首页 > 文章中心 > 量子力学重要概念

量子力学重要概念

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学重要概念范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子力学重要概念

量子力学重要概念范文第1篇

量子力学课程是工科电类专业的一门非常重要的专业基础课程。通过该课程的学习,使学生初步掌握量子力学的基本原理和基本方法,认识微观世界的物理图像以及微观粒子的运动规律,了解宏观世界与微观世界的内在联系和本质的区别。量子力学课程教学质量的好坏直接影响后续的如“固体物理学”、“半导体物理学”、“集成电路工艺原理”、“量子电子学”、“纳米电子学”、“微电子技术”等课程的学习。

量子力学课程的学习要求学生具有良好的数学和物理基础,对学生的逻辑思维能力和空间想象能力等要求较高,因此要学好量子力学,在我们教学的过程中,需要充分发挥学生的学习主动性和积极性。同时,随着科学日新月异的发展,对量子力学课程的教学也不断提出新的要求。如何充分激发学生的学习兴趣,充分调动学生的学习主动性和能动性,切实提高量子力学课程的教学质量和教师的教学水平,已经成为摆在高校教师目前的一项重要课题。

该课程组在近几年的教学改革和教学实践中,本着高校应用型人才的培养需求,强调量子力学基本原理、基本思维方法的训练,结合物理学史,充分激发学生的学习积极性;充分利用熟知软件,理解物理图像,激发学生学习主动性;结合现代科学知识,强调理论在实践中的应用,取得了良好的教学效果。

1 当前的现状及存在的主要问题

目前工科电类专业普遍感觉量子力学课程难学,其主要原因在于:第一,量子力学它是一门全新的课程理论体系,其基本理论思想与解决问题的方法都没有经典的对应,而学习量子力学必须完全脱离以前在头脑中根深蒂固的“经典”的观念;第二,量子力学的概念与规律抽象,应用的数学知识比较多,公式推导复杂,计算困难;第三,虽然量子力学问题接近实际,但要学生理解和解决问题,还需要一个过程;由于上述问题的存在,使初学者都感到量子力学课程枯燥无味、晦涩难懂,而且随着学科知识的飞速发展,知识的更新周期空前缩短,在有限的课时情况下,如何使学生在掌握扎实的基础知识的同时,跟上时代的步伐,了解科学的前沿,以适应新世纪人才培养的需求,是摆在我们教育工作者面前的巨大挑战。

2 结合物理学史激发学生学习兴趣

兴趣是最好的老师,在大学物理中,谈到了19世纪末物理学所遇到的“两朵乌云”,光电效应和紫外灾难,1900年,普朗克提出了能量子的概念,解决了黑体辐射的问题;后来,爱因斯坦在普朗克的启发下,提出了光量子的概念,解释了光电效应,并提出了光的波粒二象性;德布罗意又在爱因斯坦的启发下,大胆的提出实物粒子也具有波粒二象性;对于物理学的第三朵乌云“原子的线状光谱,”玻尔提出了关于氢原子的量子假设,解释了氢原子的结构以及线状光谱的实验。后来还有薛定谔、海森堡、狄拉克等伟大的物理学家的努力,建立了一套崭新的理论体系-量子力学。在教学的过程中,适当穿插量子力学的发展历史以及伟大科学家的传记故事,避免了量子力学课程“全是数学的推导”的现状,这样激发学生的学习兴趣和学习热情,通过对伟大科学家的介绍,培养刻苦钻研的精神。实践表明,这样的教学模式大大提高了学生的学习主动性。

3 结合熟知软件化抽象为形象

量子力学内容抽象,对一些典型的结论,可以用软件模拟的方式实现物理图像的重现。很多软件如matlab、c语言等很多学生不是很熟练,而且编程较难,结合物理结论作图较为困难;Excell是学生常用的软件之一,简单易学却功能强大,几乎每位同学都非常熟练,我们充分利用这一点,将Excell软件应用到量子力学的教学过程中,取得了良好的效果。

如在一维无限深势阱中,我们用解析法严格求解得到了波函数和能级的方程。而波函数的模方表示几率密度。我们要求学生用Excell作图,这样得到粒子阱中的几率分布,通过与经典几率的比较(经典粒子在阱中各处出现的几率应该相等)和经典能级的比较(经典的能量分布应该是连续的函数),通过学生的自我参与,充分激发了学生的求知欲望;从简单的作图,学生深刻理解了微观粒子的运动状态的波函数;微观粒子的能量不再是连续的,而是量子化了的能级,当n趋于无穷大时微观趋向于经典的结果,即经典是量子的极限情况;通过学生熟知的软件,直观的再现了物理图像,学生会进一步来深刻思考这个结论的由来,传统的教学中,我们先讲薛定谔方程,然后再解这个方程,再利用边界条件和波函数的标准条件,一步一步推导下来,这样的教学模式有很多学生由于数学的基础较为薄弱,推导过程又比较繁琐,因此会逐步对课程失去了兴趣,这也直接影响了后面章节的学习,而通过学生亲自作图实现的物理图像,改变了传统的“填鸭式”教学,最大限度的使学生参与到课程中,这样的效果也将事半功倍了,大大提高了教学的效果。

