首页 > 文章中心 > 量子力学的认识和理解

量子力学的认识和理解

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学的认识和理解范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子力学的认识和理解

量子力学的认识和理解范文第1篇

量子力学课程是工科电类专业的一门非常重要的专业基础课程。通过该课程的学习,使学生初步掌握量子力学的基本原理和基本方法,认识微观世界的物理图像以及微观粒子的运动规律,了解宏观世界与微观世界的内在联系和本质的区别。量子力学课程教学质量的好坏直接影响后续的如“固体物理学”、“半导体物理学”、“集成电路工艺原理”、“量子电子学”、“纳米电子学”、“微电子技术”等课程的学习。

量子力学课程的学习要求学生具有良好的数学和物理基础,对学生的逻辑思维能力和空间想象能力等要求较高,因此要学好量子力学,在我们教学的过程中,需要充分发挥学生的学习主动性和积极性。同时,随着科学日新月异的发展,对量子力学课程的教学也不断提出新的要求。如何充分激发学生的学习兴趣,充分调动学生的学习主动性和能动性,切实提高量子力学课程的教学质量和教师的教学水平,已经成为摆在高校教师目前的一项重要课题。

该课程组在近几年的教学改革和教学实践中,本着高校应用型人才的培养需求,强调量子力学基本原理、基本思维方法的训练,结合物理学史,充分激发学生的学习积极性;充分利用熟知软件,理解物理图像,激发学生学习主动性;结合现代科学知识,强调理论在实践中的应用,取得了良好的教学效果。

1 当前的现状及存在的主要问题

目前工科电类专业普遍感觉量子力学课程难学,其主要原因在于:第一,量子力学它是一门全新的课程理论体系,其基本理论思想与解决问题的方法都没有经典的对应,而学习量子力学必须完全脱离以前在头脑中根深蒂固的“经典”的观念;第二,量子力学的概念与规律抽象,应用的数学知识比较多,公式推导复杂,计算困难;第三,虽然量子力学问题接近实际,但要学生理解和解决问题,还需要一个过程;由于上述问题的存在,使初学者都感到量子力学课程枯燥无味、晦涩难懂,而且随着学科知识的飞速发展,知识的更新周期空前缩短,在有限的课时情况下,如何使学生在掌握扎实的基础知识的同时,跟上时代的步伐,了解科学的前沿,以适应新世纪人才培养的需求,是摆在我们教育工作者面前的巨大挑战。

2 结合物理学史激发学生学习兴趣

兴趣是最好的老师,在大学物理中,谈到了19世纪末物理学所遇到的“两朵乌云”,光电效应和紫外灾难,1900年,普朗克提出了能量子的概念,解决了黑体辐射的问题;后来,爱因斯坦在普朗克的启发下,提出了光量子的概念,解释了光电效应,并提出了光的波粒二象性;德布罗意又在爱因斯坦的启发下,大胆的提出实物粒子也具有波粒二象性;对于物理学的第三朵乌云“原子的线状光谱,”玻尔提出了关于氢原子的量子假设,解释了氢原子的结构以及线状光谱的实验。后来还有薛定谔、海森堡、狄拉克等伟大的物理学家的努力,建立了一套崭新的理论体系-量子力学。在教学的过程中,适当穿插量子力学的发展历史以及伟大科学家的传记故事,避免了量子力学课程“全是数学的推导”的现状,这样激发学生的学习兴趣和学习热情,通过对伟大科学家的介绍,培养刻苦钻研的精神。实践表明,这样的教学模式大大提高了学生的学习主动性。

3 结合熟知软件化抽象为形象

量子力学内容抽象,对一些典型的结论,可以用软件模拟的方式实现物理图像的重现。很多软件如matlab、c语言等很多学生不是很熟练,而且编程较难,结合物理结论作图较为困难;Excell是学生常用的软件之一,简单易学却功能强大,几乎每位同学都非常熟练,我们充分利用这一点,将Excell软件应用到量子力学的教学过程中,取得了良好的效果。

