隤然不动。”[ ]这就是说,地以“气”悬空在宇宙之中。

    至于地如何以“气”悬空在宇宙中央,朱熹说:“天运不息,昼夜辗转,故地搉在中间。使天有一息之停,则地须陷下。惟天运转之急,故凝结得许多渣滓在中间。”[ ]又说:“地则气之渣滓,聚成形质者;但以其束于劲风旋转之中,故得以兀然浮空,甚久而不坠耳。”[ ]朱熹认为,宇宙中“气”的旋转使得地能够悬空于宇宙中央。朱熹的解释克服了以往天文学家关于宇宙结构学说的弱点,把传统的浑天说发展到了一个新水平。[ ]

    关于地之外的天,朱熹说:“天之形,……亦无形质。……天体,而实非有体也。”[ ]“天无体,只二十八宿便是天体。”[ ]又说:“星不是贴天。天是阴阳之气在上面”;“天积气,上面劲,只中间空,为日月来往。地在天中,不甚大,四边空,”[ ]这显然是吸取了传统宣夜说所谓“天了无质,……日月众星,自然浮生虚空之中,其行无止,皆须气也”[ ]的思想。

    第三,提出了天有九重和天体运行轨道的思想。朱熹认为,屈原《天问》的“圜则九重”就是指“九天”,指天有九重。事实上,在朱熹之前,关于“九天”的说法可见《吕氏春秋?有始览》:中央曰钧天,东方曰苍天,东北曰变天,北方曰玄天,西北曰幽天,西方曰颢天,西南曰朱天,南方曰炎天,东南曰阳天;后来的《淮南子?天文训》等也有类似的说法;直到北宋末年洪兴祖撰《楚辞补注》,其中《天文章句》对“九天”的解释是:东方皞天,东南方阳天,南方赤天,西南方朱天,西方成天,西北方幽天,北方玄天,东北方变天,中央钧天。显然,这些解释都不包括天有九重的思想。

    朱熹则明确地提出天有九重的观点,并且还说“自地之外,气之旋转,益远益大,益清益刚,究阳之数,而至于九,则极清极刚,而无复有涯矣”[ ];同时,朱熹赞同张载所谓“日月五星顺天左旋”的说法。他进一步解释说:“盖天行甚健,一日一夜周三百六十五度四分度之一,又进过一度。日行速,健次于天,一日一夜周三百六十五度四分度之一,正恰好。比天进一度,则日为退一度。二日天进二度,则日为退二度。积至三百六十五日四分日之一,则天所进过之度,又恰周得本数;而日所退之度,亦恰退尽本数,遂与天会而成一年。月行迟,一日一夜三百六十五度四分度之一行不尽,比天为退了十三度有奇。进数为顺天而左,退数为逆天而右。”[ ]《朱子语类》卷二朱熹的门人在阐释所谓“天左旋,日月亦左旋”时说:“此亦易见。如以一大轮在外,一小轮载日月在内,大轮转急,小轮转慢。虽都是左转,只有急有慢,便觉日月似右转了。”朱熹赞同此说。[ ]

    对此,英国着名科学史家李约瑟说:“这位哲学家曾谈到‘大轮’和‘小轮’,也就是日、月的小‘轨道’以及行星和恒星的大‘轨道’。特别有趣的是,他已经认识到,‘逆行’不过是由于天体相对速度不同而产生的一种视现象。”[ ]因此李约瑟认为,不能匆忙假定中国天文学家从未理解行星的运动轨道。

    在天文学研究中,朱熹除了提出以上新见外,还对沈括有关天文学的观点做过详细的阐述。例如:沈括曾说:“月本无光,犹银丸,日耀之乃光耳。光之初生,日在其傍,故光侧,而所见才如钩;日渐远,则斜照,而光稍满。如一弹丸,以粉涂其半,侧视之,则粉处如钩;对视之,则正圆。”[ ]朱熹赞同此说,并接着说:“以此观之则知月光常满,但自人所立处视之,有偏有正,故见其光有盈有亏。”[ ]他还说:“月体常圆无阙,但常受日光为明。初三、四是日在下照,月在西边明,人在这边望,只见在弦光。十五、六则日在地下,其光由地四边而射出,月被其光而明。……月,古今人皆言有阙,惟沈存中云无阙。”[ ]

