前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇量子力学和相对论的关系范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
物理学专业可分为“纵向深入”和“横向扩张”两方向。“纵向深入”是向更微观和更高速领域的深入探索,获得描述新的领域最核心的物理模型。“横向扩张”是在“纵向深入”中得到的每一个区域的核心物理模型基础上,应用该模型来探索和解决该领域每一个更具体和更复杂的问题,伸向更精细的世界。
纵向世界
下图是目前物理学的四个“基本理论”所统治的区域,它是一个普遍的力学系统,用一个数学模型来描述物质、时间和空间,以及他们之间的关系。这四个“基本理论”是人类几百年来“纵向深入”所得到的四个核心物理模型。
一、经典力学(Classical Mechanics)
图中左下区域是“宏观低速”区域,称为经典力学(Classical Mechanics)领域,即最早的牛顿力学及其后续发展的拉格朗日力学,哈密顿力学等。在中学物理课程中主要涉及的部分是牛顿力学。这里基本的数学模型是:空间是最简单的欧几里得几何的三维空间,时间是另外一个和空间维完全无关的维度。物质是质点,或者是有限体积的质点集合(刚体,流体),或者是遍布全空间无限体积的质点集合(场,如电磁场)。质点在空间中的运动符合伽利略变换。
这个领域孕育了第一次工业革命和第二次工业革命。它的“纵向深入”突破点是麦克斯韦的电动力学,并由此导致量子力学和相对论力学领域的出现。
二、相对论力学(Relativistic Mechanics)
图中的右下区域是纵向深入到“宏观高速”的区域,即爱因斯坦的相对论力学(Relativistic Mechanics)领域。
这里基本的数学模型是:狭义相对论(Special Relativity)时空是闵可夫斯基四维时空,即一维时间和三维空间由光速不变原理紧密联系,组成一个平直的四维时空背景。广义相对论(General Relativity)的时空是黎曼时空,即一个弯曲的四维时空。相对论力学里物质依然是经典力学里的质点、体或场,但是它会直接影响时空背景。质点在四维时空中的运动符合洛仑兹变换。
这个模型揭示了时间和空间不再是经典力学中和物质运动独立无关的背景,而是与物质的质量、能量和运动紧密联系。
三、量子力学(Quantum Mechanics)
图中左上区域是纵向深入到“微观低速”的区域,即量子力学(Quantum Mechanics)的地盘。它的建立以普朗克、爱因斯坦、波尔、德布罗意等物理学家的工作为先导,以海森堡、薛定谔、狄拉克、泡利等物理学家的工作为主体。
这里基本的数学模型是:时空还是经典力学中欧几里得的三维空间加上独立的一维时间,物质运动还是符合伽利略变换,但物质本身却不再是质点或者质点的集合,而是分布在全空间的波函数。一切物理量的取值都要靠它与波函数在全空间的积分才能得到。
这个模型揭示了真实的微观物质不是只具备粒子性的质点,而是同时具有波动性,即分布在全空间的波。
这个领域是现代物理学最大的领域,它孕育了20世纪后半叶的高新技术产业革命,使人类全面步入信息时代。
四、量子场论(Quantum Field Theory)
图中右上区域便纵向深入到“微观高速”区域,即量子场论(Quantum Field Theory)领域。它是量子力学和狭义相对论的结合。从量子力学的几位创始人到标准模型的建立者,诸多20世纪物理学家们的工作完成了这个建立过程,其中包括杨振宁教授和李政道教授的贡献。
这里基本的数学模型是:物质的基本粒子是分布在完全的闵可夫斯基四维时空的波动场的激发态,场的基态是能量不为零的真空态。一个基本粒子的出现和消失(产生和湮灭)是它的场在该模式上的跃迁。场用量子化的拉格朗日密度来描述。
这个模型揭示了真实的物质不仅是量子力学中分布在全空间的波,还和狭义相对论中的时空背景紧密相连。
从各个区域所建立起来的基本数学模型来看,量子场论区域是目前描述自然界最精确的模型,量子力学区域是描述自然界的低速近似,相对论力学区域是描述自然界的宏观近似,经典力学是描述自然界的宏观低速近似(显然关系已经不大了)。
在这我们只能用“近似”两个字,因为人类在了解和认识自然界的过程中是一个不断深入的渐进的认识过程,一个不断积累的认识过程,这个过程将永远不断地有新的发现,就像我们观赏大自然的美景一样,没有终极,越看越美丽,越看越新奇。
横向世界
一、经典力学(Classical Mechanics)
经典力学模型应用到具体的物质运动形式上就可建立刚体力学、流体力学、声学,以及经典的光学、电学、热力学、磁学等学科。现在的物理学家已经很少涉及这个领域,因为在这个领域里基本的模型早已建立完毕并经受住了时间的考验,物理学家也早已把这个地盘交到工程师的手上了,研究的主流变成是对这些规律的应用,这个领域与人类日常生活关系最近。
对于有志于从事机械、建筑、汽车、航天、热能动力等专业的学子来说,牛顿力学和热力学等是必须要掌握的物理基础,这些物理基础引发了人类第一次工业革命。对于有志于从事电力、通讯、电子工程等专业的学子来说,经典电磁学和电动力学是必须要掌握的物理基础,这些基础引发了人类第二次工业革命。
学好这些基础,能让你轻快地进入到这些实用的领域中发展。
二、相对论力学(Relativistic Mechanics)
相对论力学模型应用到具体的物质运动形式上就可建立天体物理学、宇宙学等学科方向,研究宇宙大尺度物理现象,如引力等,从业人数在物理学界占较小的部分。
对于有志于研究天文学和恒星、地外行星、黑洞等各种天体以及宇宙奥秘的学子来说,这个领域便是其归宿。这个领域的实验主要以望远镜观测为主。相对论力学领域是人类认识宇宙和了解宇宙的最前沿,它是人类了解太空的一扇窗口,但是离人类日常生活较远。工作单位一般是各个天文台、大型的地面观测站和太空观测站等科研部门。
三、量子力学(Quantum Mechanics)
量子力学模型应用到具体的物质运动形式上就可建立原子物理学、分子物理学、量子光学、量子电子学,以及凝聚态物理学等学科。物理学家中在这个领域的人数最多,仅凝聚态物理专业的人数就要占所有物理学家的三分之一以上,是物理学最大的分支。保守估计以量子力学为基础理论的这个区域中的物理学家人数应该超过所有物理学家总人数的一半。近十年的诺贝尔物理学奖有6次颁给了这个领域的科学家。
这个领域的特点是基础理论模型完善,计算方便。实验规模小,可在实验室桌面上进行。理论和实验课题数量多且分散,而且作为研究物质结构的基础领域,和化学与生物学等其他学科联系紧密,因此它横向扩张的速度最快,成果也远多于物理学其他三个区域。
这个领域孕育了20世纪的现代科技革命,如半导体元件的发明、激光器的诞生、磁存储介质、液晶,以及最热门的纳米材料、超导体等都是拜他它所赐。因此这个领域不但适合想从事物理研究的学子加入,而且也适合想从事微电子学、纳米材料、量子信息技术等新兴专业的学子们学习。
四、量子场论(Quantum Field Theory)
量子场论模型应用到具体的物质运动形式上建立了量子电动力学(QED),电弱统一理论,量子色动力学(QCD)等理论,作为粒子物理(高能物理)的基础理论,同时研究基本粒子的束缚态如重子、介子和原子核结构等。这个领域是向物质奥秘探索的最前沿,基本理论内容最深奥、计算难度大,但是横向扩张的工作很多。实验需要在大型的粒子加速器上进行,规模庞大,课题集中,成果多是十年磨一剑,因此进展缓慢。
对于有志于探索物理最前沿的学子来说,这个领域最适合,但更需要具备耐得住寂寞和世俗诱惑的能力。这个领域风光无限,魅力无限。
结语
本文的主要内容就是20世纪是如何完成科学的社会化和社会的科学化的。20世纪整个的一百年里,理论科学的发展基本上可以概括为两次科技革命和四大理论模型;应用科学也可以概括为两大超级能量和两大生活技术。
两次科技革命的第一次指的是在19世纪20世纪之交物理学领域发生的科技革命,包括相对论和量子力学的出现。第二次科技革命,在我看来还是一个正在进行中的、尚未完成的革命。这场革命发生在20世纪后半期,就是非线性科学的革命。四大理论模型是在20世纪快结束的时候基本形成的。这个四个模型包括宇宙学中的大爆炸模型、粒子物理学中的夸克模型、分子生物学当中的DNA双螺旋模型、地学中的大地板块模型。也有人说还可以再加一个计算机领域的冯?诺伊曼模型。这四个模型或者五个模型大体可以表达20世纪最重要的一些理论成就。当然不是说其他的成就就不重要,而是说这几个成就格外的重要,因为它们构成了20世纪理论科学发展的一个平台。