4 结合科学发展前沿拓宽学生视野

在课程的教学中,除了注重理论基础知识的讲解和基础知识的应用以外,还需介绍量子力学学科前沿发展的一些动态。结合教师的教学科研工作,将国内外反映量子力学方面的一些最新的成果融入到课程的教学之中,推荐和鼓励学生阅读反映这类问题的优秀网站、科研文章,使学生了解量子力学学科的发展前沿,从而达到拓宽学生视野,培养学生创新能力的目的。例如近年兴起并迅速发展起来的量子信息、量子通讯、量子计算机等学科,其基础理论就是量子力学的应用,了解了这些发展,学生会反过来进一步理解课程中如量子态、自旋等概念,量子态和自旋本身就是非常抽象的物理概念,他们没有经典的对应,通过对实验结果的理解,学生会进一步理解用态矢来表示一个量子态,由于电子的自旋只有两个取向,正好与计算机存储中二进制0和1相对应,这也正是量子计算机的基本原理,通过学生的主动学习,从而达到提高教学质量的目的。另外我们还要介绍量子力学在近代物理学、化学、材料学、生命学等交叉学科中的应用,拓宽学生的视野。

量子力学重要概念范文第2篇

关键词 量子力学 教学内容 教学方法

中图分类号:G420 文献标识码:A

Teaching Methods and Practice of Quantum Mechanics of

Materials Physics Professional

FU Ping

(College of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073)

Abstract For the difficulties faced by students in Materials professional to learn quantum mechanics physics course, by a summary of teaching practice in recent years, from the teaching content, teaching methods and means of exploration and practice, students mobilize the enthusiasm and initiative, and achieved good teaching results.

Key words quantum mechanics; teaching content; teaching methods

0 引言

量子力学是研究微观粒子(如原子、分子、原子核和基本粒子等)运动规律的物理学分支学科,它和相对论是矗立在20世纪之初的两座科学丰碑,一起构成了现代物理学的两块理论基石。相对论和量子力学彻底改变了经典物理学的世界观,并且深化了人类对自然界的认识,改造了人类的宇宙观和思想方法,它使人们对物质存在的方式及其运动形态等的认识产生了一个质的飞跃。

量子力学是材料物理专业一门承前启后的专业基础必修课:量子力学的教学必须以数学为基础,包括线性代数、概率论、高等数学、数理方法等,其又是后续课程材料科学基础、固体物理、材料物理、纳米材料等的理论基础。可见,量子力学课程在材料物理专业的课程体系中占有非常重要的地位,学生掌握的程度直接影响后续专业课程的学习。作者近年来一直从事量子力学的教学工作,针对量子力学课程教学过程中存在的现象和问题,进行了较深入细致的思考与探讨,在实际教学过程中对本课程的教学方法进行了探索与实践,收到了较好的教学效果。

1 量子力学教学面临的难点

量子力学研究的是微观粒子的运动规律,微观粒子同宏观粒子不同,看不见,摸不着,只有借助于探测器才能察觉它的存在和属性。材料物理专业学生之前学习的基本上是经典物理,而量子力学理论无法用经典理论进行解释,学生对此感到难于理解。因此,经典物理的传统观念对学生思想的束缚,构成了学生学习量子力学的思想障碍;量子力学可以说无处不“数学”, 由于材料物理专业学生在数学基础方面与物理专业学生相比较为薄弱,在学习过程中普遍感到数学计算繁难,对大段的数学推导表现出畏难情绪。可见,量子力学对数学的精彩诠释却构成了学生学习量子力学的心理障碍。这两大障碍势必会影响量子力学和后续课程的学习。在这种情况下,我们应当怎样开展量子力学教学从而使学生重视并努力学好该课程就成了一个严峻的挑战。

2 明确教学重点和难点、有的放矢

要讲授一门课程,首先应该对课程内容有一个清晰的认识。量子力学的内容可以包括三个方面:一是介绍产生新概念的历史背景及一些重要实验;二是提出一系列不同于经典物理学的基本概念与原理,如波函数、算符等概念和相关原理,是该课程的核心;三是给出解决具体实际问题的方法。三部分内容相互联系,层层推进,形成完整的知识体系。作为引导者,教师应在这三部分内容的教学过程中帮助学生成功地突破两大束缚。第一部分内容教师应考虑如何引导学生入门,从习惯古典概念转而接受量子概念。在讲授这部分内容时要将重点放在“经典”向“量子”的过渡上,引出量子力学与经典力学在研究方法上的显著不同:经典力学是将其研究对象作为连续的不间断的整体对待,而量子力学将其研究对象看成的间断的、不连续的。学生在学习这部分时应仔细“品尝”其中的“滋味”,以便启发自己的思维自然地产生一个飞跃,完成思想的突破。第二、三部分是量子力学学习的重点与难点,并且涉及大量的数学推导,教师应采取适当的教学手段,突出重点,强调难点。在物理学研究中,数学只是用来表达物理思想并在此基础上进行逻辑演算的工具,不能将物理内容淹没在复杂的数学形式当中。通过数学推导才能得到的结论,只需告诉学生,从数学上可以得到这样的结果就可以了,无需将重点放在繁难的数学推导上,否则会使学生本末倒置,忽略了对量子力学思想的理解。这样的教学可以帮助学生突破心理障碍,不会一提量子力学就想到复杂的数学推导,从而产生抵触情绪。成功地突破这两大障碍,是学习量子力学的关键。

3 教学方法的改革

3.1 利用现代技术改进教学手段

传统的板书教学能够形成系统性的知识框架,教师在板书推导的过程中,学生有时间反应和思考,紧跟教师的思路,从而可以详细、循序渐进地吸收所学知识,并培养了良好的思维习惯。但全程板书会导致上课节奏慢,授课内容有限。目前随着高校教学改革的推进,授课学时相继减少,对于传统教学方式来讲,要完成教学任务比较困难。这就要借助现代科技手段进行教学改革,包括多媒体课件的使用和网络教学。但是在量子力学教学中,一些繁杂公式的推导,如果使用多媒体课件,节奏会较快,导致学生目不暇接,来不及做笔记,更来不及思考,不利于讲授内容的消化吸收。鉴于此,对于量子力学课程,教学过程应采用板书和多媒体技术相结合的方式,充分发挥二者的优势,调动学生的学习积极性。

3.2 建设习题库

量子力学课程理论抽象,要深入理解这些理论,在熟练掌握教材基本知识的基础上,需要通过大量习题的演练,循序渐近,才能检验自己理解的程度,真正学好这门课程。因此在教学过程中,强调做习题的重要性。有针对性地根据材料物理专业量子力学的教学大纲和教学内容,参考多本量子力学教材和习题集,利用计算机技术建设量子力学习题库,题型包括选择、填空、证明、简答和计算题等,内容涵盖各知识点,从简到繁、由浅至深。题库操作方便,学生可自行操作,并对所做结果进行实时检查,从而清楚自己掌握本课程的程度。这一方式在近几年的教学中取得了良好的教学效果。

3.3 加强与学生互动,调动学生的学习积极性

教学是一个师生互动的过程,应让学生始终处于主动学习的位置而不是被动的接受。量子力学课程的学习更应积极调动学生的积极性,因此教师应在教学过程中加强与学生的互动。增设课前提问、课后讨论环节,认真批改作业,积极发现学生学习过程中存在的问题,并及时对问题进行深入讲解,解决问题。另外,由于量子力学是建立在一系列基本假定基础之上的,抽象难懂,鉴于学生难接受的情况,在授课时注意理论联系实际,尽可能进行知识的渗透和迁移,将量子力学在实际中的应用穿插于教学之中,丰富教学内容,开拓学生视野,从而调动学生的学习兴趣和积极性。

4 结语

通过近年来教学经验的总结和探索,形成了一套适合材料物理专业量子力学课程教学的方法,该方法教学效果良好。在近几年的研究生入学考试中,学生量子力学课程的成绩优秀,说明采用这样的教学方法是成功的。

资助项目:武汉工程大学2010年校级教学研究项目(X201037)

量子力学重要概念范文第3篇

【关键词】密度算符 压缩相干态 正规乘积

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)10-0161-02

一、引言

量子力学是在19世纪末20世纪初建立和发展起来的一门科学,它的建立是20世纪划时代的成就之一。量子力学与我们的生活密切相关,可以毫不夸张的说,没有量子力学,就没有人类的现代物质文明。量子力学规律已成功地运用于包括材料、化学、生命、信息和制药等领域,对于物理专业的本科生来说,量子力学是物理学专业最重要的基础课程之一,它是学习固体物理、材料科学、材料物理与化学、激光原理、激光物理与技术等专业课程的重要基础[1,2]。通过量子力学的学习,使得学生能够熟练地掌握量子力学的基本理论,具备利用量子力学基本理论分析和解决问题的能力。在物理学课程当中,量子力学的教学既是重点又是难点。

相干态[3,4]作为量子力学中的一个核心概念,不仅是量子物理学中的一个有效方法,而且是激光理论的重要支柱,对了解量子力学理论具有重要的意义,在教学和科研中都具有基础性的作用。相干态的概念最初是薛定谔在1926年提出的[3],对于谐振子位势,他找到了这样的态。直到1963年格劳伯等人系统地建立起光子相干态,并研究它的相干性与非经典性,同时又证明相干态是谐振子湮灭算符的本征态[4]。现在相干态已被广泛地应用于物理学的各个领域。实际上,相干态是最小测不准态,而且两个正交位相振幅算符有着相同的起伏,在相空间中,相干态的起伏呈圆形,相干态在相空间平移或者转动时此圆保持不变。对于压缩态而言,它是泛指一个正交相位振幅算符的起伏比相干态相应分量的起伏小的量子态,其代价是另一个正交相位振幅算符的起伏增大,但两者的乘积等同于相干态的相应量。压缩态是一类非经典光场,呈现出非经典性质,例如反聚束效应、亚泊松分布等. 压缩态由于其在光通讯、高精度干涉测量以及微弱信号检测方面具有广泛的应用前景使得对它的研究成为量子力学领域的研究热点。

理论上,产生压缩相干态的方式主要有对真空态先平移后压缩(第一类压缩相干态)和先压缩后平移(第二类压缩相干态)两种方式,鉴于很多教材上认为这两种方式产生的压缩相干态完全等同,考虑到压缩算符与平移算符的不对易,而且各量子力学教科书上每提及这两种压缩态的区别时阐述都比较模糊,不能向广大读者提供一个清晰的结论,又考虑到密度算符包含了某一个量子态的全部信息,所以有必要推导出这两种压缩相干态的密度算符并做分析比较,以阐明二者的异同。

二、第一类压缩相干态

对比式(10)和(14)可知,由于产生压缩相干态的方式不同,压缩算符和平移算符之间不对易,得出的两类压缩相干态密度算符也有差异,并不是之前一些教科书里阐述的二者是完全等同的。

量子力学重要概念范文第4篇

因而在量子物理学中,时间的引入导致了许多重要而有趣的现象,光谱区域、共振和平衡态,量子混合,动态稳定性和不可逆性和“时间之箭”均与量子物理学中的时间衰变有关。这本书致力于为量子物理学中的渐近的时间衰变的相关概念和方法提供清晰而准确的阐述。

