首页 > 文章中心 > 相对论与量子力学的矛盾

相对论与量子力学的矛盾

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇相对论与量子力学的矛盾范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

相对论与量子力学的矛盾

相对论与量子力学的矛盾范文第1篇

关键词:科学史;近代物理;教学改革;高等教育

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2014)50-0072-03

近代物理是高等学府物理类、化学类和电子类学科的一门必修课,通常放在讲授完大学物理之后。大学物理的内容主要是理论力学、电动力学、热力学和统计物理。近代物理的内容主要是相对论量子力学。由于相对论和量子力学离我们的日常生活经验比较远,所以学起来比较晦涩难懂。本文介绍了笔者如何通过讲授近代物理知识和对应的近代物理科学史相接合,来提高同学们对近代物理的理解和兴趣。

一、近代物理科学史简介

近代物理的科学史是一部十分生动活泼的历史,时间跨度大概是从1900年到现代。这段时间可以说是十分不平凡和波澜壮阔的一百多年。这期间发生了人类历史上仅有的二次世界大战,其中涌现的具有极高才华和贡献的科学家数量差不多抵得上人类历史上前五千年的科学家数量总合。而人物传记作家也多对他们的人生经历极为感兴趣,出了很多关于他们的传记[1-3]。另外这些近代物理学家们很多本身也颇博学多才,具有良好的文学才能和修养,因此很多人他们自己也出自传。这些传记和自传都能给《近代物理》课堂上的科学史教学提供丰富的素材和参考。相对论和量子力学的理论和公式虽然比较高深难懂,但是它们解释的现象由于跟人们的日常经验相悖,所以还是会引起人们广泛的兴趣。比如时间和空间是不可分的,物体的动量和时间不能同时精确测量,光速是宇宙中最快的速度,这些一般人凭经验的确很难理解。进而人们也会对提出和发现这些理论的科学家们(如爱因斯坦)感兴趣。图1为作者按照时间顺序出场依次在课堂上介绍的量子力学史上各个重要的历史人物。这些科学人物大多数彼此交往比较密切,在学术上好像切磋和影响,进而也加速了思想火花的碰撞和创新性理论的诞生。

在课堂上讲述近代物理科学史的过程中,还可以帮助同学们了解在学术研究过程中需要注意的问题。比如搞科研不能囿于自己的私密空间,而要鼓励多做学术交流。学术交流的好处是:(1)可以了解最新的研究动态;象在近代物理史上著名的哥本哈根学派就是个很好的例子。1921年,在著名量子物理学家波尔的倡议下,成立了哥本哈根大学理论物理学研究所,由此形成哥本哈根学派。其中波恩、海森堡、泡利以及狄拉克等都是这个学派的主要成员。由于哥本哈根学派提供了很好的学术交流环境和学术氛围,在这个学派里鼓励发表不同的观点,不迷信权威,所以涌现出了很多重要的量子力学成果。(2)可以发现自己的不足;比如爱因斯坦于1919年在刚开始推导广义相对论的时候,在公式里人为增加了一个常数项,从而得出他起先所认为的静态宇宙模型。不过1922年亚历山大・弗里德曼摒弃了这个常数项,从而得出相应的宇宙膨胀理论。比利时牧师勒梅特应用这些解构造了宇宙大爆炸的最早模型,模型预言宇宙是从一个高温致密的状态演化而来。到1929年,哈勃等人又用实际的观测证明我们的宇宙的确处于膨胀状态。通过学术交流,爱因斯坦终于接受了宇宙膨胀理论,并承认添加宇宙常数项是他一生中犯下的最大错误。(3)可以激发自己的灵感;比如波尔在1911年从丹麦哥本哈根大学获得博士学位后去英国学习,先在剑桥汤姆逊主持的卡文迪许实验室工作,几个月后又去曼彻斯特在卢瑟福的手下搞科研,这使得他对汤姆逊关于原子的西瓜模型和卢瑟福的核式原子模型了如指掌,同时他又很熟悉普朗克和爱因斯坦的量子学说,这些学术交流活动激发了他的灵感,使得他最终于1913年初创造性地把普朗克的量子说和卢瑟福的原子核概念结合起来,提出了自己的波尔原子模型。(4)可以激励自己不断进步和成长。比如薛定谔在1925年受到爱因斯坦关于单原子理想气体的量子理论和德布罗意的物质波的假说的启发,从经典力学和几何光学间的类比提出了对应于波动光学的波动力学方程,从而奠定了波动力学的基础。但是他一开始并不清楚他自己建立的波动方程中的波具体代表什么物理概念。起初他试图把波函数解释为三维空间中的振动,把振幅解释为电荷密度,把粒子解释为波包,但他无法解决“波包扩散”的问题。最终经过他与波恩的多次学术交流,他逐渐认识到波函数其实是代表粒子在某时某个位置出现的几率,是一种几率波。

二、近代物理知识简介

近代物理的知识主要分为两大类:相对论和量子力学。相对论分为狭义相对论和广义相对论,内容包括伽利略坐标系、迈克尔逊-莫雷实验、洛伦兹变换、闵可夫斯基空间、质能关系式和相对论能量-动量关系式等。量子力学知识包括黑体辐射、光电效应、波尔原子模型、康普顿效应、德布罗意波、戴维逊和革末实验证实了电子的波动性、不确定性原理和薛定谔方程等。这些近代物理理论的公式通常比较复杂,需要用到高等数学的知识,比如薛定谔方程是一个偏微分方程,狄拉克方程里包含矩阵。因而对于近代物理公式的求解就变得十分困难,也不太直观。图2罗列了按时间顺序出现的课堂上需要讲授的量子力学公式。

黑体辐射公式描述的是频谱(单色能密度)u(v,T)和温度以及频率的关系式。光电效应是指每种金属存在截止频率。当照射在金属上的频率小于截止频率时,不管光强多大,照射时间多长,也不会有光电子产生。而当照射在金属上的频率大于截止频率时,不管光强多小,也会产生光电子,且响应时间小于1纳秒。光电子具有各种初速度,其最大初动能与光辐射频率成线性关系,而与光辐射强度无关。当频率在截止频率之上时,单位时间内发射出来的电子数目即光电流强度与光辐射强度成正比。在光电效应理论中,光的能量和光的频率成正比,光的动量和光的波长成反比。