应用科学的两大超级能量,第一个能量就是核能量的释放,包括核武器的研制、核能量的释放和利用等。这个可以称之为超级能量的释放。第二个是登月工程。登月工程之所以能够称为一种超级能量,是因为它代表了人类对地球引力的征服,代表了人类走向太空。这是一个人类自古以来从未想象过的一种现实,可以称它为一种超级能量的开发。
那么什么是两大生活技术呢?这指的是20世纪后期发生在我们眼前的两种技术。第一个就是生物技术,第二个是信息技术。人有两方面的存在,一个是社会学存在,一个是生物学存在。人类的生物学存在正在遭受生物技术的改造和改变,这是一种生活技术。人作为社会学意义上的存在,是一种交往性的存在。人是通过交往来认同自己的,每个人都要跟人家交往,把一个人关在一个屋子里老不让他交往,他最后不是发疯就是变成非人。但是交往是要依靠技术的,基本的交往技术就是信息技术。所以今天的信息技术就是我们第二大生活技术。
一、世界图景的重建
我们先来看物理学革命。物理学革命分为相对论革命和量子力学革命。相对论基本上是家喻户晓的了,因为爱因斯坦是20世纪最大的科学明星。爱因斯坦曾经跟卓别林说,为什么所有人都喜欢你,是因为他们都理解你;为什么所有人都喜欢我,是因为他们都不理解我。这就反映了爱因斯坦的相对论非常难理解,不要说一般大众,就是学物理的要真正地理解相对论也是很不容易的,所以爱因斯坦就开了这么一个玩笑。
大家知道相对论分为狭义相对论和广义相对论。狭义相对论主要是在时间空间问题上的一场革命。关键是引出了同时性的相对性。比如说现在我们正在王府井搞讲座,此刻天安门那儿有一场隆重的仪式,那么在什么意义上说,此刻天安门和王府井的两个事件是同时的呢?你可以说我们看表看到是同时的,都是10点钟开始,那边也10点,我们这儿也10点。可是这毕竟是两块表,如何才能知道它们是一致的呢?的确,我们不能肯定现在这块表定的时间和天安门广场那块表的时间完全一样,因此讲同时性就需要对钟。爱因斯坦说,你必须告诉我你是怎么对钟的,他要求同时性要有一个操作的定义。由于要对钟,所以需要信号。最快的信号是光,可以用光来对钟。但是光的速度仍然是有限的,这就意味着在对钟的过程中光信号从天安门传到王府井是需要时间的,这就会遭遇一种相对性效应。在一个静止的人看你对钟和一个运动的人看你对钟,对出来的是不一样的。爱因斯坦借此提出同时性的相对性,也就是说,对于一个参照系中的观察者来说是同时的,对另一个参照系的观察者就不是同时的。根据这个同时性的相对性,爱因斯坦就推出了他所谓的狭义相对论。同时性的相对性还比较好理解,但由此出发得出了很多很古怪的结果。
第一个古怪的效果叫尺缩钟慢。在不同的参照系里的人看来,尺子的长度是不一样的。一个运动的尺子会比在静止时短,这个叫尺缩;运动的钟要慢一点,这是钟慢。这个尺缩钟慢效应不是任何外力作用造成的,就是参照系本身造成的,是运动学效应不是动力学效应。由于运动是相对的,你看见我的钟慢了,我看见你的钟也慢了,那么到底是谁慢了呢?由于处在不同的参照系,这个问题是没有意义的。但是,要是让一对双生子派一个人先出去跑一圈再回来,由于他们都会发现对方时钟慢了,生命的生长也慢了,于是对方都比自己年轻了,这样再次碰面就会出现悖论:到底是哪一个更年轻?这就是著名的双生子悖论。这个悖论在狭义相对论里解决不了,只有在广义相对论才能解决。大家知道,一个宇宙飞船飞出去又飞回来,它必然要经历一个加速运动才能飞出去,飞出去之后要想再回来,它又要经历一个减速运动。一加速一减速就不符合狭义相对论的条件,就是广义相对论处理的问题了。经历了加速场的人,按照广义相对论来说,他应该是绝对地变年轻了。因此按照广义相对论,这个双生子悖论是可以解决的,答案是坐宇宙飞船出去转一圈的那个人变年轻了。这是我们要说的尺缩钟慢效应。
还有一个很重要的推论,就是很多人都知道的质能转化公式,E等于MC2,E是能量,M是质量,C是光速。根据这个公式,稍微有一点点质量的损失,可以变成巨大的能量。过去分别有质量守恒和能量守恒,现在两者是一回事,合起来叫质能守恒,这个也是狭义相对论所得出的结论。
接着我们说一说广义相对论。广义相对论处理的是加速问题。牛顿力学里面有两个质量,一个是牛顿第二定律规定的那个质量,我们称为惯性质量;另外一个是万有引力定律里面的,叫引力质量。在牛顿时代,引力质量和惯性质量被认为当然是同样一个质量,但是这个并没有予以说明。爱因斯坦认为,这两个质量的同一性实际上表明了引力场和加速场的等效性。说白了就是,引力场和加速场本质上是一回事。爱因斯坦最喜欢用电梯做思想实验,历史上称为爱因斯坦电梯。比如说你坐在封闭的电梯里,并且用台秤秤自己的重量,现在你发现台秤上显示你的重量大于你的体重,那么爱因斯坦说,你不能肯定究竟是你所在的电梯正在向上加速运动,还是地球的引力突然增大了。这就是加速场和引力场两者不可分的意思。根据这个等效原理,他推出了广义相对论。
广义相对论也有很多重要的预言。其中最有意思的一个推论就是,他认为物质和空间之间不能够像过去那样看成相互外在的两个东西,比如说空间是一个篮子,物质就像篮子里的菜;空间是那个书架子,物质就是书架上的书。爱因斯坦说这不对的,实际情况是,空间变成了物质的某种几何性质。广义相对论主张,有什么样的物质,就会有什么样的空间。就好比篮子装了菜,篮子就发生变化;书架装了书,书架会发生变化。任何有质量的物质都会引起周围空间的弯曲,质量越大、引力场越大,空间弯曲得越厉害。过去我们认为月亮绕地球转,是因为有地球的引力在拉着它,现在,按照广义相对论的说法,好是因为地球的引力场让地球周边的空间变弯了。月亮某种意义上是在走一个直路,只不过空间弯了,它走的直路在我们看来也是一个弯路。
空间弯了,一向走直路的光线当然也会弯曲。这个说法当然是非常奇特的,一般人觉得不可思议。爱因斯坦说只有在特别强大的引力场之中,光才能发生弯曲。我们地球周围最大的引力场就是太阳,太阳质量最大,可是白天太阳很亮,没有办法用它来判定光线是否在经过它是否发生了弯曲。但也有办法,就是等日全食的时候,月亮正好把太阳全部遮住的时候,我们再来看一看处在太阳背后的那个恒星的光,能不能绕过太阳被我们看见,如果能的话就证明爱因斯坦说得是对的。这件事情正好发生在第一次世界大战之后,英国的爱丁顿率领一个考察队专门去考察日全食的时候光线是不是发生弯曲,考察的结果居然是真的发生了弯曲。当时就一下子轰动了,爱因斯坦从此成为家喻户晓的科学家。
我们讲这些基本的东西,是要想说明爱因斯坦的相对论,对人类关于时间、空间、宇宙的基本观念产生了一场革命性的转变,因此我们说爱因斯坦是20世纪的一个科学革命家。下面我们再来讲讲量子力学。量子力学从某种意义上说,比爱因斯坦的相对论还要深刻,它里面所包含着的革命性因素还要多,主要表现在几个方面。
第一个是微观领域里物质的波粒二象性。微观粒子既表现出波的特性,又表现出粒子的特性。粒子的一个特点是它有个定义明确的界限,有自己独一无二的位置。波则是一个弥散的东西,不能说波在什么位置,波是处在整个空间之中。这本来是两种完全不一样的物质形态,但量子力学发现,微观粒子既像是粒子也像波。比如说这个屋子有两个门,我们每个人进来的时候总只能从一个门进来,你不能说我同时从两个门进来的。可是量子力学发现,微观领域的粒子就是从两个门进来的。同样,它也是从两个门出去的,因此,你就不好说它出去之后究竟在什么地方。
第二个叫做测不准原理。一个粒子的能量和时间、质量和动量不能够同时精确测定,也称为不确定性原理。为什么量子领域会发生这个事情呢?主要的一个原因是我们对量子领域的现象必须通过实验才能了解,可是实验总是会对对象有干预。比如说我们这个黑屋子里面有一个球,现在我们来问这个球在什么位置,当然我们不知道在什么位置,因为屋子太黑了我们看不见。为了知道它在什么位置我必须把灯打开。可是把灯一打开之后,那个灯的光线就对那个球产生作用。对一个宏观的球来说,光线不大可能对它产生什么明显的影响,可是在量子微观领域,这个光子跟这个球差不多,它就完全有可能把球打到不知道什么地方去了。即使你打开灯之后看见那个球在某个位置,你也不能说没打开灯之前那个球在什么位置。如果你不开灯你看不见,一开灯球又变了位置了,所以这就是为什么量子力学说搞不清楚它在什么位置的一个根本原因。
