前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇天文学概念范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
Electronic Imaging in
Astronomy
2009
Hardcover
ISBN 9783540765820
Ian S. Mclean著
现代天文学非常依赖于对宇宙中微弱光信号的观测和解释。1970年贝尔实验室首次发表了电荷耦合器件(CCD)的概念,天文学家看到了CCD对天文观测的重要性,于是主动参与或支持专为天文设计的CCD 芯片研制。时至今日,CCD 芯片已经广泛用在天文台上,专业的天文CCD芯片已近乎完美。
本书讲述了近年来在天文观测上取得的巨大发展成就。从1970年的CCD到当前超大望远镜时代,内容涉及了整个光谱范围内获得天文图像的主要方法和技术。并使用CCD的发展过程将一系列天文学上的电子成像技术及方法联系起来。
全书共14章,1.天文学中电子成像及其发展历史;2.如何克服大气层影响及自适应光学的应用;3.介绍了天文望远镜以及目前最新的超大天文望远镜技术;4.阐述了天文观测仪在天文发现上发挥的重大作用,同时说明分光仪和摄影机的工作原理;5.描述了天文学上观测仪的分类,并介绍了半导体;6.进一步地讲述了天文观测仪的设计和建造。7-8.分别描述了CCD的工作原理和实际运作;9.描述了绝大多数电子成像仪器的校正问题,介绍了平场、信噪比等概念;10.介绍了图像处理和分析技术。接下来几章使用CCD的发展历程把各个波长下的电子成像技术联系了起来;11.红外波长下的电子成像;12.紫外波长、x射线及γ射线波长下的电子成像。13.亚毫米波和无线电波长下的电子成像。14.对未来的天文观测做了展望,描述了新的天文观测仪的应用前景。
本书作者麦克莱恩教授是将电子成像系统应用到先进天文观测仪中的世界性权威专家之一。他1974年在英国格拉斯哥大学获得天文学博士学位。在爱丁堡皇家天文台工作的十年间他开发了第一个基于CCD成像的分光偏振仪。他在凯克天文台任职的10年间,也多次研制具有开创性的天文仪器。
本书讲述了一系列基本的天文观测技术和方法。使用详细的案例研究重点阐述了摄影机、光谱仪、望远镜等天文观测仪的工作原理和技术。适合光电专业读者及对现代观测天文学感兴趣的高年级大学生和研究生阅读。
张永杰,博士生
(中国科学院力学研究所)
美国资深科学记者达娃・索贝尔的《一星一世界》,英文书名是“The planets”,最省事的译法当然是《行星》。但好像很多书都用过这个名字,而且那些已经习惯了调味刺激的读者会嫌它平淡,所以中文版用了现在的书名――这是我瞎猜的。
这娃・索贝尔在中文版序里表示,这本书是专门写给缺乏天文学知识背景的读者看的。她又说:“在英语中有一个助记句子,帮助学童记忆行星的名字和它们距离太阳由近至远而排出的次序,而在汉语中就找不到与之对应的句子。”的确,中国的学校和家庭历来缺少让小孩学点宇宙知识的传统,除非是考试必需。索贝尔的话促使我搜索了一下大脑,觉得汉语里的“金术水火土”也许沾了点行星的边。不过这个词组最初大概是出自算命先生和老中医的口诀吧?