波尔的原子模型给出了电子在分立轨道上的能量公式。能量和电荷的四次方成正比,跟定态的平方成反比。电子在定态具有分立的能量,在定态运动时不辐射电磁能量;但电子可以从一个定态能级跃迁到另一个能量低的定态能级,相应于两个能级差的能量将作为光子被释放出来。德布罗意公式则是给出了物体的能量和动量与其说对应的物质波的波长和频率之间的关系。动量和波长成反比,而能量和频率成正比。薛定谔方程精确地给出了物质波函数的表现形式。微观粒子的量子态可用波函数表示。当波函数确定,粒子的任何一个力学量及它们的各种可能的测量值的几率就完全确定。波函数跟粒子的质量和势能相关。波函数的自变量中包含空间坐标和时间坐标。由于薛定谔方程中出现虚数i,所以波函数原则上应是复数。它同时满足能量守恒,是线性的、单值解的。它给出的自由粒子解与简单的德布罗意波相一致,满足因果律。相对于薛定谔方程之于非相对论量子力学,狄拉克方程[4]是相对论量子力学的一项描述自旋-1/2粒子的波函数方程,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这个方程预言了反粒子的存在。

三、近代物理科学史和近代物理知识的结合讲解

近代物理课如果只是讲解近代物理知识,往往显得枯燥无味,难以理解。其实任何科学知识都不是凭空产生的,往往经历了好几代人的不懈努力,最终从量变到质变,导致相对论或量子力学的建立。薛定谔方程也不是一蹴而就,而是经过很多科学家几十年的努力。如果一开始就讲解薛定谔方程,同学们通常很难理解。而如果采用循序渐进的方法并结合科学史来讲,抽丝剥茧,逐渐揭开真理的面纱,那么同学们不光饶有兴趣,而且更容易理解。图3列出了结合科学史和科学人物的近代物理讲解流程。在讲解科学史的过程中,重点讲解科学人物和他们的研究方法,以及这些近代物理公式是怎么一步步得来的。通过近代物理知识和科学史的结合讲解,可以启发同学,让他们了解任何知识都是建立在前人知识和研究的基础上。比如普朗克的黑体辐射公式来自于瑞利-金斯定律和维恩位移定律的启发。瑞利-金斯定律能够解释低频率下的结果,却无法解释高频率下的测量结果。而维恩位移定律能够解释高频率下的结果,却无法解释低频率下的测量结果。而普朗克公式是把这两种定律公式进行一下内插。通过这种历史背景的介绍,同学们就对普朗克公式的来龙去脉知道得一清二楚,对此公式也就理解得更深刻。普朗克公式其实一开始是一个不得已而为之的公式,然后普朗克对此公式进行反推,发现只有认为能量是量子化的,才能得出跟实验结果相吻合的普朗克公式。能量是非连续而是分立的,即使这个想法在当时是多么背离人的日常经验和惊世骇俗,由于它是唯一的解释,普朗克也就不得不接受了这个能量量子化思想。

而能量量子化这个理论不管在当时看上去多么荒谬,还是有人慧眼识珠的。5年之后的1905年,爱因斯坦凭着他对物理学的敏锐欣然接受了能量量子化这个观点,并在此基础上解释了光电效应。近代物理的科学史是一环扣一环,十分引人入胜。在课堂上授课时通过人物->公式->人物…->公式的顺序把所有近代物理的公式合理地衔接起来,自成一个整体,同学们学习起来就会思路清晰,公式也会记得牢,进而对公式能活学活用。普朗克和爱因斯坦彼此惺惺相惜,而普朗克也是少数很快发现爱因斯坦狭义相对论重要性的人之一。在爱因斯坦发表光电效应的8年之后,波尔也接受了能量量子化这个观点,并进而创新性地提出了三个假设:(1)定态假设,即电子只能在一系列分立的轨道上绕核运动,这些轨道对应确定能量值的稳定态,电子在这些状态(轨道)上不辐射电磁波;(2)跃迁假设,即原子在不同定态之间跃迁,以电磁辐射形式吸收或发射能量;(3)角动量量子化假设,即电子轨道角动量是分立的,首尾位相相同的环波才能稳定存在。波尔根据这三种假设成功推导出了氢原子的光谱公式,和实验结果完全吻合。

接下来就轮到德布罗意登场。在波尔提出原子模型的10年之后,1923年德布罗意创新性地在他的博士论文里提出了波粒二象性的观点。以前的量子论观点都是围绕光和能量,没有触及实际的物质或粒子。而德布罗意破天荒地提出任何物体都具有波粒二象性,既包括光,也包括电子、原子甚至人体等所有宇宙中的物体。德布罗意当时的博士生导师朗之万不认可这个观点,但是他比较有责任心,没有直接否决掉德布罗意的博士论文,而是把论文寄给爱因斯坦定夺。而爱因斯坦对物理的理解十分透彻,他马上承认了德布罗意的博士论文的正确性,并且将论文送去柏林科学院,使此理论在物理学界广为传播。1924年,德布罗意又提出可以用晶体作光栅观察电子束的衍射来验证他的波粒二象性理论,因为电子的波长和晶格间距处于同一个数量级。很快就有人响应了德布罗意的实验设想,1927年,克林顿・戴维森和雷斯特・革末用电子轰击镍晶体,果然发现电子的衍射图谱,和布拉格定律预测的一模一样,这证实了德布罗意的波粒二象性理论正确无误。既然电子是一个波,那就应该有个波动方程。所以德布罗意的理论极大地启发了海森堡和薛定谔,导致这两位科学家同时在1925年分别发表了薛定谔方程和矩阵力学,两者可以得到同样的结果。薛定谔随后证明,两者在数学上是等效的。薛定谔方程使用微分方程的形式,比矩阵力学容易理解,所以近代物理的授课一般只讲薛定谔方程。薛定谔提出了薛定谔方程之后,又有个新问题,就是此方程不符合相对论协变性原理,即物理规律的形式在任何的惯性参考系中应该是相同的。所以需要有另外一个量子力学方程来满足相对论。这个任务最终是3年之后(即1928年)由狄拉克来完成的。至此,在讲述有趣的近代物理科学史的同时同学们也掌握了丰富的近代物理知识。

总而言之,在近代物理的教学过程中结合近代物理科学史进行授课,提高了同学们对于近代物理知识的理解和兴趣,避免了填鸭式的教育,让同学们在掌握知识的同时更了解了科学家们科学的研究方法,“授之以渔不如授之以鱼”。该教改收到了十分良好的效果。

参考文献:

[1]格雷克.牛顿传[M].北京:高等教育出版社,2004.