量子力学还有很多这类稀奇古怪的现象。经常有物理学家自嘲说,如果你在学过了量子力学之后没有意识到自己根本不懂量子力学,那么你就真是不懂量子力学。只有当你知道自己不懂量子力学之后,你才能说自己稍微懂得一点量子力学。量子力学在20世纪初产生后,与实验符合得非常好,成了整个20世纪科学的一个基本的平台。今天诸位都用了手机,用了电子设备,其实里面都包含着量子力学的理论成就。量子力学我们就讲到这里。
下面我们讲讲四大理论模型。
四个理论模型里面宇宙学和相对论联系最深。牛顿以来的宇宙学基本上就没了,因为宇宙被认为是无限的,无限的宇宙没法研究。爱因斯坦相对论提出来之后,他发现可以把宇宙整体作为一个研究对象,建立方程。这个宇宙方程导出的解都表明宇宙不是稳定的,但他当时觉得宇宙总体上应该是一个稳定的东西,所以他加了一个宇宙学项,强行把从相对论宇宙学中导出了一个静止的宇宙模型。也有一些数学家试解爱因斯坦的宇宙方程,提出了好多次数学方案,这些方案都表明宇宙是不稳定的。由于没有观测证据,数学家自己算着玩,也没有人当真。
有意思的是,大概在2 0年代末,美国的一位天文学家叫哈勃(哈勃望远镜就是以他的名字命名的),他发现银河系外面的星系都有红移现象。红移就是光谱向红端移动,向低频段移动,人们马上联想到多普勒效应。多普勒效应很简单,说的是一个运动的振动源在观察者看来,振动的波长和频率都是要发生改变的。我们都有这个经验,一列火车鸣着汽笛向我们开来的时候声音越来越尖锐,离我们而去的时候声音越来越低沉。这不是因为它这个汽笛声调发生了变化,而是因为我们和火车之间的运动关系发生了变化。它向着我们来的时候是越来越尖锐,声音的频率发生了蓝移;离我们而去的时候声音越来越低沉,发生了红移。河外星系都有这样的红移现象,这就意味着所有的星系实际上都在离我们远去。如果所有的星系都离我们远去,这就意味着整个宇宙都在膨胀。
这个观察证据发现之后,立即就被人联想到那些数学家所给出的宇宙膨胀模型。理论与观测相遇了,现代宇宙学就这样成长起来了。如果说宇宙是膨胀的话,那么往回追溯它应该越来越小,小到一定地步应该就变成一个点。从点状如何膨胀出一个宇宙?点之前又是什么东西?这就是一个大问题。宇宙学家提出一个理论说,宇宙是从起点处高温、高压、高密度的奇点状态爆炸过来的,爆炸瞬间之后,是一团宇宙雾,或者说一锅宇宙汤,随着温度慢慢变低,依次产生现在我们看到的这些物质,核子啊、电子啊这些东西,后来慢慢再出现星系、星云,出现行星,整个宇宙就出来了。在冷却的过程中实际上还有点雾没有彻底冷却,这个很稀薄的一层雾始终还在,大概相当于绝对温度三度这样子的辐射,是早期宇宙汤的一个遗迹。这个遗迹后来居然也被发现了,这个发现也是非常巧的。几个搞射电天文的人做了一个射电望远镜调试,怎么调试也不能复零,老有一点本底噪音。这个本底噪音当时被认为是望远镜没做好的一种表现,他们很苦恼。但是他们在普林斯顿大学吃饭的时候跟同事们谈起来,说我们造了一个望远镜,怎么调也调不到零,本底噪音不知道怎么来的。说者无心听者有意,旁边的理论宇宙学家一听,这个本底噪音不就是宇宙背景辐射吗?他们于是结合起来研究,证明那个本底噪音就是宇宙汤在冷却过程中留下的那一点点雾,称为微波背景辐射。这个辐射的发现就成了对热大爆炸宇宙模型的一个有力的支持,这个模型从此就有力地确立下来了。这个模型也很受理论物理学家喜爱,因为很多高能物理实验在地面上不好做,做不出来,但有了这个模型,我们就可以虚拟地在宇宙早期去做。因为宇宙早期温度高,密度大,成了理论物理学家很钟爱的一个模型,他们可以在这个模型的基础上做思想试验。
第二个模型就是所谓的夸克模型。大家知道一分为二的思想。所有的物质都是由分子构成,所有的分子都是由原子构成,所有的原子都是原子核和电子构成,原子核由质子和中子构成,质子和中子由基本粒子构成,还能不能接着分下去呢?过去我们说一尺之捶,日取其半,万世不竭。可是问题是,你想是可以这么想,但能不能真的分得下去得靠科学来说话,得做实验。实验结果却表明,这个夸克模型分不下去了。因为到了量子领域之后,质能转换关系开始起作用了。打个比方说,你用刀去切苹果,在宏观领域里,苹果是苹果刀是刀,是两个不同的东西。可是到了微观领域,代表着分解方的刀和代表着被分解方的苹果是可以互相转换的,相当于说,你切着切着,刀切没了,变成苹果了。本来应该是苹果越切越小,由于刀切没了,转化成了苹果,因此苹果被切之后有可能变成两个更大的苹果。由于质量和能量可以相互转化,高能粒子在切割的过程中并不是越变越小,这样一来,所谓的无限可分就变得没有意义了。夸克模型认为夸克实际上根本打不开,一个很重要的原因是道高一尺魔高一丈,你敲击的能量越大,它禁闭的能量也越大,所以根本就打不开。这是夸克模型。
大家都很熟悉了。今天我们处在一个生物技术的时代,基因的时代。基因时代之所以能够到来,与DNA双螺旋模型的发现是有关系的。过去我们只知道有基因,基因在染色体上,那么具体来说基因是什么样,有什么样的内在结构,过去都不知道,现在都搞清楚了。20世纪50年代有两位英国的年轻人,在前人的工作的基础上最终发现了DNA实际上是两个链缠在一起,缠成一个双螺旋,有了这个双链条模型后人们才能精细地对基因进行研究和加工。今天我们知道的基因复制、基因修补、基因重组,都是建立在这个DNA双螺旋模型的基础之上。所以这个模型对于今天生物科学的发展,对于我们生物技术的发展都是功莫大焉。但是大家也要注意到,DNA双螺旋模型的发现是与微观物理学的发现有直接关系的,刚才我们讲的量子论和相对论都是有贡献的。因为DNA这个东西很小,必须用电子显微镜来看。电子显微技术实际上是建立在当时量子力学这样一些物理学基础之上的。所以某种意义上说,这个DNA双螺旋模型的发现,理论物理学也是有很大功劳的。
大地我们过去只知道有纵向的运动,地震就是典型的纵向运动,上下动。人们从来没想到大地还有水平的运动,地那么大的东西怎么会水平运动呢。但是有些人就注意到了,我们的世界地图几大块之间的关系,实际上暗示了它过去可能是一个整体。有一位地质学家叫魏格纳,有一天他躺在床上看世界地图就发现,非洲大陆跟美洲大陆边界好像能接上,他就想是不是早期它们是一整块的,后来才分开的。这个思想当然过于大胆了,人们很难设想地球那么大的玩意儿还能够水平运动。他有了这个设想之后,就想去验证它,而且写了书,但是得不到大多数人的认同。所以这个大地水平运动理论,一直经历了大概半个世纪的争论,反复地研讨,最终在20世纪60年代终于得到了地质学界的认同,被认为是地质学中的一场革命。这场革命确立了大地的板块模型,以及这个板块的漂移运动。有了这个板块模型,所有的关于地质、地球物理的研究就有了一个崭新的面貌。所以板块模型也被认为是20世纪最重要的一个模型。
第五个模型我们讲的是冯?诺伊曼模型。冯?诺伊曼模型是计算机领域的一个模型,今天我们用的电脑基本上都属于冯?诺伊曼机。冯?诺伊曼机的一个基本原理就是把操作程序代码化,把数据和程序储存在一起。大家知道我们今天的硬盘里既存数据,也存软件。软件就是操作程序,数据是我们用的,比如说文字、图象等。冯?诺伊曼机发现把它混在一起可以提高效率,过去这两个部分是分开的,操作是操作、数据是数据,但是运算速度很慢。冯?诺伊曼提出来把两者混在一起,统一编码,这样就大大地提高计算机的运算的速度。今天我们用的电脑依然属于这个范畴。因此有人认为冯?诺伊曼模型也是20世纪最重要的理论模型之一。
20世纪60年代以来,不断出现了一批横断学科、新兴学科,被有人称为第二次科学革命。在我看来,这场科学革命是比相对论、量子力学更加深远的一场思想变革,它要打破近代自牛顿以来的一些对世界的看法,参与这场科学革命的学科很多,非线性科学、复杂性科学、系统科学、生态科学都卷入其中。
这些新的科学都想破除传统科学里面的机械决定论思想。牛顿力学世界观的一个理想是,给定全部的初始条件我就能告诉你世界的过去、现在和未来。法国科学家拉普拉斯对此有一个形象的表述。他说只要有一个万能的计算者,你告诉他这个宇宙的初始条件,他就能算出宇宙的过去、现在、未来。在他看来,难题只在于有没有这样一个万能的计算者,世界的决定论特征是没有问题的。拉普拉斯的这个形象的说法,现在看来是有问题的。决定论的信奉者也是征服自然、改造自然的信奉者。我们因为能掐会算,能够精确地预言、预测,因此我们什么都不怕,我们可以无所顾忌地改天换地。因为我能够精确地知道,我对自然界的改造会造成什么样的后果。如果你不能够知道后果,那么人类对自然会有所敬畏。新的科学认为人类对自然的研究,并不能够获取完全的确定性。我们只能或然地了解世界,我们对于世界长远的后果是没法了解。这就是所谓的非线性效应、复杂性效应、生态效应。过去有一个箴言说人算不如天算,包括这个意思。历史上的许多原始文化、传统文化都强调要敬畏自然,主张自然的很多后果我们是难以预料的。但是,这个论调是近代科学所不理会的,近代数理科学传统认为自然界是一个确定的体系,现在看来这个信念过于理想。新的科学发现了路径依赖和初始条件敏感,就是说初始条件微小的变化将会非线性放大,放大到不成样子。通俗的讲法就是所谓的蝴蝶效应,说的是北京的一个蝴蝶扇一下翅膀,结果在纽约造成一场风暴。一个玩笑说,坏了一只马蹄铁,损失一匹战马,损失一匹战马带来一场小小战役的失败,小小战役的失败带来一场大战役的失败,大战役的失败带来战略性的失败,战略性失败带来国家的灭亡。这每一步都是非线性放大,结果是一只马蹄铁坏了导致一个国家灭了。非线性效应在现在看来不是个别的、孤立的,而是普遍的,处处都存在。过去认为整个宇宙尺度上,还是牛顿力学说了算,现在看来牛顿力学只能是小范围说了算,大范围反而都是非线性系统。我想这是一个很重要的观念革命。