如在一维无限深势阱中,我们用解析法严格求解得到了波函数和能级的方程。而波函数的模方表示几率密度。我们要求学生用Excell作图,这样得到粒子阱中的几率分布,通过与经典几率的比较(经典粒子在阱中各处出现的几率应该相等)和经典能级的比较(经典的能量分布应该是连续的函数),通过学生的自我参与,充分激发了学生的求知欲望;从简单的作图,学生深刻理解了微观粒子的运动状态的波函数;微观粒子的能量不再是连续的,而是量子化了的能级,当n趋于无穷大时微观趋向于经典的结果,即经典是量子的极限情况;通过学生熟知的软件,直观的再现了物理图像,学生会进一步来深刻思考这个结论的由来,传统的教学中,我们先讲薛定谔方程,然后再解这个方程,再利用边界条件和波函数的标准条件,一步一步推导下来,这样的教学模式有很多学生由于数学的基础较为薄弱,推导过程又比较繁琐,因此会逐步对课程失去了兴趣,这也直接影响了后面章节的学习,而通过学生亲自作图实现的物理图像,改变了传统的“填鸭式”教学,最大限度的使学生参与到课程中,这样的效果也将事半功倍了,大大提高了教学的效果。

4 结合科学发展前沿拓宽学生视野

在课程的教学中,除了注重理论基础知识的讲解和基础知识的应用以外,还需介绍量子力学学科前沿发展的一些动态。结合教师的教学科研工作,将国内外反映量子力学方面的一些最新的成果融入到课程的教学之中,推荐和鼓励学生阅读反映这类问题的优秀网站、科研文章,使学生了解量子力学学科的发展前沿,从而达到拓宽学生视野,培养学生创新能力的目的。例如近年兴起并迅速发展起来的量子信息、量子通讯、量子计算机等学科,其基础理论就是量子力学的应用,了解了这些发展,学生会反过来进一步理解课程中如量子态、自旋等概念,量子态和自旋本身就是非常抽象的物理概念,他们没有经典的对应,通过对实验结果的理解,学生会进一步理解用态矢来表示一个量子态,由于电子的自旋只有两个取向,正好与计算机存储中二进制0和1相对应,这也正是量子计算机的基本原理,通过学生的主动学习,从而达到提高教学质量的目的。另外我们还要介绍量子力学在近代物理学、化学、材料学、生命学等交叉学科中的应用,拓宽学生的视野。

量子力学的认识和理解范文第2篇

关键词:问题式教学法;量子力学;教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0102-02

随着高校教学改革的不断深入,多媒体技术的普及和任课教师专业水平的提高,使得教学内容和教学手段更加丰富多样。量子力学课程是核类专业的基础课,它对于学习和理解核类专业主干课程,如原子核物理学、原子核物理实验方法等具有十分重要的作用和意义。但由于其理论性强,思维方式与经典力学差异较大,量子力学现象在日常生活中比较少见。这样就使得核类专业特别是核类工科专业的学生在学习和理解该门课程时遇到了很大的困难,也使得学生对该门课程的学习没有积极性。因而在课堂上就经常出现这样的一幕:只有老师在讲,学生思考的少,气氛压抑。如何改变这一现状呢?怎么样来调动学生的学习积极性呢?这些都是急需解决的问题。基于此,在分析量子力学与经典力学相互联系的基础上,探究并实践了由经典物理学的问题来引入量子力学学科的问题。将问题式教学法应用于量子力学的实践教学当中。这样既可以活跃课堂气氛,提高学生积极性,又可以培养学生发散性思维,同时还可以巩固学生以前学过的经典物理学的相关知识,进而能提升教学质量。

一、问题式教学法概念

问题式教学(Problem-Based Teaching)是问题式学习(Problem-Based-Learning)的发展,它鼓励学生主动思考问题、自主寻找答案,是以问题为基础来展开学习和教学过程的一种教学模式,通过学生合作解决真实问题来学习隐含在问题背后的科学知识,形成解决问题的技能,并形成自主学习的能力。PBL最早起源于20世纪50年代的医学教育,并且已经被广泛应用于数学、会计、英语等众多学科。

二、量子力学与经典物理的联系及问题式教学法在量子力学课程中的应用

经典物理可以解释天体间的相互作用、电磁波的传播以及系统的热力学平衡等自然现象。20世纪初,当人们发现了放射性现象后,在解释分子原子尺度的物理现象时,经典力学往往无能为力。因此需要建立一个全新的理论,这就是量子力学。它是阐明原子核、固体等性质的基础理论,且在化学、生物学等学科和许多近代技术中得到广泛应用。在经典力学,做机械运动的物体简化为质点,位置可以用坐标系上的坐标表示。将坐标对时间求导、再求导,得到物体运动的速度■和加速度■。■=■(t) ■=■ ■=■ ①