[2]艾萨克森.爱因斯坦传[M].长沙:湖南科技出版社,2012.

相对论与量子力学的矛盾范文第2篇

关键词:量子力学 教学研究 哲学思想

“大学之道,在明明德,在亲民,在止于至善。”温故知今,止于至善,提高当代大学生的哲学素养、人文情怀和科学素养,是素质教育的要求之一。以牛顿运动三定律、电磁理论和热力学及统计物理学为基础的经典力学诞生于17世纪,成功地解释了大量物理学现象,取得了辉煌的科学成就,曾经被人们信奉为客观真理。在19世纪末20世纪初,人类以巨大的热情来研究原子核和放射现象,导致了两大理论成果的诞生:量子理论和相对论。随后,激光器、二极管、三极管、集成电路、互联网、移动通信、登月等等,这些辉煌的成就促使人类迈进了信息时代。运动着的电子――一个小小的微观粒子,却促使人类文明进入了电子信息时代。事实表明,现代信息技术的理论基础是物理学,信息的产生、发送、接收和处理,都是由一个个物理的系统来实现,因此信息世界的物理体系归根结底要受到物理定律的制约。现在人们明白了,经典物理理论仅适用于宏观低速运动的物体的场合,而对于微观小尺度下、接近于光速运动的粒子的运动规律误差会变得很大,必须使用相对论和量子理论来描述。而经典物理理论仅仅是量子理论和相对论在低速宏观范围下的良好近似。

量子理论是二十世纪最伟大的发现之一。量子理论的形成和发展,是整个物理学发展中最值得书写的,也是对青年大学生最具有启发意义的过程,在此期间包括了爱因斯坦的奇迹年(1905年)。梳理和探究整个过程中所包含的科学思维,科学方法,科学理论,科学素养……都是值得我们去探索、去深思、去挖掘的。

一、对青年大学生物质观和运动观的进一步加深具有重要意义

科学技术发展到21世纪,人类对于物质世界的认识进入到了纳米尺度。材料学科的研究中出现了很多量子效应。量子理论中的许多不同于经典力学的物理现象颠覆性地发展了经典力学的思维,拓宽了人类认识物质世界的视野,使人们对运动的本质有了更进一步的了解。随着人类认识的不断深入和材料尺寸的不断缩小,电子运动的量子效应愈加明显。现在人们已经明白了,电子既是一种微观粒子,同时也是一种波,这就是所谓的波粒二象性。与经典物理现象不同的是,微观粒子的诸多物理量之间受到量子规律的束缚,其中之一便是著名的不确定性原理,例如时间与能量之间、动量与位置之间等。此外,另一个有趣的现象是电子的势垒贯穿效应,即能量小于势垒高度的电子或者其它微观粒子可以以一定的几率,越过势垒,运动到势垒的右边去。尽管一个理性的人对这种解释可能不满意,但是我们必须明白“隧穿”仅仅是我们为了理解的方便而构造的一个东西,除非人们对量子世界的认识更进一步。我们唯一能确定的是当满足一定条件的时候,隧穿效应就会发生。

二、对青年大学生思维拓展与创新具有重要的启发意义

量子理论是描述微观粒子运动规律的理论,其概念体系与研究宏观现象及其规律的经典物理学有很大的不同。量子理论的出现,是人类对物质世界认识日益深化的结果,为其他自然学科的发展开辟了广阔的前景。从培养研究型科学人才的角度来说,量子理论是与现代科学研究联系最紧密的课程之一。这对当代青年大学生提出了更高、更严格的要求。

第一,必须尊重客观世界的运动规律,坚持创新思维,深刻认识微观世界的规律。规律是物质在运动过程中表现出来的必然的、稳定的、永恒的联系,任何事物之间都有联系,都是矛盾的对立统一体,这就需要在实际的学习探索中抓住主要矛盾以及矛盾的主要方面。同时,矛盾具有特殊性,内因是事物发展的根据,决定着事物发展的方向和主要性质,外因是事物发展的次要因素。在实际的处理过程中要区别对待。

第二,注意量变到质变的积累。量变是指事物单纯数量上的增加或减少,事物保持其质的稳定性。质变是指事物根本性质的变化,“量变质变新的量变”是事物发展的基本规律。注意收集数据,逐步地总结规律。任何重大的发现,都有一个辛苦的积累过程,面对纷繁杂芜的实验数据,如何去伪存真,由表及里,层层剖析?这需要尊重客观规律,逐渐挖掘深层次的信息,切勿急于求成或者违背客观规律。这方面在量子理论的发展过程中体现得尤为重要。

第三,量子理论是开放的理论,对量子理论的争论一直在继续。量子理论过去的成功并不意味着它是一个彻底完善的物理学理论。自量子理论诞生以来,关于量子理论的思想基础和基本问题的争论,从来就没有停止过。人们对于量子理论本身的完备性及其一些基本观念的理解,甚至持有截然不同的观点。其他的理论也是在不断地争论中不断完善。

三、量子力学中的数学思想及其知识框架

量子力学中主要的数学知识,主要是Hilbert内积空间,这是学生在学完微积分初步、线性代数以及概率论后需要掌握的、在工程领域内应用最为广泛的一门数学学科,也是对空间解析几何的推广和延伸。其中包括了对前面提到的几门学科的综合应用,例如量子力学中的力学量,用线性算符来描述,则必须是厄米的;用海森堡的矩阵力学表示,则要求该矩阵的本征值和平均值均为实数;还有,在计算不同物理量表象的矩阵元时,要用到定积分的运算;而不同表象之间的变换,需要用到矩阵变换;此外,在讲到微扰论和变分法时,还需要进一步的用到更多的数学知识。这些数学学科分支的交叉出现,足以让学生对该门课程的进一步学习产生畏惧心理。如何消除和转变学生的这种畏惧心理,这就要求教师在课堂上增强授课的趣味性。事实上,一部量子力学的发展史,包含了太多的启迪、方法、思维和科学研究的因素,因利势导,重视基础知识的讲解,将所有涉及到的数学知识及其发展史,生动地传授给学生。笔者经过近五年的课堂教学,认为对当前的大学本科学生,倘能在授课中能做到这一点,那么,学习《量子力学》的意义就达到了。