第二个方面是整体论的出现。过去的科学都主张对世界进行分割、切割,把宏观的东西还原为微观的东西,把整块的东西切割成小的东西。我们先对小的、简单的东西进行研究,研究了小的东西,那么大的东西自然就可以拼出来了。方程都是微分方程,微分方程算出来之后进行积分。微积分的过程就是一个原子化的过程,积分的过程就是一个拼装的过程。所以近代以牛顿力学为代表的世界观,基本上是一个拼装、拆拼的世界观。我们做什么事、看什么问题,都先是把这个事情把它拆开了、分解了,模块、板块化。现在我们管理学里面经常搞模块化、板块化,其实就是来自经典科学里面的原子论思维。流水线生产也是,把汽车都拆散了。过去造东西是一个工匠从头造到尾,现在是一个人造一点点,造完以后拼起来就行了,又快又好。这是现代性思维的一个很重要的部分,也是古典科学的拼装世界观的反映。这种拆拼世界观、原子论世界观有个问题,就是忽视了世界、事物本身是个有机的整体,拆和拼的过程中肯定会损坏或者忽略掉有机的部分。我们都知道有许多东西是拆不出来也拼不出来的,这就是整体的东西。比如我们说一个和尚挑水吃,两个和尚抬水吃,三个和尚没水吃,这就是一个整体论效应。如果按照线性相加的原则,一个和尚挑水,两个和尚就挑两担水,三个和尚挑三担水。但这是原子论的思维,实际上并不是这么回事,和尚越多越没有水吃。也有人说,一个中国人是一条龙,三个中国人成了一条虫,这也是整体论效应,搞在一起反而内讧、相互拆台。这个效应你通过拆分拆不出来,拆出来之后的东西就像我们刚才讲的量子效应那样,有可能越拆越大,越拼越小,这就不是线性效应。
还有一个方面是,新科学确认了世界的不可逆性。牛顿力学根本上认为,一个物理系统是可以反演的。时间变成负的无所谓,反正牛顿方程里面的时间都是以平方的方式出现的。不可逆性早在19世纪后期热力学第二定律出现的时候就已经认识到了。人们发现一杯热水放在空气里面,它只会越来越凉,一直凉到和空气温度一样为止。从来没有一杯冷水放在桌上,能从空气中吸热把自个儿烧开了。从来只听说过破镜难圆,没听说过一个破碎的镜子最后自己能重回圆满,打碎的瓷器难复原、覆水难收都是这个意思。可是按照牛顿力学,这种逆转原则上是可以的。宏观上看一个物理系统总是按照一个不可逆的方向发展,一杯水总是慢慢地变冷或者变热和室温保持平衡,从来没有越来越偏离室温的情况出现。这种不可逆现象出来以后,很多科学家很苦恼。因为所谓的热力学定律不过就是微观定律的一个宏观表现而已,微观领域的粒子肯定都是符合牛顿定律的,因而是可逆的,可是为什么微观里面是可逆的,宏观就不可逆呢?当时有一位奥地利的物理学家叫玻耳兹曼,一直在试图解决这个问题,结果到死也没有解决问题。最后他是自杀的,没解决这个问题很苦恼,自杀了。这个问题到现在也没有完全解决,但是新科学,就是非线性科学、系统科学、复杂性科学、生态科学都试图把这个不可逆性作为一个基本的现象来处理,而让牛顿力学的东西作为一个次级的现象。这是新科学的一个崭新的变化,这个变化将更加符合我们的日常生活经验。
科学与人文在现代之所以分裂有一个重要的原因就是古典的物理学、古典科学不再关注价值问题,只关注事实,造成了事实和价值的二分。事实和价值之所以二分,是因为古典力学、古典物理学、古典科学所面对的对象是一个机械。机械本身是没有目的的,没有目的就没有价值。有机体都是有目的的,机械没有目的。如果你把世界本身看成个机械,那么这个世界本身就谈不上什么价值,价值只属于人。于是,人和自然、事实和价值、科学与人文之间就发生了分裂。可是新的科学认为世界本质上不是一个机械,而是一个有机体。这个有机体有自身的目的、有自身整体的效应。机械论理想局部是合理的,但是它是有限度的。因为特定的目的、特定的目标我们可以把世界看成个机械,但是根本上来看,世界并不是一个机械,而是一个有机体。这个有机体有整体效应,有非线性效应,它的变化过程是不可逆的。一个人只能由小孩长成青年,青年长成中年,中年变成老年,老年最后死掉,不可能倒着长,倒着长不是有机体的模式。想倒着长恰恰是机械自然观的一个必然后果。从这个意义上说爱因斯坦的相对论,特别是狭义相对论总体上看也还属于机械自然观的范围。爱因斯坦相对论是允许时间倒流的,逻辑上它允许时间倒流。好莱坞电影里面特别喜欢借用这个东西,来幻想时间倒流,从而产生一些非常异样的场景叠加,那就有戏可看了。电影总是要有戏可看,所以他们特别喜欢援引相对论这些东西。其实可逆性思想已经遭到了新科学的质疑。
本世纪以来,物理学哲学研究有了长足的进步,这与现代物理学所具有的一些新特点有很大关系:一是本世纪理论物理学研究在许多方面超前于实验物理学的研究,人们无法对理论物理学的一些结构及时通过观察和实验进行检验,这就使得人们从认识论和方法论角度对物理学思想的合理性和物理学理论自身逻辑结构的自洽性的验前评价变得十分重要;二是当今各种物理学理论(如相对论和量子论)在逐步统一过程中所显现出的整体有机联系的自然图景和对在极端条件下(如宇宙爆炸初期)的物质特性的探索都促使物理学与哲学进一步融合起来,使物理学家感到了从哲学的高度去更深刻地把握物理学前沿提出的种种物理学理论和概念问题的必要性;三是当代物理学所研究的微观和宇观客体的物理性质与规律,由于不能被我们的感官所直接感知,这就必须从认识论的角度说明现代物理学理论描述的微观或宇观世界图景的合理性与真实性,从而在微观或宇观世界与我们日常生活的宏观世界之间建立起一道相互理解的桥梁。
正是现代物理学的这些特点,决定了当代物理学哲学的不同研究途径,即从不同的角度出发,对物理学进行哲学反思,达到丰富和发展哲学认识论与方法论以及加强对物理学理论和概念自身理解的目的。
一
物理学哲学的研究途径之一是从通过对物理学概念,尤其是新物理学概念,物理意义的阐释入手,提高到哲学高度进行分析,进而促进了哲学的发展。这一方面是由于如量子力学创始人之一的海森堡所说:“一部物理学发展的历史,不只是一本单纯的实验发现的流水帐,它同时还伴随着概念的发展,或者概念的引进。……因为正是概念的不确定性迫使物理学家着手研究哲学问题”。(〔(7)〕,第185页),另一方面则是因为物理学是研究最基本的物质运动规律的科学,所以许多最基本的物理学概念,如物质、运动、时间、空间、宇宙等也同时是哲学的基本概念,这些基本概念的变化不仅导致物理学理论的变更,也标志着哲学的重大发展。因此,对这些基本概念的理解,往往是各个哲学流派之间争论的焦点。而对这些概念的哲学争论,又总是围绕着物理学的最新进展而展开,所以从物理学概念入手进行物理学哲学的研究是中外许多哲学家和物理学家最为关注的研究途径。
科学研究从问题开始,而现代物理学的建立则是从概念问题的突破开始的。普朗克1900年为了解决黑体辐射问题提出了作用量子的概念,但他受经典物理学思维框架的约束,当时并没有深刻的理解这个概念实质性的物理意义,只把它当成了一般的工作假说加以运用。只是当爱因斯坦(1905年)运用这个概念建立起光量子假说后,它的实质性的、突破传统经典思维模式的巨大意义才得以凸现出来,并引起物理学界乃至于后来哲学界的广泛关注。玻尔、海森堡等人沿此思路建立了原子结构模型,并最终建立了量子力学理论,对量子概念物理意义的探讨又导致与传统决定论思维模式相悖的非决定论思维模式的产生,这不仅使物理学的理论基础发生了根本的变化,而且使传统的认识论观念也有了重大的转变。