    三. 对后世的影响

    中国古代的天文学大致包括宇宙结构理论和历法两大主要部分,尤以历法最为突出。宇宙结构理论自汉代形成盖天说、浑天说和宣夜说之后,也经历了不断的发展,主要表现为占主导地位的浑天说不断吸取各家学说之长而逐步得到完善。

    朱熹的天文学研究侧重于对宇宙结构理论的研究。他通过自己的天文观测和科学研究,以浑天说为主干,吸取了盖天说和宣夜说的某些观点,提出了较以往更加完善的宇宙结构理论,把古代的浑天说推到一个新的阶段,这应当是朱熹对于古代天文学发展的一大贡献。

    但是,由于朱熹的天文学研究只是专注于宇宙的结构,对于当时在天文观测和历法方面的研究进展关注不够,在这些方面的研究稍显不足。因此,他的宇宙结构理论在某些具体的细节方面,尤其是定量方面,尚有一些不足之处,有些见解和解释是欠妥当的。

    然而,他毕竟对宇宙结构等天文学问题作了纯科学意义上的研究,代表了宋代以至后来相当长一段时期中国古代天文学在宇宙结构理论研究方面的水平。而且,朱熹的宇宙结构理论在后来直至清代一直受到了不少学者的重视和引述。

    朱熹之后宋末的重要学者王应麟(1223~1296年,字伯厚,号深宁居士)撰《六经天文编》六卷,记述了儒家经典中大量有关天文学方面的重要论述,《四库全书?六经天文编》“提要”说:“是编裒六经之言天文者,以易、书、诗所载为上卷,周礼、礼记、春秋所载为下卷。”该着作也记述了朱熹的许多有关天文学方面的论述。

    元代之后科举考试以“四书五经”为官定教科书。其中《尚书》以蔡沈的《书集传》为主。蔡沈(1167~1230年,字仲默,号九峰)曾随其父蔡元定从学于朱熹。他的《书集传》是承朱熹之命而作,其中包含了朱熹所注《尚书》之《尧典》、《舜典》等内容,涉及不少有关天文学方面的论述。另有元代学者史伯璿(生卒不详)着《管窥外篇》;《四库全书?管窥外篇》“提要”说:该书中“于天文、历学、地理、田制言之颇详,多能有所阐发。”在论及天文学时,该书对朱熹的言论多有引述,并认为“天以极健至劲之气运乎外,而束水与地于其中”。这与朱熹的宇宙结构理论是一致的。

    明初的胡广等纂修《性理大全》,其中辑录了大量朱熹有关天文学的论述。明末清初的天文学家游艺(生卒不详,字子六,号岱峰)融中西天文学于一体,撰天文学着作《天经或问》,后被收入《四库全书》,并流传于日本。该书在回答地球何以“能浮空而不坠”时说:“天虚昼夜运旋于外,地实确然不动于中……天裹着地,运旋之气升降不息,四面紧塞不容展侧,地不得不凝于中以自守也。”这里吸取了朱熹关于气的旋转支撑地球悬于空中的宇宙结构理论;在解释地震的原因时,该书又明确运用了朱熹的这一观点,说:“地本气之渣滓聚成形质者,束于元气旋转之中,故兀然浮空而不坠为极重亘中心以镇定也。”在论及日月五星的运行方向和速度时,该书说道:“日月之行,宋儒言之甚详”,并且还直接引述朱熹关于五星运行方向和速度的观点予以说明。

    清代着名学者李光地(1642~1718年,字晋卿,号榕村)曾奉命主编《朱子大全》,其中“卷四十九理气一”有“总论、太极、天地、阴阳、时令”,“卷五十理气二”有“天文、天度、地理、雷电、风雨雪雹霜露”,收录了朱熹有关天文学的不少论述。李光地所着的《历象本要》引述了朱熹所谓“地在中央不动,不是在下”,“天包乎地”以及“天有九重”等,用以说明朱熹的天文学思想中包含了西方天文学有关宇宙结构的知识[ ]。他在所撰的《理气》篇说:“朱子言天,天不宜以恒星为体,当立有定之度数记之。天乃动物,仍当于天外立一太虚不动之天以测之,此说即今西历之宗动天也。其言九层之天。近人者最和暖故能生人物。远得一层,运转得较紧似一层。至第九层则紧不可言。与今西历所云九层一 一吻合。”[ ]他的《御定星历考原》六卷,也引述了朱熹有关宇宙结构的言论,并且认为,朱熹所说的“天包乎地,地特天中之一物尔”就是指“天浑圆地亦浑圆”,而与西方天文学的宇宙结构理论相一致。