经典物理中,描述物体运动的规律是牛顿三大定律。描述物体t时刻的状态用t时刻的位置矢量■,动量■。初始位置矢量、动量及所受到的力■知道,由牛顿运动定律就可以知道物体的运动状态。量子力学是用来描述微观粒子运动规律的一门学科。由于微观粒子运动的随机性,使得粒子的动量和位置不能同时确定。在实际的教学中就可以引入这样的问题:量子力学中是怎么样来描述粒子的状态及运动规律呢?这就要找到与经典对应的关系。这样就可以引入量子力学的波函数概念及其物理含义。波函数是描述微观粒子的状态,可以表示为如下的形式:

Ψ(x,y,z,t)=Ψ(p,r,t) ②

此时又引入一个新的问题:波函数遵循什么样的规律呢?与经典牛顿运动定律对于的定理或者定律又是什么呢?这个时候就可以用问题式的方法来引入薛定谔方程问题。

i?攸=■=-■?荦2Ψ+U(r)Ψ ③

上式子表示粒子在相互作用势为U(r)的势场中运动时,描述粒子运动状态波函数随时间的演化所满足的规律。同样,像以上这样利用问题式引入的方式来讲授量子力学课程的相关内容还有很多,如态叠加原理,表象变换等。对于态叠加原理,问题的引入:经典物理有波函数的概念,有波的叠加,那量子力学中描述物体状态的波函数是否也有叠加性,他们之间有什么异动呢?这样就可以将学生引入到量子力学中的态叠加原理的相关内容。

三、需要重视的问题

针对目前核类专业特别是核类工科专业量子力学课程的现状,我们除了将问题式教学法应用到教学实践中,还要从以下的几个方面来激起学生的兴趣,提高学生学习该门课程的积极性。

首先,需要激起学生的好奇心。其次,在解答习题中将问题式教学融入其中,要做到课堂知识和课后习题的问题式教学双覆盖。最后,需要学生知道处理量子力学问题的一般方法,同时适当鼓励学生。为了充分调动学生参与课程教学的积极性和主动性,必须在教学过程中把握学生对知识的掌握程度,对表现优异的学生进行表扬并登记,从心理层面激励其更加积极参与到教学互动中。本科阶段的量子力学是一门入门课程,是继续学习物理学的基础。只有让学生认识到了量子力学课程的重要性,才能达到预期的教学目标。

通过经典物理与量子力学的类比对应关系,在量子力学讲授相关知识时,用问题式的方式引入知识点。激发学生对该门课程的学习积极性。使用该教学方式以来,学生的学习积极性和教学质量都得到了提高,达到了教学改革的目的。

参考文献:

[1]唐晓雯,任艳荣.基于问题式学习教学模式的探索与实践[J].教学研究,2006,29(1):24-26.

[2]张建伟.基于问题式学习[J].教育研究与实验,2000,(3):55-60.

[3]刘梦莲.基于问题式学习(PBL)的设计[J].现代远程教育研究,2003,(1):39-43.

[4]蒋新宇,施树云,于金刚.问题式教学法在有机化学实验教学中的应用[J].光谱实验室,2012,29(4):2548-2550.

[5]周世勋.量子力学教程)[M].第二版.北京:高等教育出版社,2009.

量子力学的认识和理解范文第3篇

关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动

Abstract:Asoneofthreerevolutionsofphysicsin20thcentury,quantummechanicshasgreatlytransformedtheworldviewofclassicalscienceinmanyaspects.Quantummechanicsbreaksthoughthemechanicaldeterminisminclassicalscience,transformingitintononmechanicaldeterminism;itchangesscientificcognitiveprocessfromthetheoryofreductionismtothetheoryofwholism;itshiftsthewayofthinkingfrompursuingsimplicitytoexploringthecomplexity;italsoestablishestheinteractionbetweensubjectandobjectinscientificresearches.

Keywords:quantummechanics;worldviewofclassicalscience;nonmechanicaldeterminism;wholism;complexity;interactionbetweensubjectandobject

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的最大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得科学思维方式由追求简单性发展到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]

量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

参考文献:

[1]林德宏.科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.