当人们对迈克尔逊—莫雷实验的否定结果迷惑不解时,彭加勒、洛仑兹等人为了维护牛顿的绝对时空不得不提出“虚拟时间”的概念来解释这一奇怪的结果。爱因斯坦则从麦克斯韦电磁学理论与经典力学伽利略变换之间的矛盾中看出了问题的实质所在。他看出了牛顿所谓的绝对时间并非是有物理意义的真实时间,而彭加勒、洛仑兹等人认为是“虚拟时间”的概念却是在实际观测中可以测量到的真实时间,这不仅使迈克尔逊—莫雷实验的难题迎刃而解,而且一举建立了狭义相对论。从这里又引发了一轮重新认识时间和空间这一对古老哲学概念的热潮。
随着广义相对论的提出和现代宇宙学的建立,使人们对时间和空间的研究进入了一个新阶段。哲学家们纷纷依据物理学的最新研究成果对时间空间概念进行新的阐释,乃至于给一些古老的哲学命题,如康德的“二律背反”以新的说明。(参见〔(1)〕原苏联和我国的一些哲学工作者通过对相对论时间和空间概念与物质运动、物质分布状态关系的分析,进一步论证了恩格斯当年对时间和空间这对哲学范畴的正确定义。随着现代宇宙学的兴起和发展,人们对“宇宙”概念也有了新的认识,于是,有关宇宙有限还是无限、哲学的“宇宙”概念与现代宇宙学所说的“宇宙”之间究竟是什么关系等问题的讨论,又成了哲学界和科学界共同关心的热点。可是,当人们正沉浸在广义相对论解决宇宙演化问题所取得的成就时,却不得不沮丧地发现,所有已知的物理学定律在广义相对论时空曲面的奇点处都失效了。从理论上来说,所谓宇宙大爆炸最初的原始火球在数学上的表示就应该是一个奇点,也就是说,如果宇宙起源于奇点,我们难以用现有的任何物理学定律说明宇宙爆炸的原因。于是有的科学家戏称说,既然宇宙是上帝创造的,那么只好把这个问题留给上帝,胆敢问这个问题的人,上帝将使他下地狱。
英国著名物理学家霍金是最早开始研究奇点问题的物理学家之一,近年来也是他提出了试图用量子引力理论来绕开奇点问题的方法。他为了避免当年费因曼处理微观粒子时假设的各态历经的技术困难,并类比他用交换虚粒子来说明粒子间相互作用的方法,提出了“虚时间”的概念。虽然如他自己所说:“虚时间”是一个意义明确的数学概念,“就普遍的量子力学而言,我们可以把我们对虚时和欧几里得时空的运用,仅仅视作一个计算实时空答案的数学方法(或手段)。”(〔(8)〕,第162页)但由于量子引力理论假定宇宙没有任何边界,“宇宙将完全是独立的,不受外界任何事物的影响。它既不会被创造,也不会被消灭,它将只是存在”。(〔(8)〕,第164页)而“虚时间”的应用,则使人们绕开了宇宙起源于奇点和终止于奇点这种用奇点构成时空边界的困难,让物理学定律在任何时空区间都有效。正是有这个意义上霍金认为:“所谓的虚时实际上是实的,而我们所说的实时只是我们想象中虚构的事物”,“也许我们所说的虚时实际上是更基本的东西,而我们称作实时的只是为了帮助我们描述我们想象中的宇宙模样而创造的一种想法。”(〔(8)〕,第168页)
霍金对科学理论的看法持有工具论的立场,但对于“虚时间”的概念是否如他所说是更基本的东西,不在于理论上是否更为合用,而在于它是否能够作出可观察的预言并在实践中得到确证。在此以前,我们至少应当接受本世纪初的教训,不要把我们现有的物理学理论所描述的时空概念又看成是绝对不可改变的,更不应该在没有充分理解一些物理学家所提出的新物理概念的明确物理意义之前,甚至在没有仔细阅读霍金原著的上下文意思之前,就把他们与哲学中的后现代主义思潮拉扯在一起。在这里,重温一下爱因斯坦的一段话,可能对我们会有所启发:“为了科学,就必须反复地批判这些基本概念,以免我们会不自觉地受到它们的支配。在传统的基本概念的贯彻使用碰到难以解决的矛盾而引起了观念发展的那些情况,这就变得特别明显。”(〔(15)〕,第586页)
近期物理学哲学的发展中可能更加值得注意的动向是,随着本世纪许多新兴学科的兴起,使许多新的科学概念越来越渗入到哲学研究之中,如系统、信息、控制、混沌、有序、无序等等概念,早已不再是某些专门学科的专业术语。由于这些概念的普适性,它们已成为各门学科中广泛使用,乃至于在日常生活中经常提到的概念。它们不可避免地会逐步上升为哲学范畴。对这些新概念的产生和普及,物理学有很大的贡献,正是由于本世纪对远离平衡态热力学的研究,才加深了人们对时间方向性,对物质系统的演化,对有序、无序、混沌等等物质状态的认识,从而也极大丰富了哲学的内容。下面我们还将谈到,正是由于这些研究引起了人们思维观念的巨大变化。从而也使得传统的哲学在许多方面发生了革命性的变革。
对概念的更高层次的元理论研究已不局限于物理学哲学的范围,而是在更为广泛的科学哲学层次里展开的,不过,由于物理学相对于其他学科而言更为成熟,更为精确,物理学史的研究也比其他学科史更为细致,所以许多科学哲学家仍利用对某些物理学概念的分析作为阐述自己观点和与他人论争的依据。例如,库恩和费耶阿本德通过对“质量”这个概念在经典力学与相对论中的不同涵义,以及“电子”这个术语在不同时期指称对象意义变化的分析,得出了前后相继的科学理论或不同范式之间不可通约的观点(参见〔(14)〕、〔(22)〕),从而引起了科学哲学界的极大争议。而普特南等人则同样根据对“电子”一词涵义变化的分析,说明了他的有关自然种类名词因果—历史指称理论,并驳斥了库恩和费耶阿本德的不可通约性的观点。
目前,随着物理学和哲学的进展,沿着这个途径的物理学哲学研究正在蓬勃发展。一方面,新的物理学概念不断涌现,人们常常需要从物理学之外对这些概念进行阐释才能理解它们更深刻更普遍的意义,而这些概念的广泛应用也不断充实了哲学的内容;另一方面,哲学自身的发展也需要不断从自然科学,包括物理学概念的变革中吸取养料,提出新的问题、新的观点,拓展新的思路。
二
物理学哲学研究的另一个途径是通过物理学前沿哲学问题的讨论,使一些传统的哲学观点产生根本变革。这条途径在很大程度上离不开对新物理概念的分析。从这个意义上说,它与前面所讨论的途径并无根本的区别,只是这条途径更着重于对物理学前沿所涉及到的一些基本哲学问题,如认识过程中主客体之间的关系,因果性的决定论与非决定论以及与其相关的必然性与偶然性的关系,可知论与不可知论,实在论和工具论等等,进行进入地探讨。
本世纪在物理学界和科学哲学界影响最大的一场争论就是爱因斯坦和以玻尔为首的哥本哈根学派关于量子力学理论基础的争论,这场争论的和至今余波未息的争论焦点集中在对爱因斯坦等人提出的EPR悖论的理解上。这场发生在量子力学创始人之间的争论虽然是从对诸如量子力学中波函数的物理意义、海森堡不确定性原理(或译测不准关系)和玻尔互补原理的理解开始,进而讨论到量子力学是否完备的问题,但这场似乎只是纯物理学,甚至是理论物理学的科学争论,一开始就带上了浓厚的哲学色彩。
这主要是因为微观客体所表现出来的诸如波粒二象性等特征,用描绘宏观现象的日常语言实在难以准确表达其确切含义,再加上对微观客体的实验安排也呈现出与经典物理学实验许多不同的特征。如何正确理解量子力学的数学符号所蕴涵的物理意义?量子力学描述的微观客体的行为特征究竟是不受主体干扰的客观规律所致,还是宏观仪器对微观客体不可避免的干扰下主客体相互作用的结果?微观客体所表现出的随机性究竟是微观客体的本质特征,还是认识主体认识局限性的结果?进而,到对微观客体行为的理论描述究竟应当坚持决定论的思维模式,还是非决定论的思维模式,用爱因斯坦的话来说,就是我们是否相信上帝会掷骰子?物理理论的每个元素是否都必须在实在中有它的对应物,亦或物理理论只是一种对实在的本体论承诺,甚至只是我们为了解释现象或解决问题的方便而使用的一种工具或符号系统?这些问题早已不是物理学本身所能解决的,但又是物理学家们不得不解决的,人类不倦的求知欲促使他们转而寻求哲学的帮助。这就使得本世纪初许多量子力学的创始人都是哲学家,普朗克、爱因斯坦、玻尔、玻恩、海森堡、薛定锷等人在哲学界的影响并不比他们在科学界的影响小。他们的哲学观点往往是本世纪科学哲学讨论问题的出发点,由此而引发的实在论与非实在论之争仍是科学哲学界的热点问题之一。他们的哲学专著又成了许多一流科学家案头必备的读物,以便随时从中得到智慧的启迪。实际上,爱因斯坦与玻尔这场上升到哲学的争论,经过贝尔等人的努力,重又变成了用物理学实验可以进行经验检验的问题,检验的结果虽不足以最终决定谁是谁非(尽管哥本哈根学派明显占了上风),但却明确说明了物理学与哲学的密切关系,物理学哲学绝不是纯思辨的玄学。