    李光地与被誉为清初“历算第一名家”的梅文鼎(1633~1721年,字定九,号勿庵)[ ]交往甚密,并且对当时的西方科学都持“西学中源”说。梅文鼎在所着《历学疑问》中多处引用朱熹有关宇宙结构的言论。该书认为,朱熹已经具有西方天文学所谓“动天之外有静天”、“天有重数”和“以轮载日月”的观点,并且说:“朱子以轮载日月之喻,兼可施诸黄、赤,与西说之言层次者实相通贯。”[ ]

    除此之外,清代还有黄鼎(生卒不详)的《天文大成管窥辑要》八十卷,其中也包括朱熹有关天文学的不少论述。

    朱熹是古代的大哲学家,代表了中国古代哲学发展的一座高峰。也许正是这个原因,他在天文学上所取得的成就一直没有能引起人们足够的注意。但是,这并不能否认他在天文学上确实做出过卓越的贡献,他的宇宙结构理论对后世产生过重大的影响。

    注释:

    [ ] 李约瑟:《中国科学技术史》第四卷《天学》,北京:科学出版社1975年版,第2页。

    [ ] 〔宋〕黎靖德编:《朱子语类》,北京:中华书局1986年版,卷第九十四。

    [ ] 《朱子语类》,卷第一百四。

    [ ] 陈来:《朱子书信编年考证》,上海人民出版社1989年版。

    [ ] 《答林择之》,《晦庵先生朱文公文集》(四部丛刊初编),以下简称《文集》,卷四十三。

    [ ] 《答蔡季通》,《文集》续集卷二。

    [ ] 《答吕子约》,《文集》卷四十七。

    [ ] 胡道静:《朱子对沈括科学学说的钻研与发展》,《朱熹与中国文化》,学林出版社1989年版。

    [ ] 《答蔡季通》,《文集》卷四十四。

    [ ] 《答蔡伯静》,《文集》续集卷三。

    [ ] 《答廖子晦》,《文集》卷四十五。

    [ ] 《答蔡季通》,《文集》续集卷二。

    [ ] 《朱子语类》,卷第二。

    [ ] 《朱子语类》,卷第二十三。

    [ ] 乐爱国、高令印《朱熹格物致知论的科学精神及其历史作用》,《厦门大学学报》,1997年第1期。

    [ ] 《朱子语类》,卷第一。

    [ ] 《朱子语类》,卷第一。

    [ ] 《朱子语类》,卷第一。

    [ ] 梅森:《自然科学史》,上海译文出版社1980年版,第75页。

    [ ] 《晋书?天文志上》。

    [ ] 《朱子语类》,卷第一。

    [ ] 《朱子语类》,卷第一。

    [ ] 朱熹:《楚辞集注》,上海古籍出版社1979年版,第51页。

    [ ] 杜石然等:《中国科学技术史稿》(下),科学出版社1982年版,第106页。

    [ ] 朱熹:《楚辞集注》,第51页。

    [ ] 《朱子语类》,卷第二。

    [ ] 《朱子语类》,卷第二。

    [ ] 《晋书?天文志上》。

    [ ] 朱熹:《楚辞集注》,第51页。

    [ ] 《朱子语类》,卷第二。

    [ ] 《朱子语类》,卷第二。

    [ ] 李约瑟:《中国科学技术史》第4卷,科学出版社1975年版,第547页。

    [ ] 沈括:《梦溪笔谈》卷七《象数一》。

    [ ] 朱熹:《楚辞集注》,第53页。

    [ ] 《朱子语类》,卷第二。

    [ ] 乐爱国:《李光地的中西科技观述评》,载《李光地研究》,厦门大学出版社1993年版。

    [ ] 《榕村语录》卷二十六《理气》

天文学的理论范文第3篇

威廉姆斯:大多数科学成就都是在意料之外偶然发现的。或许,我们最终能够收到他们回复的信号,但我表示强烈的怀疑!对信号进行巡天搜索似乎更重要,那也许会于偶然间找到外星信号。当然,人类可能永远不会发现任何来自地外的信号,但重要的是我们拥有那份探索的好奇心。即使我们最终没有接收到任何回音,勇于探索宇宙却是人类开放态度的重要体现。所以,我坚决支持“地外文明搜寻”(Search for extraterrestrial intelligence,SETI)项目为寻找地外生命所进行的尝试。同时,我也要承认,发现地外生命的可能性微乎其微。这两者并不相互矛盾。延展我们在宇宙中的探索范围是人类的使命,因此,我们必须不断地搜寻、搜寻、再搜寻,永不停息。

