首页 > 文章中心 > 粉末冶金的特点

粉末冶金的特点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇粉末冶金的特点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

粉末冶金的特点

粉末冶金的特点范文第1篇

关键词:粉末冶金;汽车零件;金属粉末;高性能

粉末冶金材料是指用若干种金属粉末或是金属粉末与非金属粉末作原料, 通过按比例配料、压制成形、烧结等工艺过程而制成的材料。这种生产工艺过程也就是粉末冶金法, 它属于一种不同于熔炼和铸造的方法。由于其生产工艺过程与陶瓷制品工艺极为相似, 所以粉末冶金法又被称为金属陶瓷法。粉末冶金法不仅是制造某些具有特殊性能材料的方法, 同时也是一种无切屑或少切屑的加工方法。它具有生产效率高、材料利用率高、节省机床和生产占地面积等特点。但其也存在一定的缺陷,如金属粉末和模具费用高, 制品大小和形状受到一定限制, 制品的韧性也较差。粉末冶金法常被用于制作硬质合金材料、结构材料、减磨材料、难熔金属材料、摩擦材料、过滤材料、无偏析高速工具钢、金属陶瓷、耐热材料、磁性材料等。

一、粉末冶金技术的含义及其特点

粉末冶金技术附属于材料制备和成形的加工技术,而作为粉末冶金的雏形就是块炼铁技术,块炼铁技术也是人类最初制取铁器的唯一手段,其对人类社会进步作出了巨大贡献。

1、 粉末冶金技术的含义

粉末冶金的方法其实诞生已久。人类早期通过机械粉碎法来制取金、银、铜和青铜的粉末,用来当作陶器等的装饰涂料。早在200年前,一些欧洲国家,如俄、英等国就曾大规模的制取海绵铂粒,并经过热压、锻和模压、烧结等加工工艺来制造钱币和一些贵重器物。1890 年,美国的库利吉发明用粉末冶金方法制造灯泡用钨丝,从而奠定了现代粉末冶金技术的基础。直到1910年左右,人们已经开始用粉末冶金法来大量制造了钨钼合金制品、青铜含油轴承、硬质合金、集电刷、多孔过滤器等,并逐步形成了一整套粉末冶金相关技术。上世纪30年代,旋涡研磨铁粉和碳还原铁粉技术问世后,从而为粉末冶金法制造铁基机械零件较快的发展机遇。从第二次世界大战后,粉末冶金技术得到了较快的发展,新型的生产工艺和技术装备、新的材料和制品不断出现,开拓出一些能制造特殊材料的领域,成为现代工业中的重要组成部分。

2、 粉末冶金技术的主要作用

由于粉末冶金技术的具有特殊优点,使其已成为解决新材料问题的有效途径,而且在新材料的发展中历程中发挥着举足轻重的作用。

粉末冶金技术由于其可以在最大限度地来减少合金成分发生偏聚,消除粗大且不均匀的铸造组织。在制备高性能稀土永磁材料、稀土发光材料、稀土储氢材料、高温超导材料、稀土催化剂、新型金属材料上具有独特的作用。同时还可以制备非晶、纳米晶、准晶、微晶以及超饱和固溶体等一系列高性能非平衡材料,这些材料由于具有优异的电学、光学、磁学和力学性能。因此可以较容易地实现多种功能类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

二、粉末冶金技术的发展趋势

随着汽车和飞机零件以及切削和成形工具发展的需要,粉末冶金制造零部件的强度和质量都得到了较好的改善和提高。汽车制造业作为粉末冶金零件的最大用户,1996 年汽车行业占有美国粉末治金零件的市场份额的69%,成为美国粉末冶金零件的最大市场。发展粉末冶金需要制取新技术、新工艺及其过程理论。

1 、向全致密化发展

粉末冶金的重点是超细粉末和纳米粉末的相关制备技术,机械合金化技术,快速冷凝制备非晶、微晶和准晶粉末制备技术,粉末粒度、结构、形貌、成分控制技术,自蔓延高温合成技术。粉末冶金技术发展的总趋势是向超细、超纯、粉末特性可控方向发展,从而建立以“净近形成形”技术为中心的各种新型固结技术及其过程模过程理论,如粉末注射成形、挤压成形、喷射成形、温压成形、粉末锻造等。建立以“全致密化”为主要目标的新型固结技术及其过程模拟技术。

2 、向高性能化、集成化和低成本等方向发展

粉末冶金制造零部件相关的新的成形技术层出不穷,如:粉末注射成形、温压成形、流动温压成形、喷射成形、高速压制成形等新技术不断涌现。目前, 粉末冶金技术正向着高致密化、高性能化、集成化和低成本等方向发展。有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展;制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。

3 、粉末冶金产业化发展

由于相邻学科和相关技术的相互渗透和结合.更赋予了粉末冶金新的发展活力。粉末冶金新工艺层出不穷。粉末冶金产业化是指这些技术已比较成熟。甚至在一些国家已有生产规模,但主流还处于研究成果向产业化转化的过程之中。其工艺、设备、市场等已为产业化准备了条件,可以产业化,取得社会效益和经济效益。主要是指该技术实现产业化、集群化、模块化发展。其主要应用领域有汽车用粉末冶金零部件,汽车制造业仍是粉末冶金(PM)发展的牵引力;粉末注射成(PowderInjection Molding(PIM))温压成形技术(Warm Compaction)在众多为提高PM 件密度的生产方法中。温压成形技术被认为是最为经济的一种新工艺。本文将重点介绍以下产业化技术:

① 温压技术

温压技术在上世纪90 年代被誉为粉末冶金技术上重大突破,并于1990年取得了第一项采用一次压制烧结工艺制备高密度铁基(P / M)零件的美国专利。该技术可以使烧结钢中的孔隙度降低到6 %左右,而传统技术的孔隙度为10%以上,产品的密度能达到7.3g/cm3或以上,因此较大程度的拓宽了高密度、高强度烧结钢零件在工业上广泛应用的可能性。

② 模壁

模壁和温压是两个平行的提高铁基结构零件密度的方法。近年来,发展最迅速的是干模壁技术,即采用静电的方法,从而将干剂粉末吸附到模壁上进行,从而很好的避免了湿模壁在制备过程中压坯表面易于粘粉的缺点。

③注射成形

金属注射成形(MIM)是一种将塑料注射成形与粉末冶金技术结合而成的近净成形技术,此技术也是国内外公认的21 世纪粉末冶金的主流技术,被称为“第五代加工技术”。而且该技术也最适于用来大批量生产一些三维复杂形状的零件,同时还可以实现自动化连续作业,从而大大提高生产效率。目前,在一些发达国家,MIM技术已经成为一项最具竞争力的金属成形技术,而且开始大量用于不锈钢粉末冶金生产。

三、粉末冶金机械零件的制造现状与挑战

我国粉末冶金技术起步较晚,自1958年诞生以来,一直是处在蹒跚学步的状态中,而且一直不被人们重视,被当做是一个没有前景的小行业来对待。然而从世界粉末冶金行业发展状况来看,粉末冶金行业却是一个最具市场活力,发展速度极快,同时应用范围也是最广的冶金技术,尤其是日本在粉末冶金技术方面发展飞快,每年生产烧结含油轴承十几亿只。直到上世纪80年年代初,在我国体制改革的大潮中,粉末冶金零件行业正式划归当时的“基础件工业局”进行管理,并结束了粉末冶金零件行业自身自灭的状态,从而得到相应的发展机遇。我国自上世纪90年代至今约20多年间,粉末冶金零件得到迅猛发展,同时也经受住了金融危机的不利影响。

表1是我国自2007-2011年间粉末冶金分会53家会员企业的数据进行统计的结果,虽然我国粉末冶金行业目前显示出盎然生机,但也面临着各方面的挑战。现笔者将自己的针对其中的一些问题以及看法和相应的意见提供给大家参考:

四、粉末冶金机械零件制造技术在汽车行业的应用现状与前景

近年来,由于人们生活观念的改变,同时人们的环保意识也不断提高,因而轻量化的汽车也越来越受人们的亲睐,从而汽车工业也开始大量使用轻质合金材料,如铝合金、镁合金来生产汽车零部件。也正是由于粉末冶金能够很好的避免成分偏析,又可以满足具有各种特定性能的零部件一次性成型的要求。

目前粉末冶金汽车零件主要有两个市场,一个为汽车生产商市场,另一个为汽车维修服务点,即维修配件市场。而汽车生产商市场则是粉末冶金零件的主要市场,通常情况下,汽车生产商会与粉末冶金零件制造企业进行定向合作,从而导致其他零件制造企业难以插足获利。而维修配件市场相对来说则要开放的多,而且需求量也较大,但大多都是存在某些质量问题的货物。从表2可知,我国在汽车制造行业中对粉末冶金技术制造的零件的使用量只有日本的2/3左右,但我国的粉末冶金制造的零件的总量却要比日本的多,可见粉末冶金汽车零件的市场潜力是巨大的。

我国目前汽车行业正处于蓬勃发展期,因此也给我国粉末冶金零件制造企业带来了难得市场机遇。同时根据美国一家信息分析中心预测,2020年我国汽车销量将达到2000万辆,届时中国将超过美国成为全球汽车销量第一的国家。而我国粉末冶金汽车零件的主要制造企业有三十多家,且其主要生产的零部件为汽车所使用的一些轴承或者是小配件,总体呈现出还是处于相对来说较为低端的位置,而关于发动机或调速箱等关键部位的零部件则基本上是整体通过国外进口,同时随着全球经济一体化趋势的不断加速,我国粉末冶金企业毕竟面对国际化市场,这对我们来说既是机遇也是挑战。因此就需要我国粉末冶金企业把握机遇,迎难而上,主动积极的溶于国际化市场当中。

参考文献

[1]韩凤麟.粉末冶金零件与汽车工业[J].新材料产业,2007(11):31-38.

[2]杨伏良,甘卫平,陈招科.粉末粒度对高硅铝合金材料组织及性能的影响[J].材料科学与工艺,2006,14(3):268-271.

[3]印红羽,张华诚.粉末冶金模具设计手册[M].北京:机械工业出版社,2002.

[4]李祖德,李松林,赵慕岳.20世纪中、后期的粉末冶金新技术和新材料(1)――新工艺开发的回顾[J].粉末冶金材料科学与工程,2006,11(5):315-322.

[5]刘文海.铝合金新材料的发展动向[J].机械工业杂志,2007,291:160-162.

[6]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

粉末冶金的特点范文第2篇

[关键词]Al;Zn;Fe-18Cu基粉末冶金摩擦材料;组织和性能;影响

中图分类号:TB333 文献标识码:A 文章编号:1009-914X(2016)07-0337-01

20世界40年代,我国对铁基粉末冶金摩擦材料就开始了研究,在50年代,将其应用在了航天领域。铁基材料不仅耐高温,而且承载能力强,价格低廉。但是,铁基粉末冶金摩擦材料与钢铁等金属材料混合使用时,容易发生粘结【1】。为降低铁的塑性,使其强度得到进一步增强,因此添加了其他元素来达到这一目的。在上世纪60年代,我国开始研制铁基粉末冶金制动材料,并且取得了一定成就。随着社会经济和交通运输业的发展,摩擦材料的应用更加广泛,对制动性能的要求更加严格。鉴于此,本文结合新工艺、新技术对Fe-18Cu基粉末冶金摩擦材料展开进一步的研究和探讨。

一.粉末冶金摩擦材料新技术

实践表明,当前广泛使用的钟罩炉加压烧结法存在能耗大、原材料利用率低、成本较大等缺点。因此,新工艺、新技术的研究是为了在保证产品性能的前提下,保证生产成本最低,获得较好的经济效益和社会效益。

(一)无压烧结工艺

研究资料表明,传统的烧结工艺最突出的问题就是资源浪费【2】。因此,相对于传统的烧结工艺,无压烧结工艺不需要施加压力就能够实现材料的烧结,因此,这一项新型的工艺得到了广泛应用。现实中,无压烧结工艺主要有轧制法、电镀法以及离子喷涂法等。该项工艺制备的材料具有摩擦系数小、孔隙率较高等特点。

(二)粉末轧制工艺

此种工艺指的是压实被引入旋转轧辊之间的粉末,使之形成粘聚状态的半成品,然后对其进行活化烧结的一种工艺。通过实践表明,粉末轧制工艺所制备的材料,具有较高的使用性能。

(三)表面处理技术

表面处理技术主要包含两个方面,一是通过对材料表面进行渗氮、渗硼及硼铬共渗来达到摩擦材料烧结的目的;另一方面,通过处理材料表面,使其形成氧化膜。而提高产品的质量和改善多层烧结,是通过骨架与粉末层的粘结来实现的【3】。

二.Al、Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响

(一).试验方案

为了进一步了解Al、Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响,本文进行了试验分析。本实验用纯度大于99%的Al和Zn及纯度大于99.5%的Fe-18Cu各200目。并结合试验需要,准备了最先进的试验机、混料机、显微镜等设备。本实验中,试样制备的工艺为:原料配料、混合压制加压烧结。为了保障试验的可靠性,对各项工艺参数进行了严格的设置,对各项材料性能也进行了专业的测试。

(二). Al对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响

众所周知,Cu不仅导热性能好,而且抗氧化能力强,因此和铁质对偶件的相溶性比较小,因此铜基摩擦材料耐磨且结合平稳。但是,在高负荷条件下,铜基粉末冶金摩擦材料摩擦系数不稳定。因此,结合铁基与铜基材料的优点,研制新型的摩擦材料有非常重要的意义。

通过试验表明:

(1)Al 元素添加量对Fe-18Cu基粉末冶金摩擦材料组织和性能有一定的影响。当添加量低于3%时,材料组织有 AlCu4新相生成,其基体组织也被细化,而且晶粒分布非常均匀。当添加量不断增加时,材料的力学性能也不断提高。试验表明,当Al 元素添加量为 2%时,基体力学性能最好,硬度达到95.5HB,抗压强度达到368Mpa。

(2)试验表明,当Al含量增加时,材料摩擦系数先呈上升趋势,而后又缓慢下降;当Al含量等于2%时,材料表面形成致密的薄氧化膜;当Al含量等于3%时,材料表面生成较厚氧化膜,而且容易剥落;此外,试验表明材料的磨损主要为犁削磨损。

(3)Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响

Zn具有强化基体的功能,通过试验表明,Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响如下:

(1)当添加0%-2%的Zn元素时,材料在显微镜下显示有FeZn3新相生成,添加Zn的材料组织孔隙率下降,晶粒细化;当Zn含量增加时,材料的抗压强度先呈上升趋势,后逐渐下降;当Zn含量为1%时,该材料硬度和抗压强度最佳,分别达到103HB和383MPa。

(2)当加大Zn元素的添加量时,材料的摩擦系数先下降后上升。在转速500r/min、Zn含量为1%时,摩擦系数为0.268;当转速1500r/min、Zn含量为1.5%时,摩擦系数为0.260;在转速为中速时,加入Zn元素的材料的磨损形式为氧化磨损;当转速为高速时,材料磨损形式主要是疲劳磨损以及磨粒磨损。

三. 结束语

铁基粉末冶金摩擦材料和铁质对偶件有较大的相溶性,所以容易在摩擦时拉伤对偶表面,甚至产生较深的沟槽,导致制动性能降低或不稳定。而铜基摩擦材料,不仅抗氧化性能较好,而且耐磨性好,但是铜基摩擦材料的制备成本较高。因此,要满足使用性能以及考虑经济成本,研发价格经济、性能又好的摩擦材料是当前市场备受关注的问题。本文主要结合新工艺和新技术,对铁铜基粉末冶金摩擦材料进行试验和研究,并且从物理性能以及力学性能等多方面来阐述研究结果,从而揭示Fe-18Cu基粉末冶金摩擦材料的组织结构和性能,为Fe-18Cu基粉末冶金摩擦材料的进一步应用与开发提供科学的资料【4】。

参考文献:

[1] 杨明.Al、Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响[D].南京航空航天大学,2011.09(14):117-118.

[2] 黄建龙,王建吉,党兴武,陈生圣,谢军太.铝含量对铜基粉末冶金材料性能的影响[J].与密封,2013,01(31):156-160.

粉末冶金的特点范文第3篇

【关键词】激光焊接技术,粉末冶金材料,应用

1前言

由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,钎焊和凸焊一直是粉末冶金材料连接最常用的方法,但由于结合强度低,热影响区宽,特别不能适合高温及强度要求高的场合,使粉末冶金材料的应用受到限制。近年来,我国从事这方面的研究工作的单位逐渐增多,改变了传统的烧结和钎焊工艺,使连接部位的强度和高温强度大大提高。

2激光焊接工艺特点

2.1影响焊接质量的主要因素

2.1.1材料成份合金元素的含量、种类对焊缝强度、韧性、硬度等力学性能影响很大。烧结低碳钢、烧结Ni和Cu合金、Co合金在一定条件下,均能成功地进行激光焊接。烧结中碳钢采取焊前预热和焊后缓冷的措施也可保证焊接质量,降低裂纹敏感性,图1表示了中碳钢预热和不预热条件下焊缝区的显微硬度分布,预热时硬度降低,接头韧性增加,因为组织由贝氏体和少量的珠光体代替了针状马氏体。

2.1.2烧结条件在氢气、分解氨和真空中烧结的材料均能成功的进行激光焊接,在干净的还原性气氛中烧结的材料焊后出现的气孔、孔洞、夹杂和氧化物较小;此外,合适的烧结温度、保温时间、压力及温度-压力曲线也是焊接成功的重要保证。

2.1.3孔隙孔隙的数量、形态和分布影响材料的物理性能如热传导率、热膨胀率和淬硬性等,这些物理性能直接影响材料可焊性[1],使焊接较同成份的冶铸材料相比难度加大。对于激光焊接零件来讲,大量的孔隙会使焊接强度降低甚至焊接过程无法进行。

2.1.4密度致密而力学性能好的试样较疏松而力学性能差的试样在相同的条件下有更好的焊接性。低于一定的密度(

2.1.5焊前准备工作由于激光光斑很小,所以对间隙配合精度要求较高,对接时一般要求间隙在0.1mm以下,此外为减少气孔等焊接缺陷,焊接部位必须去除氧化皮、油污并进行干燥。

2.2主要焊接工艺参数影响

焊接质量的主要工艺参数有:激光功率、焊接速度、透镜焦距、聚焦位置、保护气体等。激光功率和焊接速度是影响焊接质量的最主要参数,焊接厚度取决于激光功率,约为功率(kW)的0.7次方,通常功率增大,焊接深度增加;速度增加,熔深变浅,焊缝和热影响区变窄,生产率增高。过大的焊接速度与焊接功率将增大气孔和孔洞倾向。透镜焦距由输出激光的光斑直径决定,两者之间存在一最佳匹配值。一般说来,所须焊接的深度越深,透镜焦距越长,短焦距透镜对聚焦的要求较高,而且粉末冶金材料焊接时飞溅较大,透镜污染严重;太长焦距的透镜由于衍射使焦点变大,焦点处的能量密度不能达到最大值。国内一般采用透镜聚焦光学系统,该系统只能用于激光功率较小的场合,较高的激光功率将引起透镜焦点漂移,使焊缝的成形和质量较差。国外较高功率场合大都采用反射镜聚焦光学系统,由于冷却条件好,热稳定性好,焊缝成形均匀美观,焊接质量可靠。

3焊接质量检测及分析

3.1焊接质量检测

3.1.1外观检测观察焊缝表面是否有孔洞、裂纹、咬边、未焊透等明显缺陷。

3.1.2无损检测无损检测的方法有:渗透探伤法;磁粉探伤法;射线探伤法;超声波探伤法等,应根据需要进行选择。

3.1.3力学性能检测根据零件的工作状态分别进行拉伸、弯曲、硬度、冲击等试验,如果断裂在焊缝,说明焊接强度低于母材。

3.1.4微观检测采取金相分析焊缝的成形、微观组织、焊缝缺陷,测试焊接区的显微硬度分布,用扫描电镜分析焊接区成份的变化等。

3.1.5特殊性能检测对工作于特殊工作环境下的零件,还需进行耐腐蚀、疲劳等特殊性能测试。以上5种方法中,前两种主要用于焊接生产线上,后三种主要用于试验研究及抽样调查中。

3.2缺陷分析

3.2.1气孔和孔洞与冶铸材料相比,粉末冶金材料的激光焊接中。最明显的缺陷是气孔和孔洞。气孔和孔洞不仅影响外观质量,更严重地削弱了焊缝有效承载面积,产生应力集中,降低了接头强度。常见的气孔形状有线形、圆形、蜂窝形、条虫形等。烧结材料内部的孔隙吸附了大量的气体,在快速焊接中,来不及逸出而留在焊缝中。

3.2.2裂纹主要有冷裂纹、热裂纹,金刚石工具中还易产生层间裂纹。冷裂纹主要产生于含碳量较高和合金成份较多的材料中,这类材料焊后产生脆性马氏体,产生高的内应力从而引起裂纹。解决这类裂纹的办法是焊前预热、焊后缓冷,或者采用小规范的焊接参数。

3.2.3强度过低成份、烧结条件和后热处理都能影响接头强度。除去材料因素外,过多的气孔和孔洞是造成接头强度低的重要原因,其次材料的密度太低也使焊缝疏松,强度较低。

粉末冶金的特点范文第4篇

关键词:汽车;制动;稳定性;热衰退

中图分类号:F407文献标识码: A

1概述

制动性能是车辆最为重要的主动安全性能,其稳定性与行车安全密切相关。摩擦材料对温度的敏感性是制动稳定性的主要影响因素之一。在制动过程中,整车的运动动能通过摩擦材料与制动器间的摩擦转化为其他形式的能量,其中,约90%转化为热能,表现为制动器温度的升高。随着温度的上升,摩擦材料的表面膜、机体表层发生复杂的物理和化学变化,从而导致摩擦系数发生明显变化。

摩擦材料的摩擦系数在较低的温度区间随着温度的升高而增加;但在温度持续升高时,摩擦材料发生热衰退,摩擦系数随着温度的升高而降低;而当温度降低到低温区间后,摩擦系数又会逐渐恢复。摩擦材料的这一特性使制动器的制动性能不同温度下发生明显变化。

不同的摩擦材料对温度的敏感特性不同。目前,汽车制动器所使用的摩擦材料主要有无石棉有机摩擦材料、粉末冶金摩擦材料、金属陶瓷摩擦材料、新型混杂纤维摩擦材料、新型陶瓷摩擦材料等。其中,粉末冶金摩擦材料和金属陶瓷摩擦材料应用较为广泛。

粉末冶金摩擦材料是以金属及其合金为基体,添加摩擦组元和组元,用粉末冶金技术烧结形成的复合材料,具有较好的高温强度、耐热性、热稳定性和经济性;金属陶瓷摩擦材料是由金属基体、组元和陶瓷组分组成的复合材料,也是采用粉末冶金工艺制备而成,其具有较高的热容量、良好的热导性、耐高温、耐磨、摩擦系数高、寿命长等特点,在高温下仍能保持优良的性能。

本文选取了4种不同类型的汽车制动器,并通过制动器台架试验,对制动器制动性能随温度的变化规律开展研究。

2试验设备及方法

2.1试验设备

制动器惯性试验台能够利用制动器台架试验再现实车制动过程,并模拟实车制动的冷却条件,广泛应用于制动器总成性能测试。试验台由计算机、液压系统、控制系统、主轴及主轴驱动系统、惯量系统等构成。计算机控制试验台的启停并记录试验数据;液压系统为受试件提供制动压力;控制系统接收计算机控制指令并实施主轴驱动和制动控制;主轴由直流电机驱动,用于获得制动初速度;惯量系统由不同惯量的等比飞轮构成,可以模拟不同类型车辆的行驶惯量。

2.2安装方法

按照文献4规定,为被测样品的制动蹄片、制动衬片安装测温热电偶,并将被测样品安装在制动器惯性试验台上。

2.3试验方法

以65km/h的速度,3.5m/S2的减速度进行200次磨合制动(初始制动温度不超过120℃),然后进行第一次衰退试验:

初次制动初温:78~80℃;

制动初速度:最高设计车速不超过140km/h时,为80km/h;最高设计车速超过140km/h时,为100km/h;

制动压力:第1次制动减速度为4.41 m/S2,后续制动与第一次制动的压力相同;

制动次数:10次;

制动周期:45s;

冷却条件:关闭送风系统

完成上述试验后,以65km/h的速度,3.5 m/S2的减速度进行20次磨合,然后按照第一次衰退试验的试验条件重复试验,记为第二次衰退试验。

3试验结果分析

记录试验过程中初始制动温度、终止制动温度、平均制动力矩、制动压力、制动减速度等试验参数,并计算单位管路压力下的平均制动力矩(下文记为单位平均制动力矩)。衰退试验中,制动力矩下降和升高的程度,用衰退率来表示

3.1样品1,鼓式制动器,采用粉末冶金摩擦材料

两次衰退试验中,随着温度的升高,制动减速度与单位平均制动力矩均呈下降趋势。低于100℃时,制动器具有最佳制动性能,而10次连续制动后,温度上升至近250℃,制动效能的衰退率也高达近40% 。

3.2样品2,鼓式制动器,采用金属陶瓷摩擦材料:

第一次衰退试验中,随着温度的升高,制动减速度与单位平均制动力矩均呈上升趋势,在近300℃的高温下,制动器获得最佳制动性能;而在第二次衰退试验中,最佳制动效能对应的温度区间为170℃~230℃,温度继续升高时,制动减速度和单位平均制动力矩虽然有所降低,但其稳定性较好。可见,采用了金属陶瓷摩擦材料的制动器在较高的温度下仍能获得较高制动效能。

3.3 样品3,盘式制动器,采用金属陶瓷摩擦材料

两次衰退试验中,随着温度的升高,制动减速度和单位平均制动力矩有所降低,但在200℃~400℃的温度下,制动器能够获得较为稳定的制动效能。

3.4 样品4,盘式制动器,采用粉末冶金摩擦材料200℃时,制动器能够获得最佳制动性能,但在第二次衰退试验中,由于持续制动,温度急剧升高至近500℃,制动效能也有较为明显的衰退,可见其制动效能的稳定性较差。

(上边1、2、3、4 4个样品的实验数据或者曲线对比图呢?做出来的制动效能的数据呢,这四组数据时最关键的啊)

4总结

综合本文上述分析,可得以下结论:

制动器制动性能的热稳定性与摩擦材料密切相关;采用金属陶瓷摩擦材料的制动器较采用粉末冶金摩擦材料制动器具有更好的热稳定性;

在200℃~400℃的高温区间,采用陶瓷摩擦材料的制动器仍具有较高的制动效能或是稳定的制动性能,而采用粉末冶金摩擦材料的制动器则会出现明显的热衰退现象;我国汽车行业推荐标准QC/T 564-2008规定进行制动器制动效能测试时,参考试验的制动初温均为(80±2)℃,但新型制动材料往往在较高的温度区间上具有更为稳定的性能,因此,对应用了新型摩擦材料的制动器,上述制动初始温度的规定有待商榷。

随着新型摩擦材料研究的出现,相关标准的部分条款已不再广泛使用,只有不断细化、更新标准技术内容,开展标准研讨才能充分发挥其指导作用,推动制动技术向前发展。

参考文献

[1]马卫平,野南海. 汽车用摩擦材料国外研究进展[J]. 企业技术开发,2007,(05):31

[2]马东辉,张永振,陈跃,官宝. 制动摩擦材料高速摩擦学性能的主要影响因素[J]. 与密封,2003,(06):44-47.

粉末冶金的特点范文第5篇

1高速压制成形技术最新研究进展

1.1成形装备

成形设备是实现粉末冶金高速压制成形的硬件基础,是发挥高速压制成形技术优势的前提条件,因此成形设备的研究进展也是高速压制技术研究人员关注的重点。为使冲击锤头获得高速度和高能量脉冲,目前可以采用的技术包括压缩空气、燃烧汽油-空气混合气、爆炸、电容器放电、叠并磁场、磁力驱动和机械弹簧等[2]。目前,基于液压驱动、重力势能驱动、机械弹簧蓄能驱动的高速压制成形设备进展较快。Hydropulsor公司以专利技术液压动力单位控制油路系统实现锤头的高速下降和提升,可实现高速的冲击压制和在极短时间间隔内多次高速压制,该公司已经成功开发出第四代HVC压机,可供应2 000t、900t、350t、100t等不同规格的机型,并销往多个国家和地区,对高速压制成形技术的研究起到积极的推动作用。但该类HVC成形设备成本较高、售价高昂,且压制速度通常在10m/s以下,无加热等辅助装置,在一定程度上限制了它的普及。重力势能驱动的HVC成形装置具有成本低廉,压制速度调节范围大等优势引起了研究人员的高度重视,华南理工大学肖志瑜教授等人[3]自行设计制造了一种重锤式温粉末高速压制成形试验装置。该装置采用独特的冲击结构,直接利用重力势能获得压制能量,通过调节重锤下落高度获得不同的冲击速度,最大理论速度可达18.78m/s,与Ku-mar[4]等人采用的重锤式试验装置冲击速度只能达到10m/s相比,具有明显的优势。该装置通过加热圈直接对模具进行加热,替代了热油加热,简化了加热元件的安装,加热温度可以精确控制,通过测温仪可以读出模具温度。同时,拿掉加热圈,就可以进行传统的高速压制,从而进行高速压制和温高速压制的对比实验,为研究提供了极大的方便。华南理工大学邵明教授等人[5],自行设计和制造了一种基于机械弹簧蓄能的粉末冶金高速压制压力机,并用于基础探索研究。该设备可以将气动、液压或其他动力机构能量储蓄在机械弹簧中,通过一个锤柄锁紧释放机构将压缩弹簧的机械势能瞬间释放,驱动冲击锤头达到10m/s以上的高速度,使压制瞬间的重锤冲击速度达到HVC技术的要求,并将冲击波通过上模冲传递给金属粉末颗粒,使其在极短时间内致密成形。

1.2模具结构优化

模具的稳定性和寿命影响着高速压制技术的工业化应用,而改善高速压制模具寿命的手段不外乎于合理选材和优化模具结构设计。在高速压制过程中,上模冲要承受剧烈的冲击,因此宜选用韧性好的材料;而模具结构优化方面,一般认为冲锤与模冲直径相等且均为等截面杆时,对模冲寿命和撞击效率来说 都 是 最 佳 选 择,但 这 势 必 会 缩 小 高 速 压 制(HVC)技术的应用范围,因此需要对模具进行进一步的结构优化,目前利用高速压制技术除已成功制备了圆柱体、环形、棒体和凸轮等单层零件外,还可以成功制备轴承盖、牙齿冒等复杂多级产品。如Hinzmann[6]等人即成功设计出可用于多级零部件高速压制成形的模具,他指出模具设计时采用单个上模冲和每级一个下模冲的结构更有利于模具寿命和冲击能量的传递;Le[7]等人用高速压制的方法将WC-Fe等材质成功压制成多级试样,并对界面的凝聚力和界面几何尺寸进行了分析;法国机械工程技术中心(CETIM)采用HVC技术成功制备了多阶零件和有内齿或沿高度方向有外齿的复杂形状部件[8];Eriksson等人[9]采用HVC和弹性模相结合的方法,使冲击能量通过弹性模以准等静压方式转移至零件的不同部位进行压制,成功制备了形状复杂的3D齿帽零件。

1.3成形过程数值模拟

数值模拟能大幅度降低设计成本、缩短设计周期,因此对高速压制致密化过程的数值模拟也是近几年的研究热点。对于粉末压制成形的数值模拟,目前主要是基于金属塑性力学和广义塑性力学两种方法,但在低密度情况下,其假设条件与实际情况有出入,因此在实际应用中,粉末压制模型是以完全致密化材料的基本模型为基础,加上给定的一系列引起塑性流动的条件而建立的。Haggblad[10,11]等利用Hopkinson实验装置对硅胶和钛粉进行高速压制,根据所得数据分别建立了相应的数学模型,用有限元法模拟了硅胶模中压制钛粉的情况得出密度分布和最佳尺寸设计,其结果与实验结果一致。中南大学的郑洲顺教授[12]等对高速压制成形过程中应力波的传播特征和粉末流动过程进行了数学建模和数值模拟,其研究结果表明,高速压制过程中,应力波的传播会使粉末应力突跃到峰值,每层的应力峰值随时间以指数衰减,从上层到下层应力峰值呈指数下降;应力波作用后,铁粉压坯垂直方向的线密度值从上层到底层递减,中间各层的线密度均匀;压制过程开始后,密度最先变化的是底层的单元,它们之间的空隙迅速缩小(对应颗粒重排),顶层的单元继续往下运动(对应颗粒塑性变形),顶层颗粒受压继续往下运动而底层颗粒运动基本达到平衡,粉末的密度分布开始趋于均匀,这一过程与高速压制成形的试验结果相符[13]。Jerier等[14]建立了一种高密度粉体接触模型,并在YADE开源软件系统上进行了离散元(DEM)数值模拟,其结果与多粒子有限元数值模拟及试验结果吻合程度均较高,在一定程度上克服了离散元法(DEM)数值模拟不能正确推演高密度粉末压制过程应力演变的缺点,为金属粉末高密度压制的数值模拟拓展了新理论和新方法。秦宣云[15]等通过等效热阻法建立了粉末散体空间导热的并联模型,并考虑了热辐射的贡献,推导的有效导热率的计算公式表达了分形维数、温度对有效导热率的影响。

1.4致密化机理

高速压制技术已经成功用于生产实际,但高速压制的致密化机理目前尚无定论,HVC致密化机理的分 析 也 一 直 是 研 究 热 点 之 一。果 世 驹 教 授 等人[16]提出了“热软化剪切致密化机制”,据此给出了相应的压制方程,该方程可合理地定性与定量解释高速压制下粉末压坯的致密化行为与特性;Sethi等人[2]认为HVC过程中并无冲击波产生,粉末体受冲击时,应力波形是一种逐渐上升的波形,在冲击速度不是非常高的情况下,很难在粉末内产生真正的冲击波;北京科技大学曲选辉教授等人[17]对铁粉、铜粉、钛粉等多种粉末进行的压制中证明了HVC过程中温升现象的存在,但并未发现绝热剪切现象;易明军等[18]初步研究了HVC过程中应力波波形的基本特征和对压坯质量的影响,结果表明,应力波为锯齿波形,每一个加载波形上都有数个极值点,其持续时间受加载速率的影响,且应力波在自由端面反射后会造成拉应力,从而导致压坯表面分层和剥落。陈进[19]对高速压制致密化机理进行了初步探讨,他认为粉末剧烈的塑性变形和颗粒间的摩擦产生较大温升,对粉末致密化起到主导作用。此外在成形过程中,气体绝热压缩对致密化也起到了重要的作用,即在高速压制时,瞬间内气体难以逸出而产生绝热压缩,使温度升高,从而使孔隙中气体分子的热运动加速,使粉末散体的传热增强,能量沉积在颗粒界面而使其软化,有利于进一步致密化。此外,高速压制的压坯密度不仅取决于冲击能量,还与压坯质量有很大关系,因此应该采用既能体现冲击能量又能反映压坯质量的质量能量密度的概念,即单位质量的压坯在压制过程中所受到的冲击能量,单位为J/g。闫志巧等[20]通过钛粉高速压制试验得知,对外径60mm内径30mm圆环形压坯,质量能量密度为40.1J/g时相对密度达到76.2%;而对直径20mm的圆柱形压坯,质量能量密度为121.7J/g时相对密度达到96.0%;不同压坯形状的致密化机理有所不同,圆环形压坯主要以颗粒滑动和颗粒重排为主,而圆柱形压坯主要以塑性变形为主。目前HVC研究的压制速度一般在10m/s左右,其机理无法套用爆炸成形的致密化机理,需要进一步进行研究与探索,尤其是重点研究粉末颗粒的微观行为,如粉末塑性变形、粉末碎裂等,以及粉末颗粒界面的显微组织形成与演变,粉末颗粒边界的扩散、焊合过程,孔隙形状的演变等现象。

1.5 HVC的成分体系适应性

近几年,国内外研究人员已经对铁粉、铜粉、钛粉、合金钢粉末、软磁材料以及聚合物等成分体系的高速压制致密化行为进行了初步探索,如Bos[21]等人所在的SKF公司用HVC技术大规模制备高密度、高强度的铁基和316L不锈钢零件,所生产的铁基齿轮件密度可达7.7g/cm3;王建忠[22,23]等人对铁粉和铜粉的高速压制试验表明:单次压制铁粉时,当冲击能量增加到6 510J时生坯密度达到7.336g/cm3,相对密度约为97%;单次压制铜粉时,当冲击能量为6 076J时,试样的生坯密度达到最大,为8.42g/cm3,相对密度约为95%;Eriksson[24]等人采用HVC技术制备了致密度为98.5%的钛/羟基磷灰石复合压坯,在500℃的低温即可实现材料的烧结;闫志巧[25]等人的研究表明,高速压制可制备高密度的钛粉压坯,当冲击能量为1 217J时,直径为20 mm圆柱试 样的压坯密度 最 大,达 到4.38g/cm3,相对密度为97.4%;中南大学的王志法[26,27]教授等人在950℃高速压制获得了相对密度大于80.65%的W骨 架,从 而 为 高 温 熔 渗 制 备90W-10Cu复合材料奠定了基础;Andersson[28]等人指出,由于高速压制(HVC)技术能显著提高磁粉的压制密度,从而能大幅提高其磁性能,使软磁材料具有更强的竞争力和更广泛的应用范围;Poitou[29]等人对聚四氟乙烯进行高速压制,发现其密度、晶体质量分数、抗磨损性能等物理和力学性能相对常规压制有所提高;Jauffres[30,31]等人采用高速压制技术对超大分子量聚乙烯进行成形,研究发现其杨氏模量、延伸率、屈服强度、蠕变强度和耐磨性等各项性能指标均优于传统压制成形方法。在上述研究的基础上,应进一步拓展合金钢粉末、复合材料粉末、铜合金粉末、钨合金粉末、铝合金粉末、磁性材料及非晶合金材料等成分体系的高速压制技术,从而为制备高密度高性能粉末冶金制品提供新途径。

2高速压制成形技术的发展方向

高速压制是在传统模压中输入高速度机械能产生的新型压制技术,作为近十年才发展起来的一种新技术,其相关基础研究还不够系统和深入。此外,为了进行技术创新,可以考虑将高速压制技术与温压、模壁、复压复烧等工艺有机地结合起来,更深入、更全面地进行探索。尤其要深化以下几个方面的研究:

2.1温高速压制

华南理工大学肖志瑜教授等人[3]提出了一种高速压制和温压相结合的温高速压制(warm high ve-locity compaction,简称WHVC)技术的思路,并设计制造出了实验装备,开展了相关基础研究,并取得一系列研究成果。其实验结果表明,温高速压制能否获得更高的压坯密度,取决于粉末的种类和特性。对于316L不锈钢粉末、混合铁粉、电解铜粉等粉末来说,温高速压制压坯密度高于传统高速压制,这是因为:(1)在温度场条件下,粉末中潮气得到充分挥发,同时粉末中气体也得到较好地排出;(2)在一定的加热温度下能够降低粉末的屈服强度,延缓其加工硬化程度并提高其塑性变形能力,塑性变形能力的改善为颗粒重排过程提供协调性变形,克服粉末颗粒之间的相互牵制,从而降低颗粒重排阻力,有利于颗粒重排的充分进行。而对于铝粉来说,温高速压制和传统高速压制致密化程度相差不大,这是因为铝是面心立方结构的金属,且具有12个滑移系,发生滑移的临界分切应力很小,塑性变形能力非常高,传统高速压制已经能够达到理想的压坯密度。在实验基础上,还对温高速压制的致密化机理和应力波特点进行了分析,认为在致密化过程中温升效应起了很大作用,致密化过程主要以剧烈塑性变形和颗粒冷焊为主。截止目前,温粉末高速压制成形技术的研究只有华南理工大学开展,其研究具有前瞻性和新颖性,有望在高密度成形中获得新的突破。

2.2条件对HVC结果的影响

由于高速压制自身的特点,HVC成形粉末时可在少量剂甚至无剂的条件下成形[32],减少了脱脂和间隙元素引起的污染。如何在剂最少的前提下获得最理想的致密化程度是一个重要的研究目标。对于铁基、铜基等成形性较好的粉末通常采用模壁(即外),如邓三才等[33]研究了模壁对Fe-2Cu-1C粉末高速压制成形效果的影响,研究结果表明,模壁能有效降低粉末与模壁之间的摩擦,减少粉末颗粒与模壁冷焊的机会,相对提高有效压制压力,从而获得较高的生坯密度和生坯强度,以及较弱的弹性后效;此外,在相同压制速度时,有模壁时的最大冲击力要高于无模壁时的最大冲击力,且脱模力要小5~20kN。对于钛粉、钼粉等高硬化速率粉末的高速压制,通常采用内部添加剂的方式(即内),如闫志巧等人[34]研究了剂含量对钛粉高速压制性能的影响,结果表明,加入适量的剂,可以提高钛粉成形时的质量能量密度,从而获得更高密度的压坯。当剂加入量为0.3%(质量分数)时,钛粉成形的最大质量能 量 密 度 为0.192kJ/g,压 坯 密 度 为4.38g/cm3,相对密度为97.4%。此外,适量的剂能提高钛粉压制过程中的最大冲击力降低脱模力,但却会显著降低压坯的强度,密度较低的纯钛压坯的强度显著高于致密度较高的含剂压坯。对于不同剂含量的压坯,当密度接近时,其强度相差不大。在更广泛的成分体系内,研究方式、剂种类、剂添加量对高速压制成形效果的影响,开发适合高速压制条件下的新型剂,如高分子极性剂、大分子极性剂、无机层间化合物剂等都是今后较有价值的研究方向。

2.3复压复烧对HVC效果的影响

一般认为,与传统压制压坯密度只取决于压制压力而不随压制次数的增加而显著提高不同,高速压制的能量是可以累加的,即可以通过多次小冲击能量的压制得到与一次大冲击能量压制相同的效果,但王建忠等[35]对铁粉进行高速压制时发现,在总冲击能量相同的情况下,分两次压制制备的压坯密度最大,分三次压制的最小,一次压制的居中。Metec粉末冶金公司采用高速复压技术(HVR)制造出密度为7.7g/cm3的铁基粉末冶金制品,此外还通过高速压制316L不锈钢金属粉和1 385℃烧结工艺生产出高密度不锈钢零件,此类不锈钢制品在抗拉强度、冲击韧性和延展性等方面性能均较为突出。陈进等[36]在多次压制的基础上对铁粉进行了复压试验,即在两次高速压制之间引入预烧结工序,其研究结果表明,在冲击能量相同的条件下,复压比二次高速压制得到的生坯的密度更高,且随着复压冲击能量的增加生坯密度逐渐增大,在相同复压冲击能量下,预烧结温度为780℃时生坯密度最高,径向弹性后效最小。复压能大幅度提高生坯密度,主要是因为压坯经过预烧结阶段的回复与再结晶,粉末颗粒的强度和硬度下降,弹性储能得到一定的释放,再进行复压后,剂的去除促进更多的粉末颗粒发生塑性变形、微观焊接和熔合,颗粒界面得以消失,这有利于致密度的提高。此外,复压能量更多用于预压坯的塑性变形,弹性能量释放的少,一定程度上减轻了压坯尺寸的弹性膨胀,使得压坯与模具模壁的摩擦减小,从而导致复压时的脱模力较单次高速压制时显著降低。Fe-C粉末复压压坯经过复烧之后,密度高,孔隙少,珠光体较多且分布均匀,裂纹可能在晶粒内部沿着珠光体相或颗粒“烧结”界面展开,诱发了沿晶断裂,使得抗弯强度明显增强。复压复烧工艺是进一步发挥高速压制优越性的重要方向之一,需要进行更广泛、更细致、更深入的研究。

相关期刊更多

粉末冶金技术

北大期刊 审核时间1-3个月

中国科学技术协会

粉末冶金工业

北大期刊 审核时间1-3个月

中国钢铁工业协会

粉末冶金材料科学与工程

部级期刊 审核时间1个月内

教育部