当然,一流科学家也是哲学家的现象绝不仅限于量子力学领域。彭加勒、布里奇曼等人不仅在物理学界享有盛誉,甚至还是一些哲学流派(约定主义,操作主义)的创始人。维纳、普里高津等人虽然算不上正统的哲学家,但他们的哲学素养却为世人所公认,他们的科学成就对哲学思维方式的影响应当说有划时代的意义。从康德提出星云假说开始在当时占统治地位的形而上学世界观上打开了第一个缺口,但完成这个星云假说的拉普拉斯却把从牛顿开始的机械决定论思维推向了极端,并且产生了巨大的影响。如果说量子力学哥本哈根学派的非决定论思想是对这种机械决定论思想发起的一场重要挑战的话,那么由于量子力学只涉及到微观领域,还不足以在思想界和科学界抵消拉普拉斯的影响。19世纪德国古典哲学家们总结的辩证法思想虽然曾对19世纪科学的发展产生过影响,但由于其思辨色彩太浓也受到了许多科学家的抵制。但贝塔朗菲、维纳等人创立了系统科学,尤其是普里高津等人从热力学等实证的经验科学本身得出系统演化的思想以后,普遍联系和发展的观点对于科学家们来说,不再是外在的哲学教条,而是在科学中必须严格遵守的思维准则。更重要的是,自组织理论、非线性科学所揭示偶然性与必然性之间的新联接清楚地表明,非决定论的思维方式绝不仅限于微观领域,严格因果决定论在我们日常生活中也不是普遍适用。我们不能再用严格因果决定的观点来作为可知与不可知的界限,我们知道我们认识的某些界限(例如长期准确天气预报的不可能)也是可知,甚至是认识深化的表现。对看似无序的混沌现象的研究,却使我们能够说明许多过去简直无法理解的复杂现象,例如天气变化,中枢神经系统运动等等。物理学哲学在这方面的研究方兴未艾,尽管已有了一些成果,但还只能算是刚刚起步。物理学哲学的发展,已经引起了越来越多在物理学前沿领域工作的第一流科学家们的注意,对他们的研究工作产生了一定的启迪作用。
三
利用当代物理学及其相关学科的最新成果构建新的自然图景,并对此进行哲学反思是物理学哲学的又一研究途径。其实,这个研究传统由来已久,哲学既是一种理论化、系统化的世界观,对世界作一个总体的描绘和系统全面的认识就是它的首要任务。古代自然哲学凭借哲学家自己的直观和猜测来构建整体的世界自然图景,结果是五花八门,莫衷一是。自从近代科学诞生以后,哲学家们(即使是宗教哲学家)或多或少都要依居他们所知的自然科学成果来构建自己的自然图景,但他们对这幅图景的理解或解释却可以由于他们的信仰而有很大的差异,甚至根本对立,尤其是当他们面对最新的科学成果,而这些科学成果表现出了一些与传统哲学不同的思维方式时,更会使哲学家们对这些科学成果的理解上产生更大的差异,由此而引起的争论往往成为哲学界的热点。
现代物理学的发展使古老的涉及到自然图景的争论,如物质是否无限可分和宇宙是否无限等问题又增添了许多新的内容。
上世纪末物理学中关于X射线、电子和放射性现象的三大发现打破了原子不可再分的古老神话,揭开了人类对物质结构探索的新篇章。随着原子结构和基本粒子的大量发现,物质无限可分的观点似乎得到了科学实验的有力证明。但正当人们信心百倍地探索到更深层次的亚基本粒子结构——夸克层次的时候,却碰到了在实验中无法测到自由夸克的所谓“夸克禁闭”现象。那么,这个目前得到量子色动力学理论说明的现象是否意味着物质有不可再分极限的古老原子论观点又有抬头的可能呢?对这个问题的争论正在继续进行。
相对论的建立不仅赋予时间和空间概念以新的含义,而且极大地改变了人们对自然图景的看法,尤其是广义相对论对宇宙时空几何结构的描述,使从牛顿时代建立起来的宇宙图景发生了重大的变革。现代宇宙学的诞生向人们描绘了一幅宇宙演化的生动图景,一方面更充分地说明了宇宙中事物普遍联系和无限发展的辩证唯物主义观点,另一方面也使人们对宇宙时空结构是否无限的问题产生了新的疑惑。显然,过去停留在从纯哲学思辨或纯逻辑学论证(如康德的“二律背反”)上来讨论宇宙有限无限这一古老问题是远远不够了。离开了对现代宇宙学,天体物理学,乃至于非欧几何学的深刻理解来奢谈这一问题,已显得是隔靴搔痒,不得要领了。
实际上,今天我们讨论自然图景的问题还不能仅仅停留在物理学层次上,我们这个时代已经形成了关于自然进化的自组织理论和全球生态学的理论,这些综合性的学科已经大大丰富和更新了我们的自然图景。这迫使我们不仅要立足于当代物理学发展的最新成果,而且还要联系到其他学科发展的最新成果,树立把自然界看成是不断演化的有机体的认识原则,去构筑最新的完整的自然图景。这显然对哲学家提出了更高的要求。当然,即使如此,物理学仍然是各门经验自然科学的基础。任何对自然图景的描述,都不可能脱离这个基础。这一发展趋势只是为物理学哲学的这一研究途径开辟了更为广阔的发展前景。
四
物理学方法论的研究也是物理学哲学的一个重要内容。物理学理论的发展总是与物理学方法的更新与发展紧密相连,相辅相成的。例如,近代物理学的诞生,就得益于伽利略,牛顿等人在研究方法上的大胆创造与革新,他们把观察、实验等经验方法与数学、逻辑等理论方法有机结合起来,还创造了诸如将形象思维和逻辑思维巧妙结合的理想实验方法(伽利略),甚至发明新的数学工具——微积分(牛顿)。这些方法上的成就不仅大大推进了物理学的进展,而且具有重大的方法论意义,为以后物理学的发展起了巨大的示范作用。现代物理学的发展更清楚地表明,物理学每前进一步,都伴随着方法上的重大革新与改进;而物理学作为一门基础科学,它的每一步发展,又为人们创造新的方法、设计新的实验仪器和设备提供了新的理论基础,从而不仅为本学科的发展开辟了新的领域,创造了新的条件,而且还大大影响和促进了其他学科的发展。本世纪物理学借助相对论和量子力学的相继建立取得了重大的进展,而如何将二者更紧密结合起来创造一种统一的物理学似乎是下个世纪物理学发展的一个方向。如何为实现这个目标取得方法上的突破便成了当前物理学方法论研究中的一个热门问题。
美国哲学家蒯因曾经把知识体系比喻成为一个整体场。他说:“整个科学是一个力场,它的边界条件就是经验,在场的周围同经验的冲突引起内部的再调整。”(〔(18)〕,第694页)也就是说科学的理论陈述和与之相应的数学、逻辑和形而上学陈述一起组成了这个整体的知识场,“根据任何单一的相反经验要给哪些陈述的再评价的问题上有很大的选择自由,并无任何特殊的经验是和场内部的任何特殊陈述相联系的”。(同上)为了适应经验的变化,例如说要解释一个新的观察现象,不仅可以改变理论陈述,也可以调整其他的陈述,如改变一种数学方法,调整我们的本体论信念,乃至于修改有关的逻辑规则,“有人曾经提出甚至逻辑的排中律的修正作为简化量子力学的方法”(同上)。蒯因的上述想法并非是纯哲学的思辨。现代物理学的发展已更清楚地表现出了理论与方法之间这种联动的特征。
首先,现代物理学对物质结构和宇宙起源的探索,涉及诸如“夸克禁闭”和真空特性等问题,解决这些问题,一方面依赖于理论的进一步突破,另一方面也依赖于实验手段的改进。
其次,本世纪初,相对论与量子力学的思想一经形成,就可以在19世纪下半叶新兴的数学分支中找到相应的数学工具,如非欧几何学、张量分析、线性代数等等。在有关基本粒子的规范场论中,群论也得到了很好的应用,但随着现代物理学的进一步发展,数学手段已显得不够得力。例如,目前关于大统一理论的研究难以取得有效的突破,症结究竟是在相对论与量子力学自身难以统一,需要建立一种能取代二者的新理论,还是缺乏必要的数学处理方法就是尚待解决的问题。
第三,在量子力学的赖辛巴哈解释中,赖辛巴哈试图建立一种消除形式逻辑排中律的三值逻辑来消除用经典语言描述微观客体行为时与量子力学结论相悖的因果异常。这种新的逻辑形式揭示了用传统形式逻辑描述不确定现象时的困难。(参见〔(5)〕)沿着赖辛巴哈的思路,有人进一步发展出应用抽象代数学中“格演算”的工具,用基本联词“遇”与“接”来取代“与”和“或”用以更好地刻划量子领域中的“亦此亦彼”现象,并使这种最子逻辑可以用一种广义的命题演算工具表述。(参见〔(23)〕)虽然这一设想还没有得到广泛应用,但毕竟给我们一个启示。量子物理的理论具有高度的辩证性质,“非此即彼”的形式逻辑思维已不足以解释量子物理实验中众多的“亦此亦彼”的现象,而一种新的逻辑思维方式可能是现代物理学取得进一步突破的关键。这正如日本物理学家武谷三男所说:“量子力学的情况,如果从我们通常的观念看来,是充满着矛盾和难以克服的困难,但量子力学却是以独特的数学结构卓越而合理地把握了它,要理解这种逻辑结构,唯有依靠辩证逻辑。”(〔(3)〕,第100—101页)形式逻辑产生了古希腊时期,是人类对宏观事件进行思维时对规律的总结。但当我们深入到前人未曾接触过的微观和宇观领域时,由于物质决定意识,我们的思维方式是否也应该发生某种变化呢?现在的问题是,针对现代物理学中出现的一些难以解决的问题,如EPR悖论,我们除了继续在物理学理论上寻求突破之外,是否也可以换一种逻辑思维方式,甚至如本世纪一些杰出物理学家,如玻尔、普里高津等人所说的那样,现代物理学可以从古老的东方文化中吸取有益的营养,来帮助寻求现代物理学的突破口呢?