《中国国家天文》:现代天文学首先在欧洲而非其它地区发展起来,您如何看待这样的事实?您认为这是历史的必然还是偶然?与其它文明相比,现在西方在发展天文学方面拥有怎样的优势?

威廉姆斯:现代天文学可能最早是在欧洲发展起来的,但毫无疑问,古天文学起源于亚洲,特别是中国,因为那时亚洲拥有更好的社会和政治组织结构。科学的发展需要有良好的教育基础体系和技术。就教育和技术而言,在文艺复兴时期,欧洲恰好比亚洲先进,因此,现代天文学在那时取得了飞速发展。是历史的偶然吗?答案是否定的,那要归功于彼时欧洲兴起的向之外扩展知识的倾向。但是,这场启蒙运动并没有发生在同时期的明代中国。

目前,西方世界有这样一种趋势,倾向于支持那些不同于现有社会思想和宗教信条的想法。这种开放的环境对于创造力和新认识的产生十分关键。现行的西方教育体系比较容易接受新观念和新技术。东方社会,例如中国,对教育和技术的资源投人令我印象深刻,所以中国的科技发展正在快速追赶西方的脚步。

《中国国家天文》:在我们的杂志上,有作者将IAU称为“天文学家的国际组织”。人们通常认为天文学很专业,很难参与。您是否曾经与业余科学家,特别是那些科学家圈子外的思考理论问题的人讨论过?作为前任IAU主席,您是否支持民间科学家进行理论思考?

威廉姆斯:我认为每个人都可以平等地思考。如果民间科学家的想法有证据支持,我相信那可能是有价值的。像IAU这样的专业组织并不是产生好主意的必要条件。生命的智慧存在于任何有着开放意识和思想,并乐于探索宇宙和地球的那些人之中。

《中国国家天文》:天文现象有时被一些人用来鼓吹“末日来临”,例如“2012预言”。您对那些末日论者要说些什么?您是否相信一些宗教所说的“最后的审判”?

威廉姆斯:科学所能解决的是我们拥有事实和证据的那部分现象。如果某个事件没有确凿的证据,那么它就不能纳入到科学研究的范畴。没有证据的任何推论都是基于哲学或者是宗教,那是个人信仰。就个人而言,我对许多世界上有组织的宗教并无信仰,但我很赞赏他们所传递的良好的道德准则。至于“最后的审判”,我认为那很难成为令人接受的事实。它与我所认知的地球生命及其进化史格格不入。立足脚下,好好生活,与人互敬互爱,这才是人类最好的选择。

《中国国家天文》:作为一本天文科普杂志的编辑,经常有人问我们天文对日常生活有什么影响。有些读者认为,虽然天文学在古代的日常生活中非常重要,但现在已经逐渐淡出了人们的生活。您是否同意这样的说法?如何使天文学与人类日常生活的关系更紧密?

威廉姆斯:相对于那些“应用”科学来说,天文学更“纯粹”一些,在日常生活中的实际应用并不太多。一个人即使没有任何天文学知识,仍会生活得很好。但事实是,天文学没有实际应用并不意味着它“淡出人们的生活”。天文学直接影响着人类对宇宙和自身的认识。人与宇宙关系的基本认知对于我们的自我了解是十分关键的。

《中国国家天文》:在一些科幻小说和电影中,有许多天文学方面的错误。您认为专业天文学家有必要去澄清它们吗?您之前是否这样做过?

威廉姆斯:的确,电影中确实有很多天文学的错误。而且,电影中还有更多关于人类行为的错误!但我认为纠正这些错误并不重要。重要的是,更要通过关注其它更积极的活动去表现我们的创造力。随其他人去犯你认为的错误吧,而你自己则要努力去做那些更具有创新性的和异于其他人想法的事情。

天文学的理论范文第4篇

潍坊市奎文区实验小学  王初迪

《哥白尼》这本书讲叙了哥白尼写《天体运行论》时所经历的磨难,使我深受启发——真理必胜!