本书内容共6章:1.单粒子量子力学的数学和物理背景知识;2.自由波包的传播和渐近衰变:静态相位方法和van der Corput方法;3.类时间衰变和光谱特性的关系;4.一类稀疏势模型的时间衰变;5.共振和准指数衰变;6量子力学和经典力学的连接:无限自由度的量子系统。

本书作者均来自巴西圣保罗大学。本书适合于学习数学物理或量子理论的学生和相关研究人员。

量子力学重要概念范文第5篇

本世纪以来,物理学哲学研究有了长足的进步,这与现代物理学所具有的一些新特点有很大关系:一是本世纪理论物理学研究在许多方面超前于实验物理学的研究,人们无法对理论物理学的一些结构及时通过观察和实验进行检验,这就使得人们从认识论和方法论角度对物理学思想的合理性和物理学理论自身逻辑结构的自洽性的验前评价变得十分重要;二是当今各种物理学理论(如相对论和量子论)在逐步统一过程中所显现出的整体有机联系的自然图景和对在极端条件下(如宇宙爆炸初期)的物质特性的探索都促使物理学与哲学进一步融合起来,使物理学家感到了从哲学的高度去更深刻地把握物理学前沿提出的种种物理学理论和概念问题的必要性;三是当代物理学所研究的微观和宇观客体的物理性质与规律,由于不能被我们的感官所直接感知,这就必须从认识论的角度说明现代物理学理论描述的微观或宇观世界图景的合理性与真实性,从而在微观或宇观世界与我们日常生活的宏观世界之间建立起一道相互理解的桥梁。

正是现代物理学的这些特点,决定了当代物理学哲学的不同研究途径,即从不同的角度出发,对物理学进行哲学反思,达到丰富和发展哲学认识论与方法论以及加强对物理学理论和概念自身理解的目的。

物理学哲学的研究途径之一是从通过对物理学概念,尤其是新物理学概念,物理意义的阐释入手,提高到哲学高度进行分析,进而促进了哲学的发展。这一方面是由于如量子力学创始人之一的海森堡所说:“一部物理学发展的历史,不只是一本单纯的实验发现的流水帐,它同时还伴随着概念的发展,或者概念的引进。……因为正是概念的不确定性迫使物理学家着手研究哲学问题”。(〔(7)〕,第185页),另一方面则是因为物理学是研究最基本的物质运动规律的科学,所以许多最基本的物理学概念,如物质、运动、时间、空间、宇宙等也同时是哲学的基本概念,这些基本概念的变化不仅导致物理学理论的变更,也标志着哲学的重大发展。因此,对这些基本概念的理解,往往是各个哲学流派之间争论的焦点。而对这些概念的哲学争论,又总是围绕着物理学的最新进展而展开,所以从物理学概念入手进行物理学哲学的研究是中外许多哲学家和物理学家最为关注的研究途径。

科学研究从问题开始,而现代物理学的建立则是从概念问题的突破开始的。普朗克1900年为了解决黑体辐射问题提出了作用量子的概念,但他受经典物理学思维框架的约束,当时并没有深刻的理解这个概念实质性的物理意义,只把它当成了一般的工作假说加以运用。只是当爱因斯坦(1905年)运用这个概念建立起光量子假说后,它的实质性的、突破传统经典思维模式的巨大意义才得以凸现出来,并引起物理学界乃至于后来哲学界的广泛关注。玻尔、海森堡等人沿此思路建立了原子结构模型,并最终建立了量子力学理论,对量子概念物理意义的探讨又导致与传统决定论思维模式相悖的非决定论思维模式的产生,这不仅使物理学的理论基础发生了根本的变化,而且使传统的认识论观念也有了重大的转变。

当人们对迈克尔逊—莫雷实验的否定结果迷惑不解时,彭加勒、洛仑兹等人为了维护牛顿的绝对时空不得不提出“虚拟时间”的概念来解释这一奇怪的结果。爱因斯坦则从麦克斯韦电磁学理论与经典力学伽利略变换之间的矛盾中看出了问题的实质所在。他看出了牛顿所谓的绝对时间并非是有物理意义的真实时间,而彭加勒、洛仑兹等人认为是“虚拟时间”的概念却是在实际观测中可以测量到的真实时间,这不仅使迈克尔逊—莫雷实验的难题迎刃而解,而且一举建立了狭义相对论。从这里又引发了一轮重新认识时间和空间这一对古老哲学概念的热潮。

随着广义相对论的提出和现代宇宙学的建立,使人们对时间和空间的研究进入了一个新阶段。哲学家们纷纷依据物理学的最新研究成果对时间空间概念进行新的阐释,乃至于给一些古老的哲学命题,如康德的“二律背反”以新的说明。(参见〔(1)〕原苏联和我国的一些哲学工作者通过对相对论时间和空间概念与物质运动、物质分布状态关系的分析,进一步论证了恩格斯当年对时间和空间这对哲学范畴的正确定义。随着现代宇宙学的兴起和发展,人们对“宇宙”概念也有了新的认识,于是,有关宇宙有限还是无限、哲学的“宇宙”概念与现代宇宙学所说的“宇宙”之间究竟是什么关系等问题的讨论,又成了哲学界和科学界共同关心的热点。可是,当人们正沉浸在广义相对论解决宇宙演化问题所取得的成就时,却不得不沮丧地发现,所有已知的物理学定律在广义相对论时空曲面的奇点处都失效了。从理论上来说,所谓宇宙大爆炸最初的原始火球在数学上的表示就应该是一个奇点,也就是说,如果宇宙起源于奇点,我们难以用现有的任何物理学定律说明宇宙爆炸的原因。于是有的科学家戏称说,既然宇宙是上帝创造的,那么只好把这个问题留给上帝,胆敢问这个问题的人,上帝将使他下地狱。

英国著名物理学家霍金是最早开始研究奇点问题的物理学家之一,近年来也是他提出了试图用量子引力理论来绕开奇点问题的方法。他为了避免当年费因曼处理微观粒子时假设的各态历经的技术困难,并类比他用交换虚粒子来说明粒子间相互作用的方法,提出了“虚时间”的概念。虽然如他自己所说:“虚时间”是一个意义明确的数学概念,“就普遍的量子力学而言,我们可以把我们对虚时和欧几里得时空的运用,仅仅视作一个计算实时空答案的数学方法(或手段)。”(〔(8)〕,第162页)但由于量子引力理论假定宇宙没有任何边界,“宇宙将完全是独立的,不受外界任何事物的影响。它既不会被创造,也不会被消灭,它将只是存在”。(〔(8)〕,第164页)而“虚时间”的应用,则使人们绕开了宇宙起源于奇点和终止于奇点这种用奇点构成时空边界的困难,让物理学定律在任何时空区间都有效。正是有这个意义上霍金认为:“所谓的虚时实际上是实的,而我们所说的实时只是我们想象中虚构的事物”,“也许我们所说的虚时实际上是更基本的东西,而我们称作实时的只是为了帮助我们描述我们想象中的宇宙模样而创造的一种想法。”(〔(8)〕,第168页)

霍金对科学理论的看法持有工具论的立场,但对于“虚时间”的概念是否如他所说是更基本的东西,不在于理论上是否更为合用,而在于它是否能够作出可观察的预言并在实践中得到确证。在此以前,我们至少应当接受本世纪初的教训,不要把我们现有的物理学理论所描述的时空概念又看成是绝对不可改变的,更不应该在没有充分理解一些物理学家所提出的新物理概念的明确物理意义之前,甚至在没有仔细阅读霍金原著的上下文意思之前,就把他们与哲学中的后现代主义思潮拉扯在一起。在这里,重温一下爱因斯坦的一段话,可能对我们会有所启发:“为了科学,就必须反复地批判这些基本概念,以免我们会不自觉地受到它们的支配。在传统的基本概念的贯彻使用碰到难以解决的矛盾而引起了观念发展的那些情况,这就变得特别明显。”(〔(15)〕,第586页)

近期物理学哲学的发展中可能更加值得注意的动向是,随着本世纪许多新兴学科的兴起,使许多新的科学概念越来越渗入到哲学研究之中,如系统、信息、控制、混沌、有序、无序等等概念,早已不再是某些专门学科的专业术语。由于这些概念的普适性,它们已成为各门学科中广泛使用,乃至于在日常生活中经常提到的概念。它们不可避免地会逐步上升为哲学范畴。对这些新概念的产生和普及,物理学有很大的贡献,正是由于本世纪对远离平衡态热力学的研究,才加深了人们对时间方向性,对物质系统的演化,对有序、无序、混沌等等物质状态的认识,从而也极大丰富了哲学的内容。下面我们还将谈到,正是由于这些研究引起了人们思维观念的巨大变化。从而也使得传统的哲学在许多方面发生了革命性的变革。

对概念的更高层次的元理论研究已不局限于物理学哲学的范围,而是在更为广泛的科学哲学层次里展开的,不过,由于物理学相对于其他学科而言更为成熟,更为精确,物理学史的研究也比其他学科史更为细致,所以许多科学哲学家仍利用对某些物理学概念的分析作为阐述自己观点和与他人论争的依据。例如,库恩和费耶阿本德通过对“质量”这个概念在经典力学与相对论中的不同涵义,以及“电子”这个术语在不同时期指称对象意义变化的分析,得出了前后相继的科学理论或不同范式之间不可通约的观点(参见〔(14)〕、〔(22)〕),从而引起了科学哲学界的极大争议。而普特南等人则同样根据对“电子”一词涵义变化的分析,说明了他的有关自然种类名词因果—历史指称理论,并驳斥了库恩和费耶阿本德的不可通约性的观点。

目前,随着物理学和哲学的进展,沿着这个途径的物理学哲学研究正在蓬勃发展。一方面,新的物理学概念不断涌现,人们常常需要从物理学之外对这些概念进行阐释才能理解它们更深刻更普遍的意义,而这些概念的广泛应用也不断充实了哲学的内容;另一方面,哲学自身的发展也需要不断从自然科学,包括物理学概念的变革中吸取养料,提出新的问题、新的观点,拓展新的思路。

物理学哲学研究的另一个途径是通过物理学前沿哲学问题的讨论,使一些传统的哲学观点产生根本变革。这条途径在很大程度上离不开对新物理概念的分析。从这个意义上说,它与前面所讨论的途径并无根本的区别,只是这条途径更着重于对物理学前沿所涉及到的一些基本哲学问题,如认识过程中主客体之间的关系,因果性的决定论与非决定论以及与其相关的必然性与偶然性的关系,可知论与不可知论,实在论和工具论等等,进行进入地探讨。

本世纪在物理学界和科学哲学界影响最大的一场争论就是爱因斯坦和以玻尔为首的哥本哈根学派关于量子力学理论基础的争论,这场争论的和至今余波未息的争论焦点集中在对爱因斯坦等人提出的EPR悖论的理解上。这场发生在量子力学创始人之间的争论虽然是从对诸如量子力学中波函数的物理意义、海森堡不确定性原理(或译测不准关系)和玻尔互补原理的理解开始,进而讨论到量子力学是否完备的问题,但这场似乎只是纯物理学,甚至是理论物理学的科学争论,一开始就带上了浓厚的哲学色彩。

这主要是因为微观客体所表现出来的诸如波粒二象性等特征,用描绘宏观现象的日常语言实在难以准确表达其确切含义,再加上对微观客体的实验安排也呈现出与经典物理学实验许多不同的特征。如何正确理解量子力学的数学符号所蕴涵的物理意义?量子力学描述的微观客体的行为特征究竟是不受主体干扰的客观规律所致,还是宏观仪器对微观客体不可避免的干扰下主客体相互作用的结果?微观客体所表现出的随机性究竟是微观客体的本质特征,还是认识主体认识局限性的结果?进而,到对微观客体行为的理论描述究竟应当坚持决定论的思维模式,还是非决定论的思维模式,用爱因斯坦的话来说,就是我们是否相信上帝会掷骰子?物理理论的每个元素是否都必须在实在中有它的对应物,亦或物理理论只是一种对实在的本体论承诺,甚至只是我们为了解释现象或解决问题的方便而使用的一种工具或符号系统?这些问题早已不是物理学本身所能解决的,但又是物理学家们不得不解决的,人类不倦的求知欲促使他们转而寻求哲学的帮助。这就使得本世纪初许多量子力学的创始人都是哲学家,普朗克、爱因斯坦、玻尔、玻恩、海森堡、薛定锷等人在哲学界的影响并不比他们在科学界的影响小。他们的哲学观点往往是本世纪科学哲学讨论问题的出发点,由此而引发的实在论与非实在论之争仍是科学哲学界的热点问题之一。他们的哲学专著又成了许多一流科学家案头必备的读物,以便随时从中得到智慧的启迪。实际上,爱因斯坦与玻尔这场上升到哲学的争论,经过贝尔等人的努力,重又变成了用物理学实验可以进行经验检验的问题,检验的结果虽不足以最终决定谁是谁非(尽管哥本哈根学派明显占了上风),但却明确说明了物理学与哲学的密切关系,物理学哲学绝不是纯思辨的玄学。

当然,一流科学家也是哲学家的现象绝不仅限于量子力学领域。彭加勒、布里奇曼等人不仅在物理学界享有盛誉,甚至还是一些哲学流派(约定主义,操作主义)的创始人。维纳、普里高津等人虽然算不上正统的哲学家,但他们的哲学素养却为世人所公认,他们的科学成就对哲学思维方式的影响应当说有划时代的意义。从康德提出星云假说开始在当时占统治地位的形而上学世界观上打开了第一个缺口,但完成这个星云假说的拉普拉斯却把从牛顿开始的机械决定论思维推向了极端,并且产生了巨大的影响。如果说量子力学哥本哈根学派的非决定论思想是对这种机械决定论思想发起的一场重要挑战的话,那么由于量子力学只涉及到微观领域,还不足以在思想界和科学界抵消拉普拉斯的影响。19世纪德国古典哲学家们总结的辩证法思想虽然曾对19世纪科学的发展产生过影响,但由于其思辨色彩太浓也受到了许多科学家的抵制。但贝塔朗菲、维纳等人创立了系统科学,尤其是普里高津等人从热力学等实证的经验科学本身得出系统演化的思想以后,普遍联系和发展的观点对于科学家们来说,不再是外在的哲学教条,而是在科学中必须严格遵守的思维准则。更重要的是,自组织理论、非线性科学所揭示偶然性与必然性之间的新联接清楚地表明,非决定论的思维方式绝不仅限于微观领域,严格因果决定论在我们日常生活中也不是普遍适用。我们不能再用严格因果决定的观点来作为可知与不可知的界限,我们知道我们认识的某些界限(例如长期准确天气预报的不可能)也是可知,甚至是认识深化的表现。对看似无序的混沌现象的研究,却使我们能够说明许多过去简直无法理解的复杂现象,例如天气变化,中枢神经系统运动等等。物理学哲学在这方面的研究方兴未艾,尽管已有了一些成果,但还只能算是刚刚起步。物理学哲学的发展,已经引起了越来越多在物理学前沿领域工作的第一流科学家们的注意,对他们的研究工作产生了一定的启迪作用。

利用当代物理学及其相关学科的最新成果构建新的自然图景,并对此进行哲学反思是物理学哲学的又一研究途径。其实,这个研究传统由来已久,哲学既是一种理论化、系统化的世界观,对世界作一个总体的描绘和系统全面的认识就是它的首要任务。古代自然哲学凭借哲学家自己的直观和猜测来构建整体的世界自然图景,结果是五花八门,莫衷一是。自从近代科学诞生以后,哲学家们(即使是宗教哲学家)或多或少都要依居他们所知的自然科学成果来构建自己的自然图景,但他们对这幅图景的理解或解释却可以由于他们的信仰而有很大的差异,甚至根本对立,尤其是当他们面对最新的科学成果,而这些科学成果表现出了一些与传统哲学不同的思维方式时,更会使哲学家们对这些科学成果的理解上产生更大的差异,由此而引起的争论往往成为哲学界的热点。

现代物理学的发展使古老的涉及到自然图景的争论,如物质是否无限可分和宇宙是否无限等问题又增添了许多新的内容。

上世纪末物理学中关于X射线、电子和放射性现象的三大发现打破了原子不可再分的古老神话,揭开了人类对物质结构探索的新篇章。随着原子结构和基本粒子的大量发现,物质无限可分的观点似乎得到了科学实验的有力证明。但正当人们信心百倍地探索到更深层次的亚基本粒子结构——夸克层次的时候,却碰到了在实验中无法测到自由夸克的所谓“夸克禁闭”现象。那么,这个目前得到量子色动力学理论说明的现象是否意味着物质有不可再分极限的古老原子论观点又有抬头的可能呢?对这个问题的争论正在继续进行。

相对论的建立不仅赋予时间和空间概念以新的含义,而且极大地改变了人们对自然图景的看法,尤其是广义相对论对宇宙时空几何结构的描述,使从牛顿时代建立起来的宇宙图景发生了重大的变革。现代宇宙学的诞生向人们描绘了一幅宇宙演化的生动图景,一方面更充分地说明了宇宙中事物普遍联系和无限发展的辩证唯物主义观点,另一方面也使人们对宇宙时空结构是否无限的问题产生了新的疑惑。显然,过去停留在从纯哲学思辨或纯逻辑学论证(如康德的“二律背反”)上来讨论宇宙有限无限这一古老问题是远远不够了。离开了对现代宇宙学,天体物理学,乃至于非欧几何学的深刻理解来奢谈这一问题,已显得是隔靴搔痒,不得要领了。

实际上,今天我们讨论自然图景的问题还不能仅仅停留在物理学层次上,我们这个时代已经形成了关于自然进化的自组织理论和全球生态学的理论,这些综合性的学科已经大大丰富和更新了我们的自然图景。这迫使我们不仅要立足于当代物理学发展的最新成果,而且还要联系到其他学科发展的最新成果,树立把自然界看成是不断演化的有机体的认识原则,去构筑最新的完整的自然图景。这显然对哲学家提出了更高的要求。当然,即使如此,物理学仍然是各门经验自然科学的基础。任何对自然图景的描述,都不可能脱离这个基础。这一发展趋势只是为物理学哲学的这一研究途径开辟了更为广阔的发展前景。

物理学方法论的研究也是物理学哲学的一个重要内容。物理学理论的发展总是与物理学方法的更新与发展紧密相连,相辅相成的。例如,近代物理学的诞生,就得益于伽利略,牛顿等人在研究方法上的大胆创造与革新,他们把观察、实验等经验方法与数学、逻辑等理论方法有机结合起来,还创造了诸如将形象思维和逻辑思维巧妙结合的理想实验方法(伽利略),甚至发明新的数学工具——微积分(牛顿)。这些方法上的成就不仅大大推进了物理学的进展,而且具有重大的方法论意义,为以后物理学的发展起了巨大的示范作用。现代物理学的发展更清楚地表明,物理学每前进一步,都伴随着方法上的重大革新与改进;而物理学作为一门基础科学,它的每一步发展,又为人们创造新的方法、设计新的实验仪器和设备提供了新的理论基础,从而不仅为本学科的发展开辟了新的领域,创造了新的条件,而且还大大影响和促进了其他学科的发展。本世纪物理学借助相对论和量子力学的相继建立取得了重大的进展,而如何将二者更紧密结合起来创造一种统一的物理学似乎是下个世纪物理学发展的一个方向。如何为实现这个目标取得方法上的突破便成了当前物理学方法论研究中的一个热门问题。

美国哲学家蒯因曾经把知识体系比喻成为一个整体场。他说:“整个科学是一个力场,它的边界条件就是经验,在场的周围同经验的冲突引起内部的再调整。”(〔(18)〕,第694页)也就是说科学的理论陈述和与之相应的数学、逻辑和形而上学陈述一起组成了这个整体的知识场,“根据任何单一的相反经验要给哪些陈述的再评价的问题上有很大的选择自由,并无任何特殊的经验是和场内部的任何特殊陈述相联系的”。(同上)为了适应经验的变化,例如说要解释一个新的观察现象,不仅可以改变理论陈述,也可以调整其他的陈述,如改变一种数学方法,调整我们的本体论信念,乃至于修改有关的逻辑规则,“有人曾经提出甚至逻辑的排中律的修正作为简化量子力学的方法”(同上)。蒯因的上述想法并非是纯哲学的思辨。现代物理学的发展已更清楚地表现出了理论与方法之间这种联动的特征。

首先,现代物理学对物质结构和宇宙起源的探索,涉及诸如“夸克禁闭”和真空特性等问题,解决这些问题,一方面依赖于理论的进一步突破,另一方面也依赖于实验手段的改进。

其次,本世纪初,相对论与量子力学的思想一经形成,就可以在19世纪下半叶新兴的数学分支中找到相应的数学工具,如非欧几何学、张量分析、线性代数等等。在有关基本粒子的规范场论中,群论也得到了很好的应用,但随着现代物理学的进一步发展,数学手段已显得不够得力。例如,目前关于大统一理论的研究难以取得有效的突破,症结究竟是在相对论与量子力学自身难以统一,需要建立一种能取代二者的新理论,还是缺乏必要的数学处理方法就是尚待解决的问题。

第三,在量子力学的赖辛巴哈解释中,赖辛巴哈试图建立一种消除形式逻辑排中律的三值逻辑来消除用经典语言描述微观客体行为时与量子力学结论相悖的因果异常。这种新的逻辑形式揭示了用传统形式逻辑描述不确定现象时的困难。(参见〔(5)〕)沿着赖辛巴哈的思路,有人进一步发展出应用抽象代数学中“格演算”的工具,用基本联词“遇”与“接”来取代“与”和“或”用以更好地刻划量子领域中的“亦此亦彼”现象,并使这种最子逻辑可以用一种广义的命题演算工具表述。(参见〔(23)〕)虽然这一设想还没有得到广泛应用,但毕竟给我们一个启示。量子物理的理论具有高度的辩证性质,“非此即彼”的形式逻辑思维已不足以解释量子物理实验中众多的“亦此亦彼”的现象,而一种新的逻辑思维方式可能是现代物理学取得进一步突破的关键。这正如日本物理学家武谷三男所说:“量子力学的情况,如果从我们通常的观念看来,是充满着矛盾和难以克服的困难,但量子力学却是以独特的数学结构卓越而合理地把握了它,要理解这种逻辑结构,唯有依靠辩证逻辑。”(〔(3)〕,第100—101页)形式逻辑产生了古希腊时期,是人类对宏观事件进行思维时对规律的总结。但当我们深入到前人未曾接触过的微观和宇观领域时,由于物质决定意识,我们的思维方式是否也应该发生某种变化呢?现在的问题是,针对现代物理学中出现的一些难以解决的问题,如EPR悖论,我们除了继续在物理学理论上寻求突破之外,是否也可以换一种逻辑思维方式,甚至如本世纪一些杰出物理学家,如玻尔、普里高津等人所说的那样,现代物理学可以从古老的东方文化中吸取有益的营养,来帮助寻求现代物理学的突破口呢?

以上我们虽然分别评述了物理学哲学研究的不同途径,但这并不意味着物理学哲学研究途径之间的差别就是泾渭分明的,恰恰相反,正如我们在上面叙述中已经表露出来的那样,这些研究途径之间是紧密相连、相辅相成的,其区别只在于我们研究的问题倾重点不同罢了。任何最新自然图景的构建都要建立在自然科学前沿的研究成果之上,对自然科学前沿问题的正确理解就是构建新自然图景的关键所在。但任何新理论成就的取得又都离不开概念的更新和对这些概念的澄清。上述研究当然也离不开对物理学方法的反思和创造。总之,当代物理学哲学是对物理学的历史与现状进行全面反思的一门哲学分支学科,它的研究既会对物理学的进一步发展有一定的启发作用,也由于涉及到哲学的本体论、认识论和方法论的各个方面,又会对丰富和发展当代哲学做出应有的贡献。

近年来,我国一些物理学家和自然辩证法工作者运用辩证唯物主义思想,从以上各条途径上全面展开了研究,尤其是对物理学前沿科学成果所产生的哲学问题的辩论,例如,涉及到大爆炸宇宙学的有关宇宙有限无限问题,涉及到“夸克禁闭”现象的物质是否无限可分问题,对有关EPR悖论的阿斯佩克特实验结果的理解问题等等,都引起了哲学界和部分物理学家的广泛关注。我们还注意到,国内一些哲学教科书已经根据上述问题的讨论充实和更新了有关的教学内容,这是值得欣慰的。但我们也应当看到,我国目前物理学哲学研究的水平与国外同行相比还有一定差距。其主要表现就是对当代物理学基本思想的理解还不深,还难以提出独到的令物理学界和哲学界都信服的观点,而当年赖辛巴哈、波普尔、邦格等哲学家参与有关量子力学基础问题的争论时,都曾提出过令当时还健在的量子力学创始人和众多诺贝尔物理学奖金得主都不得不重视的观点。(参见〔(3)〕、〔(4)〕、〔(5)〕)这主要是因为我国第一流的物理学家关心物理学哲学的人数还太少,而受过专门物理学训练的哲学工作者(包括自然辩证法工作者)也不多,二者之间交流的机会就更少。我们热情地期待,会有更多的哲学和物理学工作者参加到物理学哲学研究的行列中来。

主要参考文献

(1)Lawrence Sklar: Philosophy of physics, University of Michigan Press, 1992.

(2)J. Earman: The History and Philosophy of Cosmology, Princeton Univesity Press, 1993.

(3)K.Popper: Quantum Theory and the Schism in Physics, Rowman and Littlefield Prb. 1982.

(4)Mario Bnngc: Treatise on Basic Philosophy Vo1.7. Philosophy of science and Technology.D. Reidel Pub. Co. 1993.

(5)H.赖辛巴哈:《量子力学的哲学基础》,商务印书馆,1966年。

(6)N.玻尔:《原子物理学和人类知识》,商务印书馆,1978年。

(7)W.海森堡:《严密自然科学基础近年来的变化》,商务印书馆,1973年。

(8)S.霍金:《时间史之谜》,上海人民出版社,1991年。

(9)S.霍金:《时间简史续编》,湖南科学技术出版社,1995年。

(10)S.霍金:《霍金讲演录》,湖南科学技术出版社,1995年。

(11)戴维斯、布朗合编:《原子中的幽灵》,湖南科学技术出版社,1995年。

(12)彭罗斯:《皇帝新脑》,湖南科学技术出版社,1995年。

(13)武谷三男:《武谷三男物理学方法论论文集》,商务印书馆,1975年。

(14)T.库恩:《科学革命的结构》,上海科学技术出版社,1982年。

(15)《爱因斯坦文集》第1卷,商务印书馆,1976年。

(16)普特南:《理性、真理与历史》,辽宁教育出版社,1988年。

(17)伊·普里戈金、伊·斯唐热:《从混沌到有序》,上海译文出版社,1987年。

(18)洪谦主编:《逻辑经验主义》,商务印书馆,1984年。

(19)吴国盛主编:《自然哲学》,中国社会科学出版社,1995年。

(20)殷正坤等主编:《智慧的撞击》,湖北教育出版社,1992年。

(21)殷正坤、邱仁宗:《科学哲学引论》,华中理工大学出版社,1996年。