五
以上我们虽然分别评述了物理学哲学研究的不同途径,但这并不意味着物理学哲学研究途径之间的差别就是泾渭分明的,恰恰相反,正如我们在上面叙述中已经表露出来的那样,这些研究途径之间是紧密相连、相辅相成的,其区别只在于我们研究的问题倾重点不同罢了。任何最新自然图景的构建都要建立在自然科学前沿的研究成果之上,对自然科学前沿问题的正确理解就是构建新自然图景的关键所在。但任何新理论成就的取得又都离不开概念的更新和对这些概念的澄清。上述研究当然也离不开对物理学方法的反思和创造。总之,当代物理学哲学是对物理学的历史与现状进行全面反思的一门哲学分支学科,它的研究既会对物理学的进一步发展有一定的启发作用,也由于涉及到哲学的本体论、认识论和方法论的各个方面,又会对丰富和发展当代哲学做出应有的贡献。
近年来,我国一些物理学家和自然辩证法工作者运用辩证唯物主义思想,从以上各条途径上全面展开了研究,尤其是对物理学前沿科学成果所产生的哲学问题的辩论,例如,涉及到大爆炸宇宙学的有关宇宙有限无限问题,涉及到“夸克禁闭”现象的物质是否无限可分问题,对有关EPR悖论的阿斯佩克特实验结果的理解问题等等,都引起了哲学界和部分物理学家的广泛关注。我们还注意到,国内一些哲学教科书已经根据上述问题的讨论充实和更新了有关的教学内容,这是值得欣慰的。但我们也应当看到,我国目前物理学哲学研究的水平与国外同行相比还有一定差距。其主要表现就是对当代物理学基本思想的理解还不深,还难以提出独到的令物理学界和哲学界都信服的观点,而当年赖辛巴哈、波普尔、邦格等哲学家参与有关量子力学基础问题的争论时,都曾提出过令当时还健在的量子力学创始人和众多诺贝尔物理学奖金得主都不得不重视的观点。(参见〔(3)〕、〔(4)〕、〔(5)〕)这主要是因为我国第一流的物理学家关心物理学哲学的人数还太少,而受过专门物理学训练的哲学工作者(包括自然辩证法工作者)也不多,二者之间交流的机会就更少。我们热情地期待,会有更多的哲学和物理学工作者参加到物理学哲学研究的行列中来。
主要参考文献
(1)Lawrence Sklar: Philosophy of physics, University of Michigan Press, 1992.
(2)J. Earman: The History and Philosophy of Cosmology, Princeton Univesity Press, 1993.
(3)K.Popper: Quantum Theory and the Schism in Physics, Rowman and Littlefield Prb. 1982.
(4)Mario Bnngc: Treatise on Basic Philosophy Vo1.7. Philosophy of science and Technology.D. Reidel Pub. Co. 1993.
(5)H.赖辛巴哈:《量子力学的哲学基础》,商务印书馆,1966年。
(6)N.玻尔:《原子物理学和人类知识》,商务印书馆,1978年。
(7)W.海森堡:《严密自然科学基础近年来的变化》,商务印书馆,1973年。
(8)S.霍金:《时间史之谜》,上海人民出版社,1991年。
(9)S.霍金:《时间简史续编》,湖南科学技术出版社,1995年。
(10)S.霍金:《霍金讲演录》,湖南科学技术出版社,1995年。
(11)戴维斯、布朗合编:《原子中的幽灵》,湖南科学技术出版社,1995年。
(12)彭罗斯:《皇帝新脑》,湖南科学技术出版社,1995年。
(13)武谷三男:《武谷三男物理学方法论论文集》,商务印书馆,1975年。
(14)T.库恩:《科学革命的结构》,上海科学技术出版社,1982年。
(15)《爱因斯坦文集》第1卷,商务印书馆,1976年。
(16)普特南:《理性、真理与历史》,辽宁教育出版社,1988年。
(17)伊·普里戈金、伊·斯唐热:《从混沌到有序》,上海译文出版社,1987年。
(18)洪谦主编:《逻辑经验主义》,商务印书馆,1984年。
(19)吴国盛主编:《自然哲学》,中国社会科学出版社,1995年。
(20)殷正坤等主编:《智慧的撞击》,湖北教育出版社,1992年。
(21)殷正坤、邱仁宗:《科学哲学引论》,华中理工大学出版社,1996年。
【关键词】量子化学 薛定谔方程 非相对论近似 伯恩-奥本海墨近似 轨道近似
【基金项目】海南师范大学第六批校级教学改革研究项目(HSJG201121)资助。
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2014)04-0158-02
无机化学是大学一年级化学专业学生接触最早的一门基础课,其中量子化学部分由于内容较抽象,学生普遍反应非常难理解,有些学生甚至因此失去了学习化学的勇气[1-3]。由于这部分内容关系到学生对于后来原子结构、分子结构、晶体结构和配位化合物等相关知识的理解,所以在教学中历来是重中之重,讲解课时也是安排最多的,但是学生仍然普遍觉得内容晦涩难懂。通过多年的教学经验以及和学生们的沟通了解,我们认为主要是课本在编排时只引用了了结果,而没有介绍相关结果的来龙去脉,这一出发点本是为减轻学生的负担,但反而造成知识链条的中断,学生既不知其然,又不知所以然。因此,我们补充了课本中省略的相关知识点,使学生对于量子化学的处理方法有初步的了解,提高了教学效果。由于这一部分涉及许多数学知识,因此在讲解时应突出研究思路,而不是让学生钻研数理公式。这样就会使学生对于微观粒子的运动方程的由来有初步了解,对于原子结构、分子结构和晶体结构的学习有一定的辅助作用。
1.非相对论近似
薛定谔方程是量子力学的基本方程,其解即为体系的波函数,一旦求得了体系的波函数,原则上体系的所有性质都可以推测出来,这是因为量子力学的理论会告诉我们如何获取这些信息。但是由于薛定谔方程是一个偏微分方程,除少数几种情况外,是难于求解的,所以要求采取一系列合理的理论近似及数学处理方法[4-5]。
在研究体系内有有限个原子核和电子,其运动速度远小于光速,在这里没有粒子的产生和湮灭的现象,即粒子数是守恒的,因而可以忽略相对论效应,而采用非相对论近似,其相应的薛定谔方程为:
但在实际计算中,一般只取一个或几个Slater行列式计算,既能满足要求又不致于使计算过分复杂。
经过上述的处理,才能够求得多电子体系中电子运动的波函数和原子轨道。学生才能更好地理解多电子体系中对于电子运动状态的描述,是在基于上述几个近似后才求得的。
参考文献:
[1]曹锡章, 宋天佑, 王杏乔. 无机化学[M]. 北京: 高等教育出版社,1994.