结论:以量子理论为核心的量子物理无疑是本世纪最深刻、最有成就的科学理论之一。它不仅代表了人类对微观世界基本认识的革命性进步,而且带来了许多划时代的技术创新,直接推动了社会生产力的发展,从根本上改变了人类的物质生活。让学生在不断的思考和探索中,体会到学习和思考的快乐;对学生的世界观、物质观以及运动观的进一步深入,具有重要的指导意义。

参考文献:

[1]格雷厄姆•法米罗,涂泓等译.天地有大美之现代科学之伟大方程,世界图书出版社,2008

[2]施塔赫尔,范岱年等译.爱因斯坦奇迹年.上海科技出版社,2001,7

[3]曾谨言.量子力学.科学出版社,2010,4

[4]伯特兰•罗素.西方哲学史.中国商业出版社,第1版,2009,1

相对论与量子力学的矛盾范文第3篇

人们通常把爱因斯坦与玻尔之间关于如何理解量子力学的争论,看成是继地心说与日心说之后科学史上最重要的争论之一。就像地心说与日心说之争改变了人们关于世界的整个认知图景一样,爱因斯坦与玻尔之间的争论也蕴含着值得深入探讨的对理论意义与概念变化的全新理解以及关于世界的不同看法。有趣的是,他们俩人虽然都对量子力学的早期发展做出了重要贡献,但是,爱因斯坦在最早基于普朗克的量子概念提出并运用光量子概念成功地解释了光电效应,以及运用能量量子化概念推导出固体比热的量子论公式之后,却从量子论的奠基者,变成了量子力学的最强烈的反对者,甚至是最尖锐的批评家。截然相反的是,玻尔在1913年同样基于普朗克的量子概念提出了半经典半量子的氢原子模型之后,却成为量子力学的哥本哈根解释的奠基人。爱因斯坦对量子力学的反对,不是质疑其数学形式,而是对成为主流的量子力学的哥本哈根解释深感不满。这些不满主要体现在爱因斯坦与玻尔就量子力学的基础性问题展开的三次大论战中。他们的第一次论战是在1927年10月24日至29日在布鲁塞尔召开的第五届索尔未会议上进行的。这次会议由洛伦兹主持,其目的是为讨论量子论的意义提供一个最高级的论坛。在这次会议上,爱因斯坦第一次听到了玻尔的互补性观点,并试图通过分析理想实验来驳倒玻尔—海森堡的解释。这一次论战以玻尔成功地捍卫了互补性诠释的逻辑无矛盾性而结束;第二次大论战是于1930年10月20日至25日在布鲁塞尔召开并由朗子万主持的第六届索尔未会议上进行的。在这次会议上,关于量子力学的基础问题仍然是许多与会代表所共同关心的主要论题。爱因斯坦继续设计了一个“光子箱”的理想实验,试图从相对论来玻尔的解释。但是,在这个理想实验中,爱因斯坦求助于自己创立的相对论来反驳海森堡提出的不确定关系,反倒被玻尔发现他的论证本身包含了驳倒自己推论的关键因素而放弃。

当这两个理想实验都被玻尔驳倒之后,爱因斯坦虽然不再怀疑不确定关系的有效性和量子理论的内在自洽性。但是,他对整个理论的基础是否坚实仍然缺乏信任。1931年之后,爱因斯坦对量子力学的哥本哈根解释的质疑采取了新的态度:不是把理想实验用作正面攻击海森堡的不确定关系的武器,而是试图通过设计思想实验导出一个逻辑悖论,以证明哥本哈根解释把波函数理解成是描述单个系统行为的观点是不完备的,而不再是证明逻辑上的不一致。在这样的思想主导下,第三次论战的焦点就集中于论证量子力学是不完备的观点。1935年发表的EPR论证的文章正是在这种背景下撰写的。从写作风格上来看,EPR论证既不是从实验结果出发,也不再是完全借助于思想实验来进行,而是把概念判据作为讨论的逻辑前提。这样,EPR论证就把讨论量子力学是否完备的问题,转化为讨论量子力学能否满足文章提供的概念判据的问题。由于这些概念判据事实上就是哲学假设,这就进一步把是否满足概念判据的问题,推向了潜在地接受什么样的哲学假设的问题。例如,EPR论证在文章的一开始就开门见山地指出:“对于一种物理理论的任何严肃的考查,都必须考虑到那个独立于任何理论之外的客观实在同理论所使用的物理概念之间的区别。这些概念是用来对应客观实在的,我们利用它们来为自己描绘出实在的图像。为了要判断一种物理理论成功与否,我们不妨提出这样两个问题:(1)“这理论是正确的吗?”(2)“这理论所作的描述是完备的吗?”只有在对这两个问题都具有肯定的答案时,这种理论的一些概念才可说是令人满意的。”〔3〕从哲学意义上来看,这段开场白至少蕴含了两层意思,其一,物理学家之所以能够运用物理概念来描绘客观实在,是因为物理概念是对客观实在的表征,由这些表征描绘出的实在图像,是可想象的。这是真理符合论的最基本的形式,也反映了经典实在论思想的核心内容;其二,如果一个理论是令人满意的,当且仅当,这个理论既正确,又完备。那么,什么是正确的理论与完备的理论呢?EPR论证认为,理论的正确性是由理论的结论同人的经验的符合程度来判断的。只有通过经验,我们才能对实在作出一些推断,而在物理学里,这些经验是采取实验和量度的形式的。〔4〕也就是说,理论正确与否是根据实验结果来判定的,正确的理论就是与实验结果相吻合的理论。但文章接着申明说,就量子力学的情况而言,只讨论完备性问题。言外之意是,量子力学是正确的,即与实验相符合,但不一定是完备的。为了讨论完备性问题,文章首先不加证论地给出了物理理论的完备性条件:如果一个物理理论是完备的,那么,物理实在的每一元素都必须在这个物理理论中有它的对应量。物理实在的元素必须通过实验和量度来得到,而不能由先验的哲学思考来确定。基于这种考虑,他们又进一步提供了关于物理实在的判据:“要是对于一个体系没有任何干扰,我们能够确定地预测(即几率等于1)一个物理量的值,那末对应于这一物理量,必定存在着一个物理实在的元素。”