如今的学生应该都能说出(或九大)行星的名称,甚至排出它们距离太阳的次序。但那都是概念化科普的成绩,跟长达100位的π值一样,靠家长和老师耳提面命才背熟的。可是那些家长和老师1000人里找不出3个能指出天上哪个是火星,哪个是木星。其实想想也没啥了不得的:现今能走出国门的也不过千分之五六,天上的星星比阴曹地府还遥远,不知道那里的事炒股票还会亏?――那倒也是一种潇洒活法。只是人们除了有饭吃、有房子住、有钱花,还会有些好奇心:本年度哪部大片能被奥斯卡看好?乾隆皇帝到底是不是海宁陈阁老生的?某女星真的被某大腕所包?……林林总总,吊人胃口。于是就有了易中天讲历史,于丹讲《论语》,马未都讲古董,等等。达娃・索贝尔写的天文科普书,也是为了满足一些人对天上事情的好奇心。
职业天文学家出身的作家卞毓麟先生说,索贝尔的写作风格近乎阿西莫夫。这位科普太师的书卞老师翻译过很多本,他的心得当然是有根据的。我自小喜欢法国天文科普名著《大众天文学》,百看不厌,觉得《一星一世界》的内容安排上,跟《大众天文学》第二分册(太阳和太阳系)有点相像。两本书都是逐个介绍太阳和行星(包括地球),也都完全避开了一般读者难以明白的专业概念和数学公式。还有,两本书都把人类对一个星球的探索和发现史为主线,介绍了与之相关的科学家趣闻轶事,以及各国与行星有关的历史、民俗掌故,信息量、故事量很密集,并且都选用了颇耐人寻味的诗篇。
我特别欣赏的是,为了避免让读者读着厌倦,索贝尔在撰写不同章节(也就是介绍不同行星)时,不断尝试改变陈述形式:
――写到火星,就让那块据说蕴藏微生物的著名火星陨石(NASA这几年似乎已不好意思提起此事了)作拟人化独自,娓娓道出火星世界的环境,它“自己”戏剧性来到地球的经过,以及在南极冰原上被科学家采集到的情景。
――土星一章则以音乐为主线。如果我是电台的DJ,完全可以按照索贝尔的讲述编辑一档介绍土星的配乐节目。
关键词:校本化;高中历史;科学史
科学史是沟通自然科学和人文学术的最好桥梁。通过科学史的训练和熏陶,不仅可以培养文理兼通的人才素质,而且还可以优化人才的知识结构,这是其他学术无法替代的。科学史是人类文明发展的一个重要组成部分,如果不懂科学史,就不能真正理解社会发展的历史。就科学高中的培养目标而言,大部分毕业生将会从事理工科专业的学习和工作。而一个从事科学技术工作并且力求在科学技术上有所创新的人,如果对科学的发展缺乏整体上的了解,不能掌握科学技术发展的规律以及其他学科对本门学科的影响,就很难有所成就。因此,开设科学史这门课程尤为必要。这门课程重在还原人类认识自然界的本质和运动规律的发展历程,揭示科学发展的一般规律,特别是向学生提供著名科学家、发明家解决问题的思路和方法,进而为科高学子在科学研究的道路上提供借鉴,让他们站在巨人的肩膀上,走得更远。以下为科学史的具体学习要点:
一、科学史的意义与研究现状
1.了解科学史的确立及其诸种功用,理解科学与正确之间的关系。2.掌握科学史研究中的内史和外史,了解科学史在中国的发展现状。
二、古希腊的科学与哲学
1.了解古希腊科学产生的背景。2.概述古希腊贤人对万物本原的探究,认识对万物本原的探究意义。3.了解亚里士多德在自然哲学、逻辑学以及系统的经验考察等方面的贡献。4.知道古希腊在数学、物理、天文学等方面的贡献,理解其对古代世界的影响。
三、古代中国的自然观与科学技术
1.知道天人感应与天人相分及宇宙演化思想,理解中国古代的时空观念。2.了解天文学上的旷世之争――浑盖之争,认识其对中国天文学发展的影响。3.概述中国古代传统数学、计时技术和测向技术的发展演变。
四、阿拉伯的科学及科学在欧洲的复兴
1.概述阿拉伯科学产生的历史背景,了解其与古代希腊罗马文化的渊源,认识“翻译”为阿拉伯科学的真正起点。2.了解阿拉伯在数学、天文学、医学、光学和化学方面的发展,理解阿拉伯科学的世界意义。3.了解基督教、亚里士多德思想以及农业技术革命对中世纪欧洲科学发展的影响,认识“1277大谴责”对人们打破亚里士多德思想对科学的束缚作用。4.理解文艺复兴、宗教改革以及不同文明间技术的交往对欧洲近代科学革命的影响,准确把握宗教与科学的关系。5.了解培根倡导的实验、哈维的血液循环说以及数学的新进展对科学在欧洲复兴的作用。
五、近代科学革命――天文学、新物理学、数学、化学
1.理解哥白尼《天体运行论》在近代天文学方面的革命性作用,了解伽利略望远镜以及第谷的精密天文学对传统天文学的冲击,概述开普勒三大定律对哥白尼天文学的继承与批判,理解近代天文学革命是近代科学革命的切入点。2.说明斯蒂文链、伽利略的实验方法、笛卡尔的机械主义方法论、牛顿的万有引力定律和物体运动三定律等对近代物理学发展的意义,明确近代物理学是近代科学的核心领域。3.了解微积分的创立,列举笛卡尔、费马、牛顿、莱布尼茨、欧拉、拉格朗日等人在微积分发展过程中的贡献。4.概述古代炼金术对近代化学产生的影响,了解波义耳、拉瓦锡对近代化学诞生的贡献。
六、生物学的重大突破――从进化论到遗传学
1.了解达尔文进化论提出的背景以及达尔文的生平,认识其个人经历对其提出自然选择的进化论的影响。2.认识孟德尔定律,理解孟德尔被称为现代遗传学的奠基人的原因,了解遗传基本因子――DNA的发现对遗传学发展的意义。
七、物理学的新突破
1.了解电磁学理论的建立和通信技术的发展,认识其对第二次工业革命的作用。2.简述能量守恒定律和热力学定律的建立过程,理解热力学第一定律与能量守恒定律之间的关系,并说明热力学的基本定律对化学、天文学等学科发展的影响。3.了解狭义相对论的两条基本原理,概述广义相对论的三大验证,说明对广义相对论正确性的认识。4.了解爱因斯坦对量子论方面的贡献,理解相对论和量子力学之间的关系,认识量子力学的测不准原理。
八、数学的新时代
1.水晶球体系的形成。
同心天球体系的概念可以追溯到古希腊的Parmenides,甚至更早的 Pythagoras。〔1〕〔2〕但真正建立起可以定量描述天体运动的体系是Eudoxus,他的工作在文〔2〕中保存了一个梗概,较详细的内容则见于公元六世纪时Simplicius对亚里士多德(Aristotle)《论天》一书所作的注释中。Eudoxus采用一套以地球为中心的同心球组,通过各球转轴的不同取向以及转速(皆匀速)和转向的不同组合来描述天体视运动。这一体系的建立在小轮理论的奠基人Apollonius之前百余年,比托勒密(Ptolemy)早四个世纪以上。后来小轮理论大行于世,Eudoxus体系遂湮没无闻。直到十九世纪才有Schiaparelli作了系统研究〔3〕,发现Eudoxus体系已能描述行星的顺、留、逆等视运动,其中对土星、木星很成功,水星亦尚可,金星很差,火星则完全失败。有的学者持论稍严,认为只有土、木令人满意。〔4〕
Eudoxus并未提出水晶球的概念。一般认为他只是用几何方法来表示和计算天象,不过这个结论是从Aristotle和Simplieius著作中的第二手材料得出的,由于Eudoxus原著皆已佚失,第一手材料不可得。
Callippus对Eudoxus体系作过一些改进,而Aristotle在两人工作的基础上建立了水晶球体系。他的发展大致可归结为三方面:
首先,他把Eudoxus假想的球层变为实体,并认为诸球层皆由不生不灭、完全透明、硬不可人的物质构成,水晶球之名即由此而来。日月行星和恒星则附着于各自的球层上被携带着运转,整个宇宙是有限而封闭的,月球轨道以上的部分万古不变。这意味着新星爆发、彗星、流星等天象只能是大气层中的现象。
第二,Aristotle把Eudoxus原来各自独立转动的诸球变成一个整体,其转动皆由最外层的天球传递下来。不过我们发现,在Aristotle原著中并没有宗动天这一球层。他的安排是:“第一天为恒星天……恒星天为总动天”,并阐述说:“第一原理或基本实是创作第一级单纯永恒运动,而自己绝不运动,也不附带地运动。……又因为我们见到了所说不动原始本体所创作的宇宙单纯空间运动以外,还有其他空间运动——如行星运动——那也是永恒的。”〔5〕这段话并不难理解,“不动原始本体所创作的宇宙单纯空间运动”即指恒星天球的周日运动,由此带动其他天球运动。可见恒星天球之上的宗动天当是后人所加,这一点值得注意。
第三,由于各天球不再是独立转动,他不得不引入一系列“平衡天球”来抵消上一层天球的运动,“而使每一天球下层诸行星得以回复其位置”〔6〕。不过平衡天球为何能反转,他未说明。
2.托勒密与水晶球体系。
把托勒密(Ptolemy)的名字和水晶球体系连在一起,这在国内外著作中都很常见,但这样做是有问题的。在《至大论》中,我们没有发现任何水晶球的观念。他在全书一开头就表示他的研究将用几何表示(geometrical demonstrations)之法进行。在开始讨论行星运动时他说得更明白:“我们的问题是表示五大行星和日、月的所有视差数——用规则的圆周运动所生成。”〔7〕他把本轮、偏心圆等视为几何表示,或称为“圆周假说的方式”。显然,他心目中并无任何实体天球,而只是一些假想的空中轨迹。
Ptolemy另一部著作《行星假说》在希腊文手稿中仅保存下前一部分,但在九世纪的阿拉伯译本中却有全璧。阿文本中的后一部分通常被称为“假说Ⅱ”。其中出现了许多实体的球,但又与Aristole的体系不同。这里每个天体有自己的一个厚球层,各厚层之间又有“以太壳层”(ether shell),厚层中则是实体的偏心薄球壳,天体即附于其上。这里的偏心球壳实际上起了《至大论》中本轮的作用。〔8〕不过“假说Ⅱ”在欧洲失传已久,阿文译本直到1967年才首次出版;况且其中虽有实体球壳,但与水晶球体系大不相同,因此Ptolemy的名字何以会与水晶球体系连在一起,和“假说Ⅱ”并无直接关系。其原因应该另外寻找。
然而,“假说Ⅱ”对中世纪阿拉伯天文学的影响却不容忽视。阿拉伯天文学家曾提出过许多类似水晶球的体系。比较重要的有A1 Bat-tani,他主张Aristotle的体系。〔9〕稍后有Ibnal-Haythan,他对《至大论》中的几何表示之法大为不满,试图寻求物理机制,因而主张类似“假说Ⅱ”中的体系。〔10〕Nasir ad-DinAlTusi则主张一种由许多大小不同的球相互外切或内切组成的体系,各球以不同的方向和速度旋转,他自认为这是前人未得之秘。〔11〕此外还有A1Kazwini、Abu’l Faraj和Al Jagmini等,都详细讨论过水晶球体系。
“假说Ⅱ”既与《至大论》大异其趣,偏偏又只保存在阿拉伯译本中,而类似的体系在阿拉伯天文学中又如此流行,因此有人怀疑“假说Ⅱ”中可能杂有阿拉伯天文学家的工作。〔12〕这是有道理的。
3.水晶球体系成为教条。
水晶球体系所以会成为教会钦定的教条,主要和Albertus Magnus及T.Aquinas师徒两人的工作有关。Albertus以Aristotle庞大的哲学体系为基础,创立丁经院哲学体系。〔13〕Aquinas则几乎把Aristotle学说全盘与神学相结合。他也写了一部对《论天》的注释,巧妙地将Aristotle的天文学说与《圣经》一致起来。〔14〕并特别引用Ptolemy的著作来证明地心和地静之说。〔15〕
这里必须强调指出,Aristotle的学说直到13世纪初仍被教会视为异端,多次下令禁止在大学里讲授。此后情况才逐渐改变〔16〕〔17〕,1323年教皇宣布Aquinas为“圣徒”,标志着他的学说得到了教会官方的认可,这也正是Aristotle学说——包括水晶球体系在内——成为钦定之时。这一点在许多哲学史著作中都是很清楚的,但在科学史论著中却广泛流行着“亚里士多德和托勒密僵硬的同心水晶球概念,曾束缚欧洲天文学思想一千多年”〔18〕之类的说法,而且递相祖述,这种说法有两方面的问题。
首先,在13世纪之前Aristotle和Ptolemy的学说与其他古希腊学说一样,在欧洲还鲜有人知,根本谈不到“束缚”欧洲的天文学思想。即使从14世纪获得钦定地位算起,能起束缚作用的时间也不到四百年。其次,水晶球体系是Aristotle的学说,虽然Aquinas兼采了Ptolemy的著作,但若因此就把水晶球的账摊一份(甚至全部)到Ptolemy头上,至少是过于简单化了。特别是在科学史论著中,更以区分清楚为妥。
事实上水晶球体系与Ptolemy的几何表示是难以相洽的。前者天球层层相接,毫无间隙;而后者是天体自身运动,在空间中划出轨迹。C.Purbach在1473年已经明确指出这一点,为了调和两者,他主张一种中空的水晶球壳,其内可容纳小轮。〔19〕然而理论上的不相洽并不妨碍二者在实际上共存,天文学家可以一面在总的宇宙图式上接受水晶球体系,一面用本轮均轮体系来解决具体的天文学计算问题,这种现象在水晶哉他蔡帚钵袖抛春少前相当普谝。
二 几位著名近代天文学家对水晶球体系的态度
1.哥白尼在这个问题上的态度。
最近有人提出,哥白尼(Copernicus)主张以太阳为中心的—同心水晶球体系。不仅各行星皆由实体天球携载,而且诸天球层层相接,充满行星际空间〔20〕,理由是Copernicus那张著名的宇宙模式图〔21〕多了一个环。我们认为这一说法未免穿凿附会,很难成立。理由有四:
①由于行星与太阳的距离有一个变动范围,因此图中两环之间的空间完全可以理解为行星的活动范围;又因该图只是示意图,也就没有必要给出精确的比例。②如果对图的解释有歧义,那显然原书的文字论述更重要,但Copernicus在这一章中根本未谈到过实体天球,文〔21〕全书的其他部分也没有任何这类主张。相反他一直使用“轨道”(orbital circles)一词,还谈到“金星与火星轨道之间的空间”〔22〕,这些都是与实体密接天球完全不相容的概念。Rosen也曾指出,Copernicus即使使用“sphaeta”、“orbit”等词,多数情况下也是指二维圆环,即天体的运行轨道。〔23〕③Copernicus既然主张日心地动,地球已成行星之一,那么如果设想既有公转又有自转的地球是被一个实体水晶球所携载,无论如何无法与人们的直接感觉相一致。除非认为地球及其上的万物都被“浇铸”于水晶球体之内,如同琥珀中的小虫那样才行。④Copemicus在《要释》中说得更明确:“Callipus和Eudoxus力图用同心球来解决这个问题,但他们未能解释行星的所有运动,……因此看来还是使用大多数学者最后都接受了的偏心圆和本轮体系为好。”〔24〕
2.第谷对水晶球体系的打击。
第谷(Tycho)并不主张日心地动之说,但他却给水晶球体系以致命打击。1572年超新星爆发,他用各种方法反复观测,断定该星必在恒星空间,而按水晶球体系的理论,这种现象只能出现在月球下界。不过翌年他发表其观测工作时,尚未与水晶球体系决裂。〔25〕1577年又出现大彗星,TYcho的观测无可怀疑地表明:该彗星在行星际空间,且穿行于诸行星轨道之间。于是他断然抛弃了水晶球,发表了他自己的宇宙新体系(1588)。他明确指出:“天空中确实没有任何球体。……当然,几乎所有古代和许多当今的哲学家都确切无疑地认为天由坚不可人之物造成,分为许多球层,而天体则附着其上,随这些球运转。但这种观点与事实不符。”〔26〕Tycho反对水晶球的三条主要理由后来开普勒(Kepler)曾概述如下:①彗星穿行于诸行星轨道间,故行星际空间不可能有实体天球。②如真有层层水晶球,则必有巨大折射,天象将大异于实际所见者。③火星轨道与太阳轨道相割(这是Tycho体系的特点),表明没有实体天球。〔27〕
Tvcho对超新星和彗星的观测是那个时代对水晶球教条最有力的打击。对于其他反对理由,水晶球捍卫者皆可找到遁词,比如折射问题,可以推说天界物质未必服从地上的光学定律;火日轨道相割问题可以用否认Tycho体系的正确性来回避;对日心地动说与水晶球的不相容也可仿此处理。但对于Tycho提供的观测事实,就很难回避。S.Chiaramonti为此专门写了两部著作(1621,1628),竟想釜底抽薪,直接否认Tycho的观测结果。
3。开普勒、伽里略和其他人。
开普勒(Kepler)断然否认有实体天球,并认为行星际空间“除了以太再无别物”〔28〕。伽里略(Galileo)除了嘲笑和挖苦水晶球体系的捍卫者,还力斥Chiaramonti著作之谬。〔29〕此两人皆力主日心地动之说,他们对水晶球体系的态度无疑是Copernicus学说与水晶球体系不相容的有力旁证之一。
这一时期除了上述四位最重要的天文学家外,还有不少著名人物也反对水晶球体系。T.Campanella借太阳城人之口表示“他们痛恨亚里士多德……并且根据一些反常的现象提出了许多证据来反对世界永恒存在的说法”〔30〕。C.Bruno和W.Gilbert的态度更为明确,已有人注意到了。〔31〕
三 水晶球体系在中国传播的情况
关于水晶球体系在中国的情况,李约瑟的说法影响很大。他认为“耶稣会传教士带去的世界图式是托勒密-亚里士多德的封闭的地心说;这种学说认为,宇宙是由许多以地球为中心的同心固体水晶球构咸的”,又说“存宇宙结构问题亡,传教士们硬要把一种基本上错误的图式(固体水晶球说)强加给一种基本上正确的图式(这种图式来自古宣夜说,认为星辰浮于无限的太空)”〔32〕。他的说法曾被许多文章和著作引用,但是我们不得不指出,李约瑟的说法至少不很全面。
众所周知,耶稣会土在中国所传播的西方天文学知识,主要汇集在《崇祯历书》中。这部百余卷的巨著于1634年修成之后,很快风靡了中国的天文界,成为中国天文学家研究西方天文学最重要的材料。1645年,又由清政府以《西洋新法历书》之名正式颁行。此书采用Tyeho的宇宙体系,不仅没有采用任何固体水晶球的说法,恰恰相反,它明确否定了水晶球体系: 问:古者诸家日天体为坚为实为彻照,今法火星圈割太阳之圈,得非明背昔贤之成法乎?曰:自古以来测候所急,追天为本,必所造之法与密测所得略无乖爽,乃为正法。……是以舍古从今,良非自作聪明,妄违迪哲。〔33〕
必须注意,这段论述的作者罗雅谷(Jacobus Rho)和汤若望(J.Adam Shall von Bell)皆为耶稣会士,这又从另一侧面反映出天主教会钦定的水晶球教条在当时失败的情形——连教会自己的天文学家也抛弃这个学说了。
虽然早期来华耶稣会土中利玛窦(Matthaeus Ricci)和阳玛诺(Emmanuel Diaz)两人曾在他们的宣传介绍性小册子中传播过水晶球之说〔34〕〔35〕,但其影响与《崇祯历书》相比是微不足道的。况且他们仅限于谈论宇宙图式,而这并不能解决任何具体的天文学问题,因此也不被中国天文学家所重视。
清代中国天文学家对各层天球或轨道是否为实体有过热烈讨论。王锡阐主张“若五星本天则各自为实体”〔36〕,梅文鼎则认为“故惟七政各有本天以为之带动,斯能常行于黄道而不失其恒;惟七政之在本天又能自动于本所,斯可以施诸小轮而不碍”〔37〕。这与Purbach的折衷想法颇相似。王、梅两人是否受过水晶球理论的影响,目前还缺乏足够的史料来断言。何况当时“本天”一词往往被用来指二维圆环,即天体轨道。而更多的天文学家认为连这样的二维轨道也非实体。焦循说:“可知诸论皆以实测而设之。非天之真有诸轮也。”〔38〕江永也承认非实体:“则在天虽无轮之形质,而有轮之神理,虽谓之实有焉可也。”〔39〕阮元力言实体论之谬:“此盖假设形象,以明均数之加减而已,而无识之徒……遂误认苍苍者天果有如是诸轮者,斯真大惑矣!”〔40〕盛百二也说:“旧说诸天重重包裹皆为实体,乃细测火星能割人日天,金水二星又时在日上,时在日下,使本天皆为实体,焉能出人无碍?”〔41〕值得注意的是,焦循等人皆已领悟了Ptolemy“几何表示”的思想。这一思想可以上溯到Eudoxus,而Copernicus、Tycho,直到Kepler,皆一脉相承。既然认为二维轨道也非实体,当然更不会接受三维的实体天球。事实上,几乎所有的清代天文学家都接受Tycho宇宙体系,或是经过他们自己改进的Tycho体系,而不是水晶球体系。
Eudoxus的同心球体系被认为是数学假设,其本质与后来的小轮体系并无不同,而古希腊数理天文学的传统即发端于此。Aristotle将其发展为水晶球体系,却在很大程度上出于哲学思辨。但他或许带有寻求天体运动物理机制的积极倾向,这种倾向后来一度在阿拉伯天文学中有所加强。当水晶球体系在14世纪成为教条之后,就束缚了天文学的发展,以至Galileo等人不得不付出沉重代价来冲破它。举例来说,超新星、彗星和太阳黑子,本来无论地心说还是日心说都可以接受,但在水晶球体系中就不能容忍。水晶球体系传人中国之后,如果曾起过某些作用的话,同样也是消极的。比如王锡阐,他主张天球实体论,并由此认为火星与太阳轨道相割为不可能,因而试图修改Tycho体系。如果他是受了水晶球理论的影响,那么这种影响看来只是引起了他思路的混乱,因为他对Tycho宇宙体系的修改是不成功的。〔42〕
参考文献
〔1〕J.L.E.Dreyer,A History of Astronomy from Thales to Kepler,Dover,(1953),P.21
〔2〕Aristotle:《形而上学》,13页,吴寿彭译,商务印书馆,1983。
〔3〕Schiaparelli,Ie sfere omocentriche di Eudosso,di Callippo e di Aristotle,Milano(1875).
〔4〕ONeugebauer,A History Of Ancient Mathematical Astronomy,Springer-Verlag(1975),IV Cl,2B.
〔5〕Aristotle,〔2〕,P·249-250.
〔6〕Aristotle,〔2〕,P.251.
〔7〕Ptolemy,Almagest,IX2,Great-Books Of the Western World,Encyclopaedia Britannica,1980,16,P.270.
〔8〕Neugebauer,〔4〕,VB7,7.
〔9〕Dreyer,〔1〕,P.257.
〔10〕N.M.Swerdlow,O.Neugebauer,Mathematical Astronomy in Copernicus’s De Revolutionibus ,Springer Verlag.1984,P.44.
〔11〕Dreyer,〔1〕,P.268.
〔12〕Neugebauer,〔4〕,VB 7,6.
〔13〕F.ThiUy:《西方哲学史》,葛力译,218页,商务印书馆,1975.
〔14〕Dreyer,〔1〕,P.232.
〔15〕Ptolemy,〔7〕,15,17.
〔16〕W.C.Dampier:《科学史及其与哲学和宗教的关系》,李珩译,138页,商务印书馆,1975。
〔17〕B.Russell:《西方哲学史》,何兆武等译,550页.商备印书馆,1982。
〔18〕李约瑟:《中国科学技术史》第四卷,中译本,115页,科学出版社,1975。
〔19〕A.Berry,A Short History of Astronomy,Dover,(1961),Ch.Ⅲ,§68.
〔20〕Swerdlow,Neugegauer,〔10〕,P.56,P.474.
〔21〕Copernicus,De Revolutionibus,110,GreatBooks Of the Western World.Encvclomedinritannica,(1980),16,P.526.又,该图手稿影印件可见〔20〕,572页。
〔22〕Copernicus,〔21〕,110.
〔23〕E.Rosen,3 CopernicanTreatises,Dover,(1959)P.11.
〔24〕Copernicus,Commentariolus,〔23〕,P.57.
〔25〕Tycho,De Nova stella,H.Shapley,H.E.Howarth,A Source Book in Astronomy,Mc-Graw-Hill,(1929)P.13—19.
〔26〕Tycho,Opera Omnia,ed.Dreyer,Copehagen,1913—1929,Ⅳ,P~222.Quoted by 〔23〕,P.12.
〔27〕Kepler,Epitom Astrohomiae Copernicanae,411,Great Books Of the Western World,Encyclopaedia Britannice,(1980),16,P·856--857.
〔28〕Kepler,〔27〕,P.857.
〔29〕Galileo,Dialogo,The Univ.Of Chicago Press,1957.
〔30〕T.CampaneHa:《太阳城》,陈大维等译,商务印书馆,1982。
〔31〕李约瑟,〔18〕,P.647-648。
〔32〕李约瑟,〔18〕,P.643-646。
〔33〕《西洋新法历书》:五纬历指卷一。
〔34〕利玛窦:《乾坤体义》卷上。
〔35〕阳玛诺:《天问略》。
〔36〕王锡阐:《五星行度解》。
〔37〕梅文鼎:《历学疑问》卷一。
〔38〕焦循:《释轮》卷上。
〔39〕江永:《数学》卷六。
〔40〕阮元:《畴人传》卷四十六。
在现代天文学界和物理学界,有一个困扰现代物理学发展的重大难题,它就是被科学家称为“世纪之谜”的暗物质。4月3日,诺贝尔奖得主、美籍华人物理学家丁肇中在日内瓦欧洲核子中心,首次公布其领导的阿尔法磁谱仪(以下简称AMS)项目在历时18年后的第一个实验结果:AMS已发现超过40万个正电子,这些正电子有可能来自于脉冲星或者人类一直寻找的暗物质。据了解,这是目前世界首次在太空中直接观测、分析到的高能量反物质粒子,让人类首次打开了一扇从太空观测宇宙射线的大门,人类对暗物质的理解和检测实现新突破。
究竟什么是暗物质?人类为什么长期苦寻不得?发现它又有什么作用?
它无所不在,却又无迹可寻,没有它就没有我们的宇宙,更谈不上今天的人类,它就是暗物质。
想象一下,在一个漆黑的夜晚,你飞行在崇山峻岭之上,你知道下面有连绵起伏的山峦,但是你无法看见。突然,山坡上几户人家的灯光进入了你的视野。这星点的灯光勾勒出了山的轮廓,同时也使你明白在远处的黑暗中还隐藏着更大的山体。
现在,科学家们所面对的情况与此相似。研究证明,在宇宙中,包括我们熟悉的太阳、银河系以及所有发光的物质,只是其中极小的一部分。相反,宇宙中的暗物质占了将近1/4,暗能量占了近3/4。我们身处的可能是一个原来从不了解的宇宙:一种完全不为人知的物质和能量正控制着我们,主宰着宇宙的未来。
如果不了解暗物质的性质,就不能说我们已经了解了宇宙。现在已经知道了两种暗物质――中微子和黑洞,但是它们对暗物质总量的贡献非常微小,暗物质中的绝大部分现在还不清楚,暗物质和暗能量仍然是现代天文学和物理学最大的谜团之一。而这一次,AMS项目的这批成果使得对暗物质的理解和检测实现新进展。
自1933年起,科学家们就一直在暗物质是否确切存在这个问题上争论不休。
大约75年前,人类第一次发现了暗物质存在的迹象。1937年,瑞士天文学家弗里兹・扎维奇发现,大型星系团中的星系具有极高的运动速度,然而星系的运行速度远远超出万有引力公式计算出的结果,这表明除了人类已知的星系团核心物质对该星系的引力外,还存在其他引力,就此,天文学家现代意义上的暗物质概念由弗里兹・扎维奇提出。天文学家由此进一步推断,在人类已知的宇宙物质之外,还有一种物质存在。
2006年,美国天文学家利用钱德拉X射线望远镜对星系团1E 0657-56进行观测,无意间观测到星系碰撞的过程,星系团碰撞威力之猛,使得暗物质与正常物质分开,因此发现了暗物质存在的直接证据。
2007年5月,美国宇航局报告说,一个天文学家小组利用哈勃太空望远镜,探测到了位于遥远星系团中呈环状分布的暗物质。天文学家们称,这是迄今为止能证明暗物质存在的最强有力证据。
而此前的同年1月,由美国加州理工学院天文学家理查德・麦西所领导的一支科研团队历经数年最终绘制完成首张宇宙暗物质三维数字地图。在三维地图中,人们可以清楚地发现,随着时间的流逝,暗物质的数量会变得越来越多,这与天文学界目前的理论完全吻合。此次绘制完成宇宙暗物质三维数字地图,对于人类研究宇宙的起源以及未来演化具有极为重要的意义。
2009年12月,一则“美国科学家在废弃的地下铁矿中探测到两个暗物质粒子”的消息,成为全球科学界的一件大事。科学家在美国明尼苏达州北部一个0.75公里深的废弃铁矿中发现暗物质,又强有力地证实了暗物质的存在。
2010年欧洲和中国的天文学家宣称他们在太阳附近发现了大量的暗物质。对于地球和太阳附近的太空中存在多少暗物质,专家们则不很确定。
自1937年后的70多年的研究、分析充分表明,这一至今未被人们观测到的物质即“暗物质”在宇宙中的确存在,而且在宇宙中所占的份额远远超过目前人类可以看到的物质。
然而,尽管多年来的天文大尺度观测结果间接验证了暗物质的存在,但物理上直接的观测证据到现在还没有找到。也就是说,人类还不知道暗物质究竟以怎样的形式存在,或许以别的人类未知的形式存在……
直到2012年7月4日,英国《新科学家》周刊报道提及,德国慕尼黑大学天文台的约尔格・迪特里希及其研究团队首次称已探测到一个超星系团的丝状物中的暗物质成分。这个超星系团名为“阿伯尔222/223”,距地球约27亿光年。这才意味着暗物质在物理上的研究取得突破性进展。
这一次,阿尔法磁谱仪国际研究小组公布了最新的实验结果:大约40万个正电子可能来自暗物质粒子湮灭,未来数个月内或将揭开暗物质粒子之谜。这意味着暗物质之谜或将破解。
AMS项目的首要目的也是寻找宇宙中的暗物质及其起源。1995年,丁肇中率领的团队开始进行阿尔法磁谱仪项目实验,“AMS-01(阿尔法磁谱仪1)”于1998年6月随美国“发现”号航天飞机升空开始科学探索。虽然“AMS-01”拿到了大量的数据,但并没有发现科学家所要的暗物质和反物质。
此后,科学家开始研制“AMS-02(阿尔法磁谱仪2)”。 2011年5月16日,美国“奋进”号航天飞机执行最后一次任务,耗资5亿美元将AMS-02送至国际空间站。
AMS项目这个国际空间站上唯一的大型科学实验让暗物质研究取得了突破性进展。由AMS探测的超过40万个正电子,是当前最多的在太空中直接观测、分析的高能量反物质粒子。此前包括美国费米望远镜等项目都曾观察到过量正电子现象,但数据误差很大。虽然误差只有1%但相当于肉眼和精密显微镜的区别。