[2]郭奕玲,沈慧君.物理学史[M].第2版.北京:清华大学出版社,1993:1-2.

[3]刘敏,董华.从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.

[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.

[5]彭桓武.量子力学80寿诞[J].大学物理,2006,25(8):1-2.

[6]疏礼兵,姜巍.近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.

量子力学的认识和理解范文第4篇

量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发展引发了一系列划时代的科学发展与技术发明,对人类社会的进步作出了重要贡献。

19世纪末,正当人们为经典物理取得的重大成就而惊叹不已的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出一个大胆的假设:在热辐射的产生与吸收过程中能量是以hv为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。

著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。

1913年,丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中电子绕原子核做圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可以在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nk,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差AE=hy确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史上是空前的。

由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理、量子力学的概率解释等都作出了贡献。

1923年4月,美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。

光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年,美籍奥地利物理学家泡利发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学——费米统计的基点。为解释光谱线的精细结构与反常塞曼效应,泡利建议对于原子中的电子轨道态,除了已有的与经典力学量(能量、角动量及其分量)对应的三个量子数之外应引进第四个量子数。这个量子数后来称为“自旋”,是表述基本粒子一种内在性质的物理量。

1924年,法国物理学家德布罗意提出了表达波粒二象性的爱因斯坦——德布罗意关系:E=hv,p=h/波长,将表征粒子性的物理量能量、动量与表征波性的频率、波长通过一个常数h相等。

量子力学的认识和理解范文第5篇

[关键词] 原子物理学 教学改革 实践教学

随着科技的飞速发展,原子物理学已经成为21世纪重要科学技术的共同基础之一,它在高新科技中的基础地位和重要作用日益显现。同时它在培养学生的创新精神和科研能力方面也有着不可替代的作用,所以原子物理学成为了物理学专业的基础课程之一,也成为了其他理工科专业的必修课程之一。

一、原子物理学课程的性质与我系开设的历史回顾

原子物理学为物理学专业的基础课。它上承经典物理,下接量子力学,属于近代物理的范畴,是学习理论物理和从事材料科学、信息科学、光学、激光技术、化学、生命科学、能源科学、环境科学以及空间科学研究的基础。在内容体系的描述上,原子物理学采用了普通物理的描述风格,讲述量子物理的基本概念和物理图象以及支配物质运动和变化的基本相互作用,并在此基础上讨论物质结构在原子、原子核以及基本粒子等层次的性质、特点和规律。我院在上个世纪80年代就开设原子物理学课程,在90年代中期,为了全面讲解近代物理学的知识,我们曾经以近代物理学代替了原子物理学。到20世纪90年代末,又把原子物理学作为一门独立课程进行了设置。2002年,我院开始招收物理学专业本科学生,原子物理学成为一门专业基础课。为了提高原子物理学教学的效果,我们从2003级学生开始着手对原子物理学课程进行教学改革,2003级和2004级是探索阶段,在2005级、2006级、2007级加大了改革的力度。

二、原子物理学课程教学改革的实践

1.调整课程结构,整合教学内容,增加现代化的知识

调整课程结构,整合教学内容是教学改革的核心工作。在原子物理学的教学改革中,我们始终坚持把调整结构整合内容作为教改的中心工作。我们在教学中发现,随着科技的迅猛发展,许多高新科技都用到了原子物理学的基本理论,而我们大部分院校使用的教材是圣麟先生编写,1979年,出版的《原子物理学》,该教材虽然是1987年获国家教委一等奖的优秀教材,但是由于编写时间较早,缺少一些新知识、新技术的介绍,教学内容需要整合和充实。我们本着“加强基础,结合前沿,促进创新”的精神,对原子物理学的教学内容进行了大胆的调整和整合,重新编写了教学大纲和考试大纲,加强了科学前沿和高新技术的引进。精简和整合了传统教学内容,如旧量子论和中学物理已经涉及到的东西;大量引入了科技前沿和新成果,如里德堡原子、μ原子、反原子、反物质、粒子加速器、新粒子的探索、电子自旋成像等;引入多学科综合性问题,如隧道扫描显微镜,纳米科技,激光技术、原子的冷却等;引入应用领域问题,如激光技术,X射线造影,核磁共振,核电站的建设、太阳能的利用、中子弹的研制等;引入我们自己的科研工作,如纳米晶丝的磁性、铁磁非晶丝的磁化、磁晶各向异性等,介绍近些年诺贝尔物理学奖获得者的学术成就等。同时,我们还尝试了原子物理学和量子力学打通的工作,与量子力学课程组进行了研究。这样经调整整合后,其教学内容在已知与未知、过去与未来、基础与前沿等之间保持了一种恰当的张力,以针对性、应用性、实践性和满足后续课程(量子力学、固体物理等)学习需要为前提,既保留了该门课程的基本知识框架、知识间的内在联系,又反映了本学科领域最新科技成果和研究前沿方向,构建了支持学生终身学习的知识平台,促进了学生创新意识、实践能力和综合素质的培养,充分体现了教学内容的先进性和现代化,经过几年的实践,收到了良好的效果。