文章认为,这个实在性判据尽管不可能包括所有认识物理实在的可能方法,但只要具备了所要求的条件,就至少向我们提供了这样的一种方法。只要不把这个判据看成是实在的必要条件,而只看成是一个充足条件,那末这个判据同经典实在观和量子力学的实在观都是符合的。综合起来,这两个判据的意思是说,如果一个物理量能够对应于一个物理实在的元素,那么,这个物理量就是实在的;如果一个物理理论的每一个物理量都能够对应于物理实在的一个元素,那么,这个物理学理论就是完备的。然而,根据现有的量子力学的基本假设,当两个物理量(比如,位置X与动量P)是不可对易的量(即,XP≠PX)时,我们就不可能同时准确地得到它们的值,即得到其中一个物理量的准确值,就会排除得到另一个物理量的准确值的可能,因为对后一个物理量的测量,会改变体系的状态,破坏前者的值。这是海森堡的不确定关系所要求的。于是,他们得出了两种选择:要么,(1)由波动函数所提供的关于实在的量子力学的描述是不完备的;要么,(2)当对应于两个物理量的算符不可对易时,这两个物理量就不能同时是实在的。他们在进行了这样的概念阐述之后,接着设想了曾经相互作用过的两个系统分开之后的量子力学描述,然后,根据他们给定的判据,得出量子力学是不完备的结论。EPR论证发表不久,薛定谔在运用数学观点分折了EPR论证之后,以著名的“薛定谔猫”的理想实验为例,提出了一个不同于EPR论证,但却支持EPR论证观点的新的论证进路。出乎意料的是,爱因斯坦却在1936年6月19日写给薛定谔的一封信中透露说,EPR论文是经过他们三个人的共同讨论之后,由于语言问题,由波多尔斯基执笔完成的,他本人对EPR的论证没有充分表达出他自己的真实观点表示不满。从爱因斯坦在1948年撰写的“量子力学与实在”一文来看,爱因斯坦对量子力学的不完备性的论证主要集中于量子理论的概率特征与非定域性问题。他认为,物理对象在时空中是独立存在的,如果不做出这种区分,就不可能建立与检验物理学定律。因此,量子力学“很可能成为以后一种理论的一部分,就像几何光学现在合并在波动光学里面一样:相互关系仍然保持着,但其基础将被一个包罗得更广泛的基础所加深或代替。”显然,爱因斯坦后来对量子力学的不完备性问题的论证比EPR论证更具体、更明确。EPR论证中的思想实验只是隐含了对非定域性的质疑,但没有明朗化。但就论证问题的哲学前提而言,爱因斯坦与EPR论证基本上没有实质性的区别。因此,本文下面只是从哲学意义上把EPR论证看成是基于经典物理学的概念体系来理解量子力学的一个例证来讨论,而不准备专门阐述爱因斯坦本人的观点。

二、玻尔的反驳与量子整体性

玻尔在EPR论证发表后不久很快就以与EPR论文同样的题目也在《物理学评论》杂志上发表了反驳EPR论证的文章。玻尔在这篇文章中重申并升华了他的互补观念。玻尔认为,EPR论证的实在性判据中所讲的“不受任何方式干扰系统”的说法包含着一种本质上的含混不清,是建立在经典测量观基础上的一种理想的说法。因为在经典测量中,被测量的对象与测量仪器之间的相互作用通常可以被忽略不计,测量结果或现象被无歧义地认为反映了对象的某一特性。但是,在量子测量系统中,不仅曾经相互作用过的两个粒子,在空间上彼此分离开之后,仍然必须被看成是一个整体,而且,被测量的量子系统与测量仪器之间存在着不可避免的相互作用,这种相互作用将会在根本意义上影响量子对象的行为表现,成为获得测量结果或实验现象的一个基本条件,从而使人们不可能像经典测量那样独立于测量手段来谈论原子现象。玻尔把量子现象对测量设置的这种依赖性称为量子整体性(whole-ness)。

在玻尔看来,为了明确描述被测量的对象与测量仪器之间的相互作用,希望把对象与仪器分离开来的任何企图,都会违反这种基本的整体性。这样,在量子测量中,量子对象的行为失去了经典对象具有的那种自主性,即量子测量过程中所观察到的量子对象的行为表现,既属于量子对象,也属于实验设置,是两者相互作用的结果。因此,在量子测量中,“观察”的可能性问题变成了一个突出的认识论问题:我们不仅不能离开观察条件来谈论量子现象,而且,试图明确地区分对象的自主行为以及对象与测量仪器之间的相互作用,不再是一件可能的事情。玻尔指出,“确实,在每一种实验设置中,区分物理系统的测量仪器与研究客体的必要性,成为在对物理现象的经典描述与量子力学的描述之间的原则性区别。”〔8〕海森堡也曾指出,“在原子物理学中,不可能再有像经典物理学意义下的那种感知的客观化可能性。放弃这种客观化可能性的逻辑前提,是由于我们断定,在观察原子现象的时候,不应该忽略观察行动所给予被观察体系的那种干扰。对于我们日常生活中与之打交道的那些重大物体来说,观察它们时所必然与之相连的很小一点干扰,自然起不了重要作用。”

另一方面,作用量子的发现,揭示了量子世界的不连续性。这种不连续性观念的确立,又相应地导致了一系列值得思考的根本问题。首先,就经典概念的运用而言,一旦我们所使用的每一个概念或词语,不再以连续性的观念为基础,它们就会成为意义不明确的概念或词语。如果我们希望仍然使用这些概念来描述量子现象,那么,我们所付出的代价是,限制这些概念的使用范围和精确度。对于完备地反映微观物理实在的特性而言,描述现象所使用的经典概念是既相互排斥又相互补充的。这是玻尔的互补性观念的精神所在。有鉴于此,玻尔认为,EPR论证根本不会影响量子力学描述的可靠性,反而是揭示了按照经典物理学中传统的自然哲学观点或经典实在论来阐述量子测量现象时存在的本质上的不适用性。他指出:“在所有考虑的这些现象中,我们所处理的不是那种以任意挑选物理实在的各种不同要素而同时牺牲其他要素为其特征的一种不完备的描述,而是那种对于本质上不同的一些实验装置和实验步骤的合理区分;……事实上,在每一个实验装置中对于物理实在描述的这一个或那一个方面的放弃(这些方面的结合是经典物理学方法的特征,因而在此意义上它们可以被看作是彼此互补的),本质上取决于量子论领域中精确控制客体对测量仪器反作用的不可能性;这种反作用也就是指位置测量时的动量传递,以及动量测量时的位移。正是在这后一点上,量子力学和普通统计力学之间的任何对比都是在本质上不妥当的———不管这种对比对于理论的形式表示可能多么有用。事实上,在适于用来研究真正的量子现象的每一个实验装置中,我们不但必将涉及对于某些物理量的值的无知,而且还必将涉及无歧义地定义这些量的不可能性。”其次,就量子描述的可能性而言,玻尔认为,我们“位于”世界之中,不可能再像在经典物理学中那样扮演“上帝之眼”的角色,站在世界之外或从“外部”来描述世界,不可能获得作为一个整体的世界的知识。玻尔把这种描述的可能性与心理学和认知科学中对自我认识的可能性进行了类比。在心理学和认知科学中,知觉主体本身是进行自我意识的一部分这一事实,限制了对自我认识的纯客观描述的可能性。用玻尔形象化的比喻来说,在生活的舞台上,我们既是演员,又是观众。因此,量子描述的客观性位于理想化的纯客观描述与纯主观描述之间的某个地方。