当时天文学中占星术是一种非常流行的职业,当时的天文大师托勒密认为:“地球是宇宙的中心,太阳、月亮、水星、土星、金星、木星等都绕着地球转”。而哥白尼的“日心说”就像颗原子弹扔进了教堂里,把托勒密炸成了骨灰。

哥白尼创立的“日心说”,不但是天文学上的一次伟大革命,也是人类宇宙观的一次重大革新,沉重地打击了封建社会神权的统治。从此,天文学便大踏步地飞速前进了。因此,后人称他为“天文学之父”。

天文学的理论范文第5篇

现代科学技术概论不但应该是现代科学技术成果的概论,而且也应该是现代科学技术发展历史和规律的概论。离开现代科学技术发生、发展的历史,静止、孤立地介绍现代科学技术的基本理论和成果,就会使现代科学技术概论这门课程变得零乱庞杂而不成体系。而如果把“史”与“论”有机地结合和统一起来,则不但能克服“零乱庞杂”的缺陷,而且还能为现代科学技术概论这门课程注入生机和活力。同时,把“史”与“论”结合起来,更是为思想政治教育专业学生开设这门课程的教学目的之所需。作为思想政治教育专业的学生,通过现代科学技术概论课程的学习,不但要了解现代科学技术的主要成果、历史演进和完整体系,而且要了解科学技术发生、发展的一般过程和规律,了解哲学产生的现代科学技术基础以及对于推动科学技术发展的重要作用和意义。因此,只有做到史论结合,才能达到开课的目的和要求。

2现代科学技术概论的教学内容与体系

根据上述三原则,笔者认为,思想政治教育专业现代科学技术概论课程的内容与体系可做如下安排。导言。概要介绍现代科学技术及其理论基础、前沿阵地、中心内容和综合体现。

第一章,现代物理学革命及其影响。介绍现代科学技术的理论基础———相对论和量子力学。引言,概述近代物理学的辉煌成就及其所遇到的“两朵乌云”。第一节,相对论的建立。根据逻辑与历史相统一的原则,具体讲授伽利略变换和力学相对性原理,迈克尔逊—莫雷实验,洛伦兹变换的提出,爱因斯坦的狭义相对论及其主要结论,广义相对论及其验证。第二节,量子力学的建立和发展。一、量子力学产生的历史背景,概要介绍黑体辐射理论和紫外灾难。二、量子力学的建立与发展,具体讲述普朗克的量子假说,爱因斯坦的光量子理论,玻尔对原子结构的量子解释,德布罗意的物质波,薛定谔的波动方程,海森伯的矩阵力学。第三节,现代化学理论的发展。主要讲授元素周期理论的新发展和现代化学键理论。

第二章,原子物理学的开发研究及应用。主要讲授从物质结构的研究到原子能的开发和应用。第一节,对微观世界的探索和认识。一、物质结构初探,复习回忆德谟克利特的原子论,道尔顿的原子说,门捷列夫的元素周期律。二、向原子世界的进军,主要讲授X射线、放射性元素及电子的发现,原子结构模型及其实验和发现,原子核结构模型及其实验和发现,对基本粒子家族的认识。第二节,原子能的开发研究及应用。一、原子能的开发研究:重点介绍原子能开发研究中的三大发现,即慢中子效应的发现、核裂变的发现和链式反应的发现。二、原子能的应用,包括能源方面的应用和放射性同位素的应用。能源方面的应用包括两个方面:一是军用三弹即原子弹、氢弹和中子弹的研制;二是核电站的发展,主要介绍从慢中子反应堆到快中子增殖堆再到核聚变反应堆的历史发展。放射性同位素的应用可概要介绍在生产、生活、科研、军事上的应用及其成果。