[2]许善锦. 无机化学[M]. 北京: 人民卫生出版社, 2005.
[3]吴国庆. 无机化学[M]. 北京: 高等教育出版社, 2004.
[4]P. W. Atkins. Molecular Quantum Mechanics. London: Oxford University Press, 1983.
[5]徐光宪, 黎乐民, 王德民.量子化学――基本原理和从头计算法[M]. 北京:科学出版社, 1985.
[6]D.E.Ellis. The Discrete Variational Method and its Applications to Large Molecules and Solidstate Systems. Conselho National de Desenvolvimen to Cientificoe Tecnologico, 1997.
[7]肖慎修, 孙泽民. 量子化学中的离散变分Xα方法及计算程序[M]. 四川:四川大学出版社,1986.
19世纪末,20世纪初不但是世纪的转折点,更是人类知识体系的转折点。哲学上,尼采代表的存在主义哲学对理性主义发出了怒吼,那个抽象的上帝已死,感性的“人”回归。而在物理学上,一个叫爱因斯坦的年轻人和他同时代的物理天才们正在对牛顿体系发起反抗。尽管,爱因斯坦将自己做了传统理论的捍卫者,并对量子物理产生抗拒心理。不可否认的是,这些天才科学家已经整体被认为是新世界的奠基人。
从古希腊哲学到牛顿力学
对于过去300年来,人类对于牛顿体系的依赖,波普尔有过一句相当精确的描述:“自然和自然法则在夜间隐去。上帝说,让牛顿来!于是,一切变得光明起来。”
从古希腊时期,哲学家们就开始思考自然运行的法则。比如,物体下落是因为它们有趋于宇宙中心的本能(此时,人们认为地球就是宇宙的中心)。物体越重,本能越强,所以,重的物体会下落得更快。天体的运行估计是圆形的,因为这是天堂的完美形式。
古希腊的科学观由哲学家建立,缺少实验精神和更多的审美诉求。因此,在那个时期,出现了百家争鸣的局面。直到中世纪,亚理斯多德的科学观和托勒密的“地心说”被宗教所采用,成为描述天堂和地狱的依据。
16世纪,哥白尼和开普勒分别利用算法技巧对宗教宇宙观发起挑战,“地心说”在数学上被,“日心说”掀起了新的知识革命。但是,真正对后世物理思想产生影响的是帕多瓦大学的一位年轻教授,年仅27岁的伽里略。作为哥白尼的信徒,为了避免布鲁诺所遭受的宗教迫害,他放弃了哥白尼学说。但是,他直接对地心说的源头,也就是亚理斯多德的“本能论”进行驳斥。他的驳斥方法在当时被认为是开天辟地,即“实验”。其中,最著名的当属比萨斜塔的落球实验。
伽里略对物理学发展的意义极为深远:科学只应该处理能被证实的事情,直觉和权威是没有意义的。科学终于摆脱了空想和计算,带着“实验”精神取得了前所未有的进步。
1647年,伽里略去世,艾萨克・牛顿出生。这个声称自己是通过观察苹果落地而发现万有引力的天才,一手建立的“钟表”世界观影响了人类的方方面面。甚至可以说,伟大的工业革命以及曾经牢不可破的资本主义世界都是牛顿定律的产物。
牛顿世界观最直接打破了中世纪的物质世界和精神世界合一的世界观,比如天堂也无法摆脱物理规律的束缚。自牛顿开始,物理学就一直在构建一个日益精巧,且以力学为基础的世界观。整个宇宙被假定为一个巨大的机械钟表,所谓科学就是无限地去发现隐藏其中的错综复杂的运转细节。借助于万有引力、热力学、光学,物质世界的每个方面,原则上都可以显示为一个巨大的、联动的、合乎逻辑的机械装置的一部分。每一个物理原理都能产生可预知的结果,而每一个结果都能追溯出唯一的原因。
物理学家们认为穷尽一生探索的因果关系,正是我们了解过去和未来的线索。也正是因果关系,让爱因斯坦面对新的知识革命时纠结万分。没有了因果,科学探索还有什么意义吗?
牛顿体系的影响力远远超出了物理学范畴,社会学正是建立在“原子论”基础之上,引力被亚当斯密直接引用到了政治经济学中,生出了那只“看不见的手”。
牛顿理论也被称为经典物理理论,它在人类冲破宗教统治的过程中,起到了根本性作用,它贯穿了整个资本主义的黄金岁月,显得如此坚固。
惴惴不安的爱因斯坦
然而,物理学界在19世纪的最后一天,迎来了其崭新的篇章。英国著名物理学家开尔文爵士在欧洲物理学家的聚会上发表了著名的“两朵乌云”说。他认为,物理学的整体性日趋完善,但是“地平线上还有两朵乌云”。正是这两朵乌云,使得几乎封顶的物理学体系土崩瓦解。
“第一朵乌云出现在光的波动理论上”,“第二朵乌云出现在关于能量均分的麦克斯韦-玻尔兹曼理论上”。开尔文爵士所言的第一朵乌云,日后演化成了爱因斯坦的相对论,第二朵乌云则是量子力学。
19世纪,人们发现了光的波动性,按照经典物理学理念,光波的传播和水波一样,需要在某种介质中传播,这就是所谓的“定域性”。于是,“以太说”再次盛行(“以太”本是一个哲学概念,是古希腊人想象出来的空间介质)。在以太中静止的物体为绝对静止,相对以太运动的物体为绝对运动。
以太的假设事实上代表了传统的观点:电磁波的传播需要一个“绝对静止”的参照系,当参照系改变,光速也改变。这个“绝对静止系”就是“以太系”。其他惯性系的观察者所测量到的光速,应该是 “以太系”的光速,是这个观察者在 “以太系”上的速度之矢量
既然“以太”存在于宇宙之间,那么一定可以通过对光波的测量,来显示出地球相对于太阳的运动。然而,这样的实验以失败告终。按照“以太说”,地球并没有运动。这个失败的实验震动了整个物理学界,像一朵乌云一样,笼罩在经典物理理论大厦的上空。
年轻的爱因斯坦在20世纪初,发表了狭义相对论,他大胆抛弃了“以太说”,电磁场本身就是物质存在的一种形式,而场可以在真空中以波的形式传播。也就是说,没有绝对静止的空间。光速则是恒定的,且是速度最快的物质。
而要理解光速为何在所有的参照体系中都相同,就必须改变牛顿的时空观。
牛顿认为时间和空间是绝对的,毫无关联的存在。时间就像河流,延续不断,好比“逝者如斯夫”,它不依赖于我们的感慨而减缓流逝。但是,爱因斯坦抛弃了以太论,也就抛弃了绝对静止的概念。对时间的测量取决于观测者的运动。由于“空-时”体系的稳定性,时间变成相对的了,空间自然也就变成相对了。
虽然时间和空间各自不再绝对,但是它们的测量关系的稳定性导致了光速的不变。举一个例子:把一把尺子放在飞驰的火车上。如果我们在看台上,这列火车飞驰而过,那么尺子的长度会缩短,我们感受到的时间流逝得也会很快。但是,时空之间的测量关系保持不变。正如爱因斯坦的老师闵可夫斯基在提出四维理论时所说,“空间本身和时间本身都注定要蜕变为纯粹的幻影,只有两者的某种联合才能保持独立的实在性。”
狭义相对论的另一个重要定律是,质量和能量是一回事,两者可以进行转换。空间和时间随物质运动而变化,质量随运动而变化,质量和能量的相互转化。
爱因斯坦虽然不愿承认自己是在革牛顿的命,但事实上,正是他对牛顿体系中时空的重新定义,以及质量与能量的转换,推动了量子力学体系的建立。量子力学是开尔文爵士说的第二朵乌云。
1926年,量子力学的奠基人海森博格在柏林和偶像爱因斯坦进行了一次谈话,第二年,他便提出了量子力学的基础性概念“测不准原理”。海森博格认为:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”
这是一个彻底摧毁牛顿体系的原理,即概率取代了确定性。如果说牛顿构建的世界是齿轮之间高度咬合的精密机器的话,海森博格带来的则是一个混沌的,对结果无法预知的生命体。因果论彻底失效,反而是带有中国传统文化味道的阴阳论占据了主导地位。定量与位置的关系,就像阴阳,彼此矛盾,此消彼长。
在量子力学确立的过程中,最为知名的假说便是“薛定锷的猫”。即在打开盒子的一刹那,我们无法预知猫是死还是活,只能认为它是既死又活。量子力学了牛顿体系中的“实在性”常识,也超越了唯物主义和唯心主义的争辩局面。
如果我们想知道未来,唯有通过行动,因为未来不可预知。
同时,量子力学对空间概念进一步颠覆。牛顿认为,重力来自于重力场,由地球统一发出。量子力学认为,磁场本身就是一种力。而在空间中,分布着各种各样的场。比如,在时间和空间形成的曲面中,地球就像脸盆中的乒乓球,始终围绕着太阳运行,而不是引力在起作用。