2.改革教学方法,培养学生的学习能力

有了先进的教学内容,如何让学生接受消化成了我们要研究的一个突出问题。按照学校的总体培养方案,原子物理学课程的教学时数越来越少,从每学期的72学时,减少到了54学时,48学时,再考虑到法定节日耽误的课时,一个学期48个学时都难以保证。而原子物理学是一个从经典物理到现代物理的一个过渡课程,有时用旧量子论处理问题,有时又必须用量子力学理论处理问题,这样就给学生造成了一个接受和理解的难度,有时甚至是造成了混乱和困惑,学生无所适从。为此我们对教学方法进行了研究。

第一,树立研究型教学思想,培养学生的学习能力,体现先进的课程理念。在原子物理学的教学中,我们首先更新观念,树立“以人为本,以学生为中心”的现代教育教学理念和以素质教育为主的研究型教学思想,以满足社会需要、学习者个人发展以及学科自身特殊性为前提,强调基本素质、基本知识、基本能力和基本技能并重,强化了课程理念的先进性。

第二,在教学方法上,一改过去“教师唱主角满堂灌”的“注入式知识教育”为适应培养学生学习能力的“研究式素质教育”。正好我系2005级以后物理学专业学生的班容量不是很大,给我们改革教学方法提供了方便。我们采用了精讲式、启发式、研究式、探索式、渗透式等多种教学方法,增加了讨论课、学习报告的学习形式。对一些奠定基础的、在历史上起到重要作用的、在知识体系中不可或缺的内容必须精讲、启发;对一些前沿性的、应用性的、综合性的、没有定论的东西则采用研究、探索、渗透的方式;每学期设置2次讨论课,1次学习报告课,把学生在学习中遇到的感兴趣的、通过查阅资料能够解决的问题以及没有定论需要继续研究的问题在讨论和报告中处理;而有些知识则是采用不讲的方式,由学生自学,由连续型细节式授课转变为跳跃型平台式授课。这些教学方法的改进,极大地拓宽了学生的视野,提高了学生的学习积极性,促进了学生学习的主动性,培养了学生的学习能力和创新精神。

第三,在教学手段上,跳出了“一支粉笔一块黑板一张嘴”的填鸭式,编制了多媒体课件、电子教案等,利用现代化的网络技术来辅助教学,同时也注意纠正了“以机代人、人机共灌”的极端多媒体教学方式,这样由过去单一的课堂教学转化为多形式的互动交流,既解决了课程容量与教学时间的矛盾,同时又激发了学生的学习兴趣。培养了学生的学习能力和研究能力。

3.把原子物理学的教学与学生的毕业论文有机结合

为了激发学生的学习兴趣,我们把原子物理学的教学与学生的毕业论到了有机结合。近几届学生的毕业论文都有选自原子物理学课程的。有一些综述型的题目,如:原子物理学与量子力学的衔接、物质的结构层次、组成物质的最小单元、里德堡原子与μ原子、反原子与反物质等;有一些应用型的题目,如太阳能与我市太阳能利用、核电与我国的核电站、现代医疗与原子物理学等;也有一些研究型的题目,如:兰姆位移的实质、电子自旋对原子光谱的影响、纳米晶丝的磁性与原子磁矩、铁磁性物质参杂后的磁性等。