第三章,生物学与生物工程技术。生物学是研究生命的科学;生物工程技术是用人工的方法创造生命的技术。生命科学是现代科学的三大前沿阵地之一;生物工程技术是现代科学技术的主要内容。第一节,生命的起源和生物的进化。一、生命起源的化学进化历程:从无机小分子物质生成有机小分子物质;从有机小分子物质形成有机高分子物质;从有机高分子物质形成有机多分子体系;从有机多分子体系演化成原始生命物质。二、生物进化论,主要介绍拉马克的生物进化学说和达尔文的生物进化论。第二节,现代遗传学和分子生物学。一、遗传学:主要讲授孟德尔的豌豆实验及其遗传学说;摩尔根的果蝇实验及其遗传学说。二、分子生物学:重点介绍蛋白质的性质、结构和功能;核酸的性质、结构和功能。第三节,生物工程技术。生物工程包括酶工程、发酵工程、细胞工程和基因工程四个部分的内容。因学时限制,可重点介绍细胞工程和基因工程两个部分。一、细胞工程,应首先讲授细胞的全能性,然后在细胞全能性的基础上具体介绍植物组织培养技术、细胞融合技术、细胞折合和胚胎移植技术、克隆技术等内容。二、基因工程:(1)基因工程的基础研究,主要介绍限制性内切酶、连接酶和基因载体的发现和研制。(2)基因工程的基本程序和方法,包括获取目的基因DNA、获取载体基因DNA、目的基因DNA与载体基因DNA的重组、把重组的DNA转入受体细胞进行增殖和筛选转基因生物体五个步骤及方法。三、生物技术的应用前景。主要介绍生物医药的研制及应用、生化工业的迅速发展、转基因动植物的大量出现,人类基因组计划(HGP)及其广阔的应用前景。

第四章,天文学和天体演化学说。天体演化学说是现代科学的三大前沿阵地之一,本章在重点讲述天体演化学说之前,先把天文学的相关知识作一简单介绍。第一节,天文学及其产生和发展。一、概要介绍天文学的研究对象和分类;二、重点讲授天文学的产生和发展:具体介绍古代天文学、近代经典天文学和现代天文学的发展情况。第二节,获取天体信息的渠道和手段;可分三个大问题来讲述。一、获取天体信息的渠道,主要介绍电磁辐射、宇宙线和中微子三条途径;二、获取天体信息的物质手段和仪器设备,主要介绍人眼的构造和功能、光学望远镜、射电望远镜和天体摄谱仪;三、天文观测发展简史:依次介绍光学天文学、射电天文学和空间天文学。第三节,天体的起源和演化。一、宇宙的起源和演化:主要介绍牛顿“无限无边”宇宙模型及其疑难、爱因斯坦“有限无边静态”宇宙模型及其疑难、哈勃定律与大爆炸宇宙模型;二、星系的形成和演化:先对星系及其类型作一简单的介绍,然后在此基础上介绍星系的形成和演化;三、恒星的形成和演化:具体介绍恒星的形成,表征恒星演化过程的赫罗图,恒星演化过程的三阶段,即主序星阶段、红巨星阶段和恒星的三种归宿(白矮星、中子星和黑洞);四、太阳系的形成和演化:主要介绍太阳系的基本情况和太阳系的形成和演化两部分内容;五、地球的构造和演化:包括地球概况、地球的圈层构造和地球的形成和演化。

第五章,信息技术和激光技术。人类历史在经历了6000年的农业社会和近300年的工业社会以后,现在正在迅速走向第三个文明社会———信息社会。所谓信息社会,就是信息在社会生产和生活中起主导作用的社会。信息技术和信息产业,是信息社会的重要支柱。所谓信息技术,就是信息的获取、传递和处理技术。信息技术以微电子技术为基础,包括计算机技术、通信技术、光导技术和人工智能技术等。第一节,微电子技术。一、微电子技术的出现:具体介绍集成电路的诞生、集成电路的种类及其历史发展和集成电路的制作工艺;二、微电子技术的应用。第二节,计算机技术。一、计算机概述:具体介绍计算机的结构与功能、计算机的特点和计算机的历史发展;二、计算机的应用:主要包括数值计算或科学计算、数据处理或称信息处理、实时控制或称过程控制、计算机辅助系统、人工智能或称智能模拟等;三、信息高速公路。第三节,通信技术。一、电气通信:主要介绍电话通信和非电话通信及传真;二、光纤通信:具体介绍光纤通信的基本原理、光纤通信的优点、光纤通信的应用和发展;三、卫星通信。第四节,激光技术。一、激光与激光器:具体介绍激光产生的基本原理、激光的特点、激光器的构造等内容。二、激光技术的应用:概要介绍激光加工(包括激光铸模、激光切割、激光焊接、激光雕刻等)技术及其在农业、医疗、军事上的广泛应用。