为此,玻尔认为,物理学的任务不是发现自然界究竟是怎样的,而是提供对自然界的描述。海森堡也曾指出,在原子物理学领域内,“我们又尖锐地碰到了一个最基本的真理,即在科学方面我们不是在同自然本身而是在同自然科学打交道。”爱因斯坦则坚持认为,在科学中,我们应当关心自然界在干什么,物理学家的工作不是告诉人们关于自然界能说些什么。爱因斯坦的观点是EPR论证所蕴含的。这两种理论观之间的分歧,事实上,不仅是有没有必要考虑和阐述包括概念、仪器等认知中介的作用的分歧,而且是能否把量子力学纳入到经典科学的思维方式当中的分歧。EPR论证以经典科学的方法论与认识论为前提,认为正确的科学理论理应是对自然界的正确反映,认知中介对测量结果不会产生实质性的影响;而玻尔与海森堡则以接受量子测量带来的认识论教益为前提,认为量子力学已经失去了经典科学具有的那种概念与物理实在之间的一一对应关系,认知中介的设定成为人类认识微观世界的基本前提。第三,就主体与客体的关系问题而言,EPR论证认为,认知主体与客体之间存在着明确的分界线。这意味着,所有的主体都能对客体进行同样的描述,并且他们描述现象所用的概念与语言是无歧义的。无歧义意味着对概念或语言的意义的理解是一致的。而对于量子测量而言,对客体的描述包含了主体遵守的作为世界组成部分的描述条件的说明,从而显现了一种新的主客体关系。为此,我们可以把主体与客体之间的关系划分为三类:其一,能够在主体与客体之间划出分界线,所有的主体对客体的描述都是相同的,EPR论证属于此类;其二,能够在主体与客体之间划出分界线,但主体对客体的描述是因人而异的,人们对艺术品的欣赏属于此类;其三,不可能在主体与客体之间划出分界线,主体对客体的描述包括了对测量条件的描述在内,玻尔对EPR论证的反驳属于此类。显然,EPR论证隐含的主客体关系与玻尔所理解的量子测量中的主客体关系之间存在着实质性的差别。EPR论证是沿袭了经典实在论的观点,而玻尔的观点代表了他基于量子力学的形式体系总结出来的某种新的认识。在这里,就像不能用欧几里得几何的时空观来反对非欧几何的时空观一样,我们也不能用经典意义上的理论观反对量子意义上的理论观。因此,可以说,物理学家关于如何理解量子力学问题的争论,在很大程度上,蕴含了他们关于科学研究的哲学假设之间的争论。

三、实验的形而上学

EPR论证不仅引发了量子物理学家关于物理学基础理论问题的哲学讨论,而且还创立了“实验的形而上学”,提供了物理学家如何基于形而上学的观念之争,最终探索出通过实验检验其结论的一个典型案例。这一过程与寻找量子论的隐变量解释的努力联系在一起。量子力学的隐变量解释的最早方案是德布罗意在1927年提出的“导波”理论。1932年,冯•诺意曼在他的《量子力学的数学基础》一书中曾根据量子力学的概念体系提出了四个假设,并且证明,隐变量理论和他的第四个假设(即,可加性假设)相矛盾,认为通过设计隐变量的观念来把量子理论置于决定论体系之中的任何企图都注定是失败的。冯•诺意曼的这一工作在为量子论的隐变量解释判了死刑的同时,也极大地支持了量子力学的哥本哈根解释。有意思的是,曾是量子力学的哥本哈根解释的支持者与传播者的玻姆,在1951年基于量子力学的哥本哈根精神出版了至今仍然有影响的《量子理论》一书,并在书的结尾,以EPR论证为基础,提出了“量子理论同隐变量不相容的一个证明”之后,从1952年开始反而致力于从逻辑上为量子力学提供一种隐变量解释的研究。

玻姆阐述隐变量理论的目标可以大致概括为两个方面,一是试图用能够直觉想象的概念为量子概率和量子测量提供一种可理解的说明,证明为量子论提供一个决定论的基础是可行的;二是希望从逻辑上表明,隐变量理论是有可能的,“不论这种理论是多么抽象和‘玄学’。”玻姆的追求显然是一种信念的支撑,而不是事实之使然。在这种信念的引导下,玻姆在1952年连续发表了两篇阐述隐变量理论的文章,在这些文章中,他用经典方式定义波函数,假定微观粒子像经典粒子一样总是具有精确的位置和精确的动量,阐述了一种可能的量子论的隐变量解释,最后,用一个粒子的两个自旋分量代替EPR论证中的坐标与动量,讨论了EPR论证的思想实验,并运用量子场与量子势概念解释了测量一个粒子的位置影响第二个粒子的动量的原因。

贝尔在读了玻姆的文章之后,认为有必要重新系统地研究量子力学的基本问题。贝尔试图解决的矛盾是:如果冯•诺意曼的证明成立,那么,怎么会有可能建立一个逻辑上无矛盾的隐变量理论呢?为了搞明白问题,贝尔首先重新剖析了冯•诺意曼的关于隐变量的不可能性的证明和EPR论证中设想的思想实验,然后,抓住了隐变量理论的共同本质,于1964年发表了“关于EPR悖论”的文章。在这篇文章中,贝尔引述了用自旋函数来表述EPR论证的玻姆说法,或者说,从EPR—玻姆的思想实验出发,以转动不变的独立波函数描述组合系统的态,推导出一个不同于量子力学预言的、符合定域隐变量理论的关于自旋相关度的不等式,通常称为贝尔不等式或贝尔定理,然后,用归谬法了量子力学的预言和贝尔不等式相符的可能性,说明任何定域的隐变量理论,不论它的变数的本性是什么,都在某些参数上同量子力学相矛盾。贝尔还假设,如果所进行的两个测量在空间上彼此相距甚远,那么,沿着一个磁场方向的测量,将不会影响到另一个测量结果。贝尔把这个假设称为“定域性假设”。从这个假设出发,贝尔指出,如果我们可以从第一个测量结果预言第二个测量结果,测量可以沿着任何一个坐标轴来进行,那么,测量的结果一定是已经预先确定了的。但是,由于波函数不对这种预先确定的量提供任何描述,所以,这种预定的结果一定是通过决定论的隐变量来获得的。贝尔后来申明说,他在“关于EPR悖论”一文中假设的是定域性,而不是决定论,决定论是一种推断,不是一个假设,或者说,贝尔的这篇文章是从定域性推论出决定论,而不是开始于决定论的隐变量。从逻辑前提上来看,贝尔的假设更接近于爱因斯坦的假设,他们都把“定域性条件”看成是比“决定论前提”更基本的概念。因此,贝尔的工作比冯•诺意曼和玻姆的工作更进一步地推进了关于量子力学的根本特征的理解。贝尔的这篇文章具有划时代的意义。它不仅成为20世纪下半叶物理学与哲学研究中引用率最高的文献之一,而且为进一步设计具体的实验来澄清量子力学的内在本性迈出了决定性的一步。粒子物理学家斯塔普(HenryStapp)甚至把贝尔定理的提出说成是“意义最深远的科学发现。”

同EPR论证一样,贝尔的这一发现也不是从实验中总结出来的,而是基于哲学信念的逻辑推理的结果。此后,量子物理学界进一步推广贝尔定理的理论研究与具体实验方案的探索工作并行不悖地开展起来。而这些工作都与EPR论证相关。就实验进展而言,物理学界承认,阿斯佩克特等人于1982年关于“实现EPR-玻姆思想实验”的实验结果,支持了量子力学,针对这样的实验结果,贝尔指出:“依我看,首先,人们必定说,这些结果是所预料到的。因为它们与量子力学预示相一致。量子力学毕竟是科学的一个极有成就的科学分支,很难相信它可能是错误的。尽管如此,人们还是认为,我也认为值得做这种非常具体的实验。这种实验把量子力学最奇特的一个特征分离了出来。原先,我们只是信赖于旁证。量子力学从没有错过。但现在我们知道了,即使在这些非常苛刻的条件下,它也不会错的。”

虽然EPR论证的初衷是希望证明量子力学是不完备的,还没有提出量子测量的非定域性概念,但是,物理学家则通常运用EPR思想实验的术语来讨论非定域性问题。经过40多年的发展,具体的实验结果使EPR论证失去了对量子力学的挑战性。一方面,这些实验证实了非定域性是所有量子论的一个基本属性,要求把在同一个物理过程中生成的两个相关粒子永远当作一个整体来对待,不能分解为两个独立的个体,其中,一个粒子发生任何变化,另一个粒子必定同时发生相应的变化,这种相互影响与它们的空间距离无关;另一方面,这些实验也表明了EPR论证提供的哲学假设不再是判断量子力学是否完备的有效前提,而是反过来提醒我们需要重新思考玻尔在反驳EPR论证的观点中所蕴含的哲学启迪。总而言之,EPR论证尽管是基于哲学假设,运用思想实验,来驳斥量子力学的完备性,但在客观上,物理学家围绕这一论证的讨论,最终在思想实验的基础上出乎意料地发展出可以具体操作的实验方案,并且获得了有效的实验结果。这一段历史发展不仅证明,无论在哲学假设的问题上,还是在物理概念的意义理解的问题上,量子力学都不是对经典物理学的补充和扩展,是一个蕴含有新的哲学假设的理论。正是在这种意义上,物理学家玻恩得出了“理论物理学是真正的哲学”的断言。

四、认识论的思维方式

如前所述,EPR论证—玻姆—贝尔这条发展主线是把对物理学问题镶嵌在哲学信念中进行思考的。这一历史片断揭示出,基于哲学信念的逻辑推理在物理学的理论研究与实验研究中起到了积极的认知作用。一方面,在这些探索方式中,不论是EPR论证的真理符合论假设,玻姆的决定论假设,还是贝尔的定域性假设,它们的初衷都是希望能够把量子力学纳入到经典物理学的概念框架或哲学信念之中。另一方面,检验贝尔不等式的物理学实验结果对量子力学的支持和对贝尔不等式的违背意味着,我们不应该依旧固守经典物理学的哲学假设来质疑量子力学,而是应该颠倒过来,积极主动地揭示量子力学蕴含的哲学思想,以进一步明确经典物理学的哲学假设的适用范围。

但是,这种视域的逆转不是简单地倡导用量子力学的哲学假设取代经典物理学的哲学假设,也不是武断地主张用玻尔的理论观替代EPR论证所蕴含的理论观,而是提倡摆脱习以为常的自然哲学的思维方式,确立认识论的思维方式。自然哲学的思维方式是一种本体论化的思维方式。这种思维方式是从古希腊延续下来的,追求概念与实在之间的直接的一一对应关系,忽视或缺乏对认知过程中不可避免的认知中介和理论框架的考虑。从起源上来讲,这种无视认知中介的本体论化的思维方式,源于常识,是对常识的一种延伸外推与精致化。近代自然科学的发展进一步强化与巩固了这种思维方式。EPR论证也是基于这种思维方式使经典科学蕴含的哲学假设以具体化的判据形式呈现出来。然而,与过去的物理学理论所不同的是。量子力学不再是关于可存在量(beable)的理论,而是关于可观察量(observable)的理论,“是理论决定我们的观察内容”这一句话,既是爱因斯坦创立相对论的感想,也为海森堡提出不确定关系提供了观念启迪。就理论形式而言,量子力学的理论描述用的是数学语言,而不是日常语言。用数学语言描述的微观世界是一个多位空间的世界,而我们作为人类,很难直观地想象这样的世界,更不可能直接“进入”这个世界来“观看”一切。人类感知的这种局限性是原则性的,从而限制了我们对微观世界的知识的全面获得。用玻尔的话来说,我们对一个微观对象的最大限度的知识不可能从单个实验中获得,而只能从既相互排斥又相互补充的实验安排中获得。用玻恩的话来说,在量子测量中,观察与测量并不是指自然现象本身,而是一种投影。

相对论与量子力学的矛盾范文第4篇

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

相对论与量子力学的矛盾范文第5篇

关键词 相对论;经典物理学;影响

中图分类号 O2 文献标识码 A 文章编号 2095-6363(2017)11-0044-01

在人类物理学发展的进程中,有一群巨星照耀着我们前进的方向,他们或是坚毅不屈,或是执着不悔,或是以自己不可磨灭的热情来创建人类进程中不可预料的辉煌,而在这一群闪亮的星星中,两颗耀眼的巨星始终让人无法忽视他们的存在。熠熠生辉的群星是我们前进路上的明灯,这其中就有两颗巨星始终闪耀着自己的光芒,他们就是牛顿和爱因斯坦。

1 牛顿对于经典物理学的影响

牛顿在经典物理学的多个领域都做出过不可估量的贡献,他曾提出相对所谓经典力学,也就是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的重要部分是什么呢?根据经典物理学发展史来说,其重要的组成部分是牛顿运动定律,也可以说是与牛顿定律有关的并且与其等价的其他力学原理,这些原理同样也是经典力学的基本定律。除此之外,他的一生中对于物理学的发展还做出了无数的、后人无法企及的贡献。牛顿可谓是经典物理学发展史中的中流砥柱。

2 爱因斯坦的成就

无独有偶,爱因斯坦对于近代科学发展进程的推进作用也是里程碑式的。1905年,爱因斯坦提出了三项都具有划时代意义的理论――光量子假说,因此而获得1921年诺贝尔奖,并且提出了狭义相对论、布朗运动的统计性解释,并由此引出的验证性实验的结果使得当时并不相信原子是真实的几位大科学家都转而相

信了。

他最大的成就有三点:1)从物理学发展的意义上说的,提出了以相对论为代表的新的物理哲学体系,以及由此引发的两大理论物理学派的论战;2)他发现的光电效应方程;3)他在维护世界和平方面做出的贡献.爱因斯坦为了反对核武器,他还主动退出核物理研究领域。

其中,相对论对于经典物理学产生了不可忽视的影响。那么,相对论究竟是什么呢?它主要应用于哪些方面呢?相对论又是怎样对于经典物理学产生不可忽视的影响了呢?笔者认为,以上的问题可以从相对论对于经典力学的利与弊的角度来阐述。

3 相对论对经典力学的利与弊

相对论是关于时空和引力的理论,主要由爱因斯坦创立,相对论根据本身的研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”“四维时空”“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识――以其理论是否决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。

经典物理学与相对论之间的关系主要是任何两者或者多者的关系中,很难存在一拍即合或者配合的天衣无缝的情r,大多都是各个元素或者成员之间经过长时间的相互磨合才会使得一个团队或者一断关系能够长时间的保持顺畅的、和谐的相处方式。与此对应的,相对论和经典物理学的关系也未能幸免,经典物理学与相对论的关系中,矛盾性是不可忽视的一个重要的特点。

需要说明的是,经典物理学与相对论之间的矛盾是多方面的。比如,如果以经典物理学的视角来分析时间与空间的话,那么时间与空间是绝对的。但是矛盾恰恰就在此,如果以相对论的视角来看待两者的话,那么时间与空间就是相对的。除此之外,还有很多的情况是经典物理学无法解释的,那么,在这种情况下,就需要运用相对论来解决问题了,比如物体高速运动时的情况。由此可见,相对论对于经典物理学起到了辅助补充的作用,大大地弥补了经典物理学中存在的缺陷,完成了经典物理学无法解析的问题。但是,在此需要特别的说明的是,相对论并不会经典物理学,正如上述例子一样,对于经典物理学来说,相对论更多的是起到了补充开拓的作用,明确了经典物理学的适用范围,即低俗、宏观的物理世界,在高速围观的世界里对于经典物理学所不能达到的领域进行补充与加强。

牛顿经典力学认为质量和能量各自独立存在,并且提出了牛顿定律,但是,这一定律却使得狭义相对论面临巨大的挑战,即任何空间位置的任何物体都要受到力的作用。就在这个时候,为了解决这个问题,爱因斯坦提出了广义相对论。

爱因斯坦广义相对论认为,质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。

经典力学也是有其局限性的。1543年,波兰的哥白尼发表了《天体运行论》,提出了“日心说”,指出“地心说”是错误的,认识到了地球和其它行星都围绕太阳运动。经典力学以严格的数学方法和逻辑体系统一了宇宙间的运动,实现了人类对自然界认识的第一次理论大综合。经典力学又经历了17、18、19世纪的进一步完善。在逻辑上和形式上都进一步优美,日臻完善。

众多的实验结果表明:不存在以太,光速不受地球运动影响,是一个常量。这使得经典力学的预言失败,有力地证明了麦克斯韦的电磁学理论。看似百家争鸣的学术繁华现象并没有解决实际的额问题,相对的,反而使得物理学陷入了混乱之中。众所周知,狭义相对论与经典力学是极其相似的,两者均是低速情况下物体运动的适用理论,而在高速(特别是接近光速)的情况下,经典力学的不足之处也就体现出来了,他就不再适用,取而代之的是狭义相对论;第二是光速不变原理。在任意一个惯性系中,光速都为c,这就引出了关于同时性的相对性。由于光速是有限的,光从A地传播到B地需要一定时间,因此,在一个参考系中是同时发生的两件事件,在另一个参考系看来就不再是同时的了。每个参考系都有自己的时间,这一观点改变了千百年来人们头脑中的时间观念。相对论与经典力学是存在区别与联系的。具体的可以这样总结来看:经典力学是狭义相对论在低速(v

纵观人类科学发展史,任何一种理论,只要它能符合严密的逻辑,并且能合理地解释已发现的实验现象,还能够成功地预言尚未发现的现象并最终被实验所证实。那么,这个理论就不可能是完全错误的。但是它也绝不可能是完美的。因为它永远只是自然界的客观规律在某些特定条件、特定适用范围内的近似形式。也正因此,自然界是可以被认识的,但认识是永无止境的。

由此可见,相对论对于经典物理学的影响并不是但看一方面就能下结论的,相对论对于经典物理学的利弊,笔者看来,两者都是科学发展的产物,二者相辅相成,对于人类科学发展都是不可或缺的。