4.把近代物理实验与原子物理学课程打通

我系也和其他大部分院校一样,在开设原子物理学课程的同时,开设的另一门独立实验课程是近代物理实验,它由实验老师独立完成。在原子物理学进行教改的时候,我们发现近代物理实验许多都是和原子物理学有关系的,许多就是原子物理学理论的一个验证或是应用。为使原子物理学的理论和实验更加紧密地结合,增强学生对原子物理学理论的感性认识,经过系领导的同意,我们和近代物理实验老师合作,共同组成了原子物理学课程组,实现了原子物理学的理论教学和实验教学的同步,既深化了学生对理论的理解,也降低了实验课程的难度。效果颇佳。

5.编制了一些课程扩充资料

为了帮助学生理解课程内容,我们参考其他院校的做法,编制了作业题解答、课外习题集、考试试题库、卷库,并且选定了一些科技期刊和阅读材料提供给学生阅读和学习,开宽学生的眼界。

三、对原子物理学课程教学改革的思考

虽然对原子物理学课程的教学改革,我们取得了一些效果,但是总感觉教学改革进行的还不彻底,还有许多不尽如人意的地方,还有许多工作要做,关于这些我们做了如下思考。

第一,对原子物理学教学内容体系能不能来一个大的改革。首先,旧量子论的内容跳过不讲,直接用量子力学的理论来讲原子物理学。既在光谱的实验规律、弗兰克-赫兹实验、史特恩-盖拉赫实验、黑体辐射实验、康普顿效应等的基础上给出量子力学,然后用量子力学理论去研究原子的能级、光谱、电子自旋、原子核结构等问题。而把玻尔的旧量子论作为一个历史情节介绍,降低旧量子论的比重。其次,增加前沿动态。因为我们没有后续的原子核物理、粒子物理,所以特别应该增加原子核的方面的知识;增加粒子物理方面的知识;增加应用性的知识;增加外场中原子的行为和现象的介绍,增加新核素、新粒子的观察与探索等内容。

第二,一定要把原子物理学与量子力学打通,整合成一门理论课,并且把原子物理学、量子力学、固体物理学、近代物理实验组合成一个课程群。使之在培养学生的科研能力、学习能力和创新能力上做出更大的贡献。首先,原子物理学和量子力学必须打通,因为目前的分工看,原子物理学是量子力学的先行课程,成为了量子力学的基础,而量子力学又是处理原子问题的有力工具,二者相互渗透,没有先后。如果能够把原子物理学和量子力学打通成一门理论课程,那样既可以完善原子物理学中的理论,又可以增强学生对量子力学的感性认识,使得两门课程的体系更加完整,学习难度会自然降低。其次,要认真研究如何实现原子物理学、量子力学、固体物理学、近代物理实验这一课程群,并以此为依托申报省级以上的教改立项课题。这几门课程的理论是相通的,只是适用对象不同,所以会衍生出许多不同的知识,这个课程群建成后,能够使学生的知识体系更加紧凑和完善,使几门课程的知识互通,能够降低学习难度,能够使学生方便地接触到科技前沿,激发学习兴趣,对毕业后从事高新科技或是教授大中学的相关课程都是大有裨益的。

第三,如何进行考试改革。学生成绩的考核方式直接决定着学生的学习态度,我们要改传统的“结果性”考核为“过程性”考核。加强对学生学习过程的监测,注意发现那些有创新精神、勤奋刻苦的学生,注意发现那些有一定特长、有潜力、不循规蹈矩的学生,加强培养,加强引导。

第四,如何进行实践性教学内容的改革。实践性的教学在培养学生创新精神和创造能力方面具有不可替代的作用。如何充分发挥实践性教学的作用一直是我们努力探索的一个课题。我们要使实践性教学走出实验室,使实验课程走出验证的初级阶段,开设综合性、开放性、创新性实验,这一点需要一定的物质基础,值得我们去研究。

第五,关于教材的选择与处理。教材可以说是教学的抓手,是最为重要的教学资源。就目前看,比较通用的原子物理学教材是圣麟先生编写的《原子物理学》和杨福家院士编写的《原子物理学》,这两个版本的教材各有自己的优点。我们的观念是“教学是用教材教,而不是教教材”,今后,我们计划改以前固定一种版本教材为两种版本交替使用。这样有一个好处是上下连续两届学生可以互相借阅,使学生在学习时基本上都能够有两本教材,方便了学习。

以上这些只是我们在原子物理学课程改革中的一些做法和想法,有的甚至可能还很不成熟,希望得到各位同仁的支持和帮助。

参考文献: