首页 > 文章中心 > 量子化学基本原理与应用

量子化学基本原理与应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子化学基本原理与应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

量子化学基本原理与应用

量子化学基本原理与应用范文第1篇

一直以来,复旦大学化学系有着重视化学实验教学改革的优良传统。20世纪70年代末,由复旦大学等14所学校合作编写的《物理化学实验》教材在国内广受好评,影响深远。20世纪90年代,复旦大学化学系对大学本科的化学课程体系进行了改革,逐步形成以创新能力培养为核心、以技术要素为主线的新实验教学体系及相应管理机制[1,2]。2000年前后,复旦化学系根据化学实验的特点,本着“统筹管理、优化资源、避免重复和遗漏”的原则,将涉及仪器操作类的基础实验课程“仪器分析实验”和“物理化学实验”融合为“仪器分析和物理化学实验”,那时实验教学中心在世行贷款和学校配套资金支持下,购置了一批在当时属于先进的仪器用于教学,使得化学实验条件得到大幅度改善,教学质量和水平因此得到保障和提高。

随着时代和学科的发展,我系的物理化学实验教学逐渐暴露出一些不足。一方面大部分实验仪器设备相对落后,如电化学分析工作站、气相色谱仪、原子发射光谱仪等设备都已使用了10~15年。这些仪器性能不够稳定,测量出的实验数据误差大,得不到理想的实验结果,这样直接削弱了学生学习新知识的积极性。另一方面是实验内容更新速度慢,滞后于科学研究发展的步伐。物理化学学科的发展也使得一些原本属于专门化或综合实验内容的高级技术和仪器成为基础物理化学实验的常规技术和设备,在当前科研中发挥重要作用的常规表征手段至今没有相应的教学实验开设,而且复旦大学物理化学教学团队早在1999年就开设了以结构分析和表征为主线,集原理、仪器使用和解谱为一体的“谱学导论”理论课,导致理论教学与实验教学有较大的脱节。同时本系科研实力的快速提高、学科建设、师资优化和研究生生源的增长需求对本科学生的科研素质提出了新要求,一些操作简单、内容单薄的验证性实验显然不能满足这些要求。在这样的形势下,物理化学实验教学内容如何设置,成为我们面临的又一重要课题。经过多次调研和讨论,我们对物理化学实验教学内容设置有了一些初步实践与设想,希望能与国内同行共同探讨。

二、物理化学实验教学内容的总体设计

本课程内容的设置将充分依托本系学科优势,在“衔接前沿、兼顾基础”的原则下,更新、升级、完善和补充大型仪器类实验。同时在完成经典传承的基础上,加大综合性、设计性、研究性实验的比例,以求拓宽学生专业面、增强适应性。更希望通过本课程教学内容的实施和开展,让学生了解和掌握一定的前沿技术、技能以及思考、解决问题的方法,促进学生探索能力、科研创新能力的发展,提高学生的综合能力。

在上述思想的指导下,我们经过对国内部分高校的物理化学实验教学内容进行调研和对比,并结合本系的实际情况,进行如下改革。

1.更新仪器设备,推动传统实验内容的更新优化

对目前开设的多个实验的老旧设备进行更新,取得了明显的效果。

比如,差热分析实验是一个经典的研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化的热分析实验。本系原有的实验设备,是20世纪70年代老师们自己动手搭建的,从冰水浴、自制热偶、加热炉到记录笔、温控仪的连接,都需要学生动手完成,由于各配件年代久远,数据的重现性、分辨率都不理想,而且经常出现某一部件“罢工”的尴尬局面,导致实验无法顺利进行。近年来,热分析技术的不断创新与完善,使得热分析的应用领域不断拓展,研究对象不断增加,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用[3]。开展热分析类的教学实验,不仅具有课堂理论意义,也具有非常强的应用背景,国内许多高校开设热分析教学实验,但具体实施的方案各不相同。经过考察,我们购置了性能较好的热重天平,此仪器采用较先进自动化技术和精密的机械制造工艺,将机械结构、机电控制和气氛控制集于一体,一定程度上改善了传统热分析仪器笨重外形。性能优良的温度控制软件和界面,全面的热动力参数分析功能,将热重分析TG、微商热重法DTG与差热分析DTA结合为一体,在同一次测量中利用同一样品可同步得到热重、微商热重与差热数据。这样一来,实验简便快捷,而且数据可靠直观。为克服实验内容相对单薄的问题,我们重新设计实验方案,学生除了验证已知样品受热过程中的吸放热情况,还可以观测不同升温速率下吸放热情况的变化,进而研究样品受热过程中相应的动力学参数,例如根据不同升温速率下五水硫酸铜失水峰的峰顶温度与升温速率进行数学处理,便可以计算热分解的活化能。在问题与思考环节中,启发学生通过文献查阅,对热分析方法进行更全面的了解,有了这样的技术和知识储备,将来需要分析其他样品受热过程中物相变化、吸放热等问题时,很容易找到解决方案。

此外,对气液色谱法测定非电解质溶液热力学函数的实验也更换了最新型号的气相色谱仪。所有的温度、压力、流量以及其他参数的设定和显示均可以在电脑软件界面上进行,大大方便了学生的实验操作,而且对了解目前的主流色谱有了感官认识。最为关键的是,数据重复性得到了极大的提高,以前需要重复进样近10次才能得到3次相对误差较小的数据,现在只需进样3次就可满足要求,对操作难度的要求大大降低,数据也与文献值吻合较好,得到了同学们的认可。

涉及电化学测量的实验,目前全部采用电化学工作站进行。由于是软件界面控制,重现性较好,出现故障也很容易判断。这些改进与以前的电压、电流表显示相比,优势明显,而且对本科生继续从事电化学相关研究起到了较好的铺垫作用。

2.增开研究性实验,加强对学生技术技能的培养

调研发现,物理化学实验内容最欠缺的是科学研究领域中的前沿成果在教学中的体现,而学生能力培养上较欠缺的是现代表征仪器的操作技术。因此,与前沿研究相关的实验内容的设置,是我们此次实验教学内容更新的重点。

我们引入负载型催化剂的多相催化实验。随着催化技术的发展,由于多相催化剂具有易回收利用、产物易分离等特点,在石油化工等领域得到越来越广泛的应用。因此,让学生了解和掌握一定的多相催化技术和知识显得尤为重要,国内浙江大学和南京大学化学系的本科生物理化学实验中都涉及相关的实验内容。我们开设了负载贵金属催化剂液相催化苯甲醇氧化的实验,通过本实验,希望学生理解多相催化操作中的基本要求、评价活性优劣的基本方法、影响催化活性的外界因素、完成活性测试的定量分析手段等内容,再通过数据处理与分析,了解更多的与催化相关的动力学和热力学知识与技术。

3.引入物质结构性质表征方面的实验内容

现在科学研究中,物质结构及其性质的揭示,离不开大型仪器。自19世纪伦琴发现了X射线以来,X射线衍射被迅速地应用于物质结构表征,它可以用在研究体积很大的对象,譬如人体骨骼,还可以表征很小的物质结构,譬如蛋白质分子结构[4]。由于波长短,X射线有很强的穿透性,在分子及原子级的材料结构研究当中应用尤为广泛。现代X射线技术在研究未知结构和新材料中已经成为一个有力的工具,比如本系多个课题组制备的各种单晶新材料,其结构解析就离不开X射线单晶衍射仪。作为重要的物质结构表征手段,理论课堂上也做了深入的介绍,但由于硬件条件的限制,本系本科生一直没有机会动手操作X射线衍射仪。

多孔固体材料最早发现于19世纪90年代,因其独特的结构特性而在催化、吸附、分离和储能等领域受到广泛的关注,表面状态和孔结构直接影响其性能,所以多孔固体材料的比表面积和孔径分布是研究固体材料的必要数据。本系多个课题组在介孔、微孔材料的制备研究中,一直离不开比表面积测试仪对样品基本性质的测定,也正因如此,本系多套比表面积测试仪均难以匀出机时用于本科教学。

通过努力,现在我们购置了4台比表面积测试仪,并借用本系X射线粉末衍射仪科研机时,用于本科生的教学实验。先让学生通过不同方法制备铜锆复合氧化物材料,并对这些样品进行X射线粉末衍射和比表面积测定,最后通过数据处理,分析了解不同的制备因素对材料基本性质的影响,了解BET多分子层吸附理论的基本假设和BET法测量固体比表面的基本原理,掌握X射线粉末衍射方法的基本原理、技术和物理吸附仪的工作原理、使用方法,并借此掌握一定的材料常规表征实验技能技巧。

三、未来设想

近年来,随着世界环境问题的日益严重,光催化在环境污染物降解中已成为研究热点[5]。最近我们还将开设TiO2光催化废水降解实验,这个实验是有效治理环境污染技术的典型代表。纳米TiO2由于其化学性能稳定、抗菌性能好以及在有机物降解过程中无二次污染等优良性质,成为环境污染治理领域中的重要光催化剂,在光催化领域得到了广泛研究。TiO2的结构形貌对其光催化活性有很大的影响,通过本实验,希望学生了解环境污染与防治的相关知识,并能从结构形貌与光量子效率间的关系理解影响光催化活性的因素,同时理解光催化降解效率的衡量指标等知识和技能。

从培养学生技术技能的角度看,现代物质基本结构表征方面涉及的内容还远不够,将来还计划开设铜锆复合氧化物或者负载贵金属样品表面的CO吸附红外光谱测定、核磁共振测定液相反应速率常数等相关内容。希望通过系列动力学活性测试以及相应物质结构表征方面实验的开展,让学生对功能材料样品制备技术、物质基本性质表征以及样品性质与性能之间的本质关联有所了解。更希望学生通过这一系列的训练,对科学研究过程有所了解,为他们开展系列校内科技创新项目打下基础,有利于他们今后的继续深造或工作。

量子化学基本原理与应用范文第2篇

关键词:计算化学软件;有机化学;应用

DOI:10.16640/ki.37-1222/t.2017.10.119

近几年来,计算化学软件逐渐得到了人们的重视。在大学有机化学的教学中,它能够通过传统的平面符号将深奥的化学信息传递给学生,并加强他们对化学结构的理解。另外,传统的教学方式已经不能够满足学生对知识的需求,只有结合现代化的辅助工具,才可以达到提升学习效率的目的。

1 计算化学软件在大学有机化学教学中的应用

(1)计算化学软件在立体模型方面的分析方式。从本质上来讲,分子立体结构的教学在有机化学中是必不可少的。但传统的方式中,教师仅仅用单一的构图法对知识点进行规划,来将其中的规律呈现在他们面前。这种方法不仅复杂,增加了教师的任务量,也无法使学生彻底的理解知识,并产生了负担。同时,一些想象空间缺失的学生更无法将立体结构展开,体现“具体问题具体分析”的合理性。可见在有机化学中计算软件的应用是必不可少的。首先,大学化学中的重点就是有机化合物的分子结构分析。它能够从化学反应的基本原理出发,构建物质之间的基本联系,并体现其中的演变过程。因此,教师可以通过分子结构的剖析,利用计算软件将排列方式呈现出来,并在多媒体中进行模拟教学,体现教学方法的灵活性。

例如:在甲烷分子的构想过程中,教师则可以利用office中的3D处理功能,构建一个立体结构的演示过程,并将分子模型进行优化。同时,为了能够将动态过程体现出来,教师也可以通过“Flash”动画模型的建立做出C-C的360度旋转过程,改变分子形态中的二苗角,来完成计算软件中的曲线剖析动作。最后,教师要利用Gaussian03软件实现分子关联性讲解。将每一分子作为一个数据节点,利用扫描功能对每一部分进行分析,并将对应的势能曲线表达出来。这种教学方法的好处在于能够使学生从全方位看出分子的构象规律,并实现曲线的交叉变换,令他们掌握乙烷的稳定排列形态。

(2)计算化学软件对分子光学模拟的分析。有机化学的学习目的是令学生能够用更加全面、灵活的眼光来分析宏观与微观世界。因此,为了体现内容的多样化,教师可以将光谱理念引入到其中。首先,传统的有机化学学习方式主要是以引入仪器的方法来完成,但这些化学辅助工具却无法将有机物分子展开。针对这种情况,教师要利用计算软件进行知识解析。首先,在操作过程中教师以Gaussian03软件为主,以功能的设定为具体方向,对分子光谱进行预测及模拟。例如:在有机分子红外光谱的学习中,教师利用互动模式将学生带入到课堂学习中,将他们两两分为一组,并在建立好的模型上进行演示。而学生要根据模型中的振动频率将关键词Freq输入进去,在文件的处理界面中选择“演示”字样,系统则会选定一个基本频率,以分子振动节点为中心,制定相应的光谱。学生只要点击系统中的“开始”选项,多媒体就会将化合物分子中的伸缩振动过程、光谱曲线、结构对应方向逐一体现出来,实现了教学的动态化。

再如:在双分子亲和的教学中,教师要首先建立好相应的计算模型。系统会依照分子之间的运动频率确立核定方式,并将分析中所呈现出的关键词运用到其中。最后,计算软件能够进行分子常态的设定,学生可以从中看出离子的分散过程以及试剂的投入顺序。同时,教师要结合其中的重点内容将相关的理论知识融入进去,使学生根据总结出反应中呈现的状态,并以小组讨论的方式整理好双分子亲和中的关键点。最后,教师以小组为单位进行逐一评定,选取其中比较优秀的一组进行奖励。

2 计算化学软件在计算化学软件在大学有机化学教学中的应用

(1)深化学生对知识的理解。有机物特性分子在化学教学中是必不可少的。但这部分内容也是学习中的难点,如何将化学知识与其物理特征联系在一起,并直观的呈现在学生的面前是教育的关键。例如:以HOMO化学概念的学习为主,教师只有将分子组合或分裂的排序过程中展现出来,学生才能够真正依照其运行轨迹进行知识学习。而以计算软件为主的教学方式则可以满足这一要求。教师可以在建立基本模型的前提下选择一条分子排列轨道,将演示内容直观、清晰的呈现在学生的面前,深化学生对知识的理解。

(2)促进教学方式的转变。由于有机化学的难度逐渐加深,单一的绘图方式已经无法满足学生的需求。因此,教学方式的转变是必然的,也是现代化教育的结果。计算软件能够将分子的构成式逐一展现出来,并将平面图像变为立体形状。因此,如果教师想要适应时代的发展,就要提升自身的教育水平,学习计算化学软件,并令其在课堂中能够得到良好的应用。同时,这种方式也减轻了教师的课业任务,节省了绘图与版面制作的时间。从学生的角度来讲,这种教育模式可以为他们带来新鲜感,激发起学习的兴趣,促进自身能力的提升。

3 结语

综上所述,本文主要从两方面入手。第一,以计算软件的应用作为切入点,对其在有机化学教学中的应用进行阐述。第二,探究了计算软件在化学课程中的意义。从而得出:教师要改变原有的教育理念,将现代化的多媒体技术应用到其中,以达到教育创新的目的。同时,计算化学软件能够将抽象的知识结构以直观的方式呈现在学生的面前,有利于学习效率的提升,也可以实现知识的深化,为人才的培养奠定基础。

参考文献:

[1]赵丽娇,钟儒刚,甄岩.计算化学软件在大学有机化学教学中的应用[J].计算机与应用化学,2008(08).

[2]王亮,张玉敏,彭望明,胡思前.微课在大学“有机化学”教学中的应用现状及探索[J].新课程研究(中旬刊),2016(02).

[3]郑燕,孙文新.计算机化学软件在大学有机化学教学中的应用研究[J].石家庄学院学报,2014(03).

量子化学基本原理与应用范文第3篇

关键词:物理教学;数学手段;物理教学理念

一、前言

物理是一门研究自然界变化规律的科学。物理逻辑性强,物理教学中离不开数学,需要通过数学公式来表达物理思想,通过数学演算揭示事物发展规律,同时也为数学的发展提供新的命题。成功的物理的教学理念往往体现出物理和数学这种相辅相成的关系。

二、物理教学理念处处体现数学的重要性

物理教学应该具备相应的理念,这些教学理念也可以在物理、数学的密切关系中得到体现。在设计物理教学时应该具备的教学理念有:

1.注意分享物理发展史,介绍物理发展史上著名的物理问题的提出和解决过程,回顾大师足迹,激发学生兴趣,这就必然离不开阐述物理和数学的关系。物理发展史上有很多物理学家,他们同时也是数学家。比如牛顿,牛顿19岁时进入剑桥大学,他的第一任教授伊萨克•巴罗是个博学多才的学者,将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,牛顿在数学的学习中走向了近代自然科学的研究领域,又在自然科学的研究中提出二项式定理、微积分、解析几何与综合几何、数值分析、概率论和初等数论,牛顿在他的论著《自然哲学中的数学原理》中明确提到了物理———数学方法,认为物理学范围中的概念和定律都应该“尽量用数学表达”。因此,介绍牛顿的贡献必然离不开介绍牛顿为物理、数学两个领域建立的桥梁,牛顿的贡献是阐述物理和数学之间不可分离的关系的最生动的实例。

2.提醒学生重视物理学科的研究方法,在传授知识点的时候介绍相应的方法论。物理问题的表述、解答、定律都离不开数学,物理学研究方法与数学发展紧密相关,不同分支的物理学科有其最重要的数学理论,要掌握不同分支的物理知识必须熟悉其相应的数学方法,否则就是离本之木。比如分析力学的创立者拉格朗日,在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,拉格朗日发展了达朗贝尔、欧拉等人的研究成果,引入了势和等势面的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,使得分析力学成为理论力学最重要的方法论。高斯通过对足够多的测量数据的处理,得到一个新的、概率性质的测量结果,在这些测量数据的基础之上,高斯专注于曲面与曲线的计算,成功得到正态分布曲线,其函数被命名为标准正态分布(或高斯分布),这种分布被广泛应用于分析和处理物理学中各种概率事件中。傅里叶认为数学是解决工程问题最卓越的工具,在他的著作《热的解析理论》中,傅里叶就系统运用了三角级数和三角积分(即傅里叶级数和傅里叶积分),此后以傅立叶著作为基础发展起来的傅立叶分析对近代物理和工程技术的发展都功不可没,因此,学好物理某一分支,就必须重点掌握并能够灵活运用这一分支需要的数学知识。

3.注重将物理知识与生活、社会联系起来,启发学生创造性思维,提高学生素质。国际纯粹物理与应用物理联合会在《新千年的物理教育》一文中认为:如果物理教育是为更多学生的全面发展服务的,那就应当重视物理学家的工作成果在社会上、技术上的应用,应当重视蕴涵于我们文化之中的物理学方法,应当重视物理学家这个专业群体的特点,如支持、贡献社会的方式等。如今,物理已经渗透到社会生活、技术的各个领域,比如,物理和化学之间,量子化学、激光化学、分子反应动力学、固体表面催化、功能材料等学科的兴起都是物理学的理论向化学领域的渗透;物理和生物学之间,量子生物学、分子生物学等也都是物理理论在生物学领域的进一步延伸和提高;再比如物理与经济学,股市模型、报酬经济学等都建立在物理模型和经济学基础相结合的基础上。然而,我们也必须注意到,物理向某个科学领域渗透的媒介必然是数学,物理学家对这一学科的贡献也报过了其用到的数学方法,因此,强调物理学的应用就必须强调数学的重要性。比如免疫的统计模型建立的基石是数学统计、回归分析论,通过各种先进数学算法得出规律性结论,多元判别分析预测结果与原判定结果差异等。股市模型可以建立在模糊数学方法基础上,应用模糊模式识别、评价股市技术面和基本面,指导股民进行理性投资。因此,物理向各学科领域渗透的过程,也是相应的数学知识与各领域特征知识进行结合的过程,只有深刻意识到这一点,物理思想才能在各学科领域中发光溢彩。

4.引导学生建立严谨、务实的求知态度,帮助学生认识到物理的哲学思想,实现自然科学和人文教育的大统一。物理是研究运动的科学,物理上的运动可以理解为变化,变化是自然界的客观存在,与人类的主观认知有不同的一面,这就要求我们在物理教育过程中,不能让人类的认知水平左右到对物理知识的接受,不能偏离物理客观的一面。而数学作为一门逻辑性很强的科学,最适合于作为物理教育的语言载体和分析工具,由数学推导、建立起来物理结论无疑最具有说服力,物理教学要以数学为主要载体,在数学的基础上向学生熏陶物理思想,在经得起推敲的层面上,保证物理知识的延续和发扬,同时培养思维细致、逻辑缜密的公民。爱因斯坦在他的狭义相对论中得出了“一切物体的速度不可以超过光速”的结论,而根据当时人们对引力的认识,似乎引力的传播速度却是无穷大,为了解决这一问题,最终爱因斯坦以惯性质量和引力质量成正比的自然规律作为等效原理的根据,在专门学习了黎曼几何、张量分析等数学知识后,利用数学手段进行推理、论证,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空的观点。爱因斯坦用数学方法得到的广义相对论中的推测,也最终由水星近日点进动中一直无法解释的43秒、引力红移、引力场使光线偏转等系列观测结论完美地证实。如今广义相对论已经被广泛承认,广义相对论的发展里程也正是一条典型的物理学发展进程:在自然界中发现变化—借助数学方法摸索规律—通过实验证实推断,这种思维方式应该在物理教学中得到落实。

三、在强调数学手段的重要性中贯彻物理教学理念

学习物理的目的分为:①研究物理而学物理;②为应用而学物理;③为提高文化素养而学物理。这就构成了物理教学目的的多样性或者说物理学习的多功能性。但从物理学的发展我们知道,18世纪,物理学归属于自然哲学,因为数学和实验的发展,使得物理学从自然哲学中分离出来,物理学研究不再以思辨哲学的方法为主,从定性表达发展到定量表达,塑造了现代物理学的新特征物,因此,物理研究终究需要通过数学手段来完成。物理和数学都是逻辑性强的学科,因此物理教学设计要关注学生渴求学习成功的心理,拓展教学方法和思路,使学生通过数学来理解物理,获得物理学习的乐趣,要尽可能多地在双向交流中进行数学推导,在数学的基础上采用提问模式、讨论模式、合作学习模式、答辩模式等。

参考文献: