首页 > 文章中心 > 集成电路可靠性

集成电路可靠性

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇集成电路可靠性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

集成电路可靠性范文第1篇

"铁路行车组织"是铁道交通运营管理专业的一门核心课程,针对制动员、连结员、信号员、车号员、列车调度员所从事的调车、车站工作统计、接发列车、列车运行调度指挥及运行调整等典型工作任务进行分析后,归纳总结出来其所需求的铁路运输系统的调车工作、接发列车工作、车站统计工作及铁路运输调度指挥等能力要求而设置的学习领域。

本课程围绕车站行车工种及列车调度员所从事的调车工作、接发列车工作、车站统计工作及铁路行车调度指挥等工作过程,考虑由浅入深、由简单到复杂的原则。根据工作过程导向设置了铁路行车概述、调车工作、货物列车及货车技术作业过程、车站作业计划、接发列车工作、车站工作统计及列车编组计划、列车运行图及区间通过能力、铁路运输技术计划及调度指挥等8个以工程项目为载体的学习情境,可以系统地训练学生运用所学知识处理行车业务的能力。

通过8个学习情境的学习,让学生完整地掌握铁路行车工作应用的基本知识、基本技能,在教学过程中,逐步培养学生作为工作者的工作态度、职业道德、团队协作能力与沟通能力,并逐步熟悉从事该行业应执行的标准及作业过程。

"铁路行车组织"为"铁路行车规章"提供作业过程及方法的技术支持。为"铁路客运组织"、"铁路货运组织"课程提供作业方法等

二、 "铁路行车组织"考核标准

1.优点:

(1)将整个课程分成8个情境来学习,是非常复杂的一门课变得条理清晰。每一个情境都非常明确的写出了"情境名称"、"项目目标"、"项目任务"、 "教师知识与能力要求"、" 学生知识与能力准备"" 教学材料"、"学习任务"等,使教师明确了这个情境应该讲什么,哪些是重点以及怎么讲。

(2)本门课程有大型作业,并将其纳入到期末考核范围,这是本门课程的一大特色。大型作业是学生对所学知识的综合运用,涉及到很多方面的专业知识,在锻炼学生独立思考问题能力、解决问题能力以及动手实践能力方面都起着积极的作用。如"车站作业计划" 、"编制列车运行图"等情境,要求学生根据所给资料完成大作业所要求的任务。

(3)本门课程重视学生实践技能的考核。由于我院人才培养的定位为培养高素质、高技能型专业技术人才,所以学生的动手能力的培养显得尤为重要。正是基于这一点,我们特别重视学生实践技能的考核并将其纳入到期末考试考核范围。如学生上铁鞋、 排风摘管、观速、观距、人力制动机制动等,都是对学生实践动手能力的 培养。

(4)针对学生不同就业方向,灵活选择考核内容。针对女生绝对不可能从事调车工作这一实际情况,我们在进行技能训练时,将男女生分开。男生练调车所需技能,女生则进行形体训练。

2.对于优化课程标准的几点设想

(1)如何处理行车组织的理论、方法与规章性知识的关系,是优化课程标准的一个非常重要的方面。现在分行车组织和行车规章两门课,在讲解时,两门课既要有分工、还要有配合。

(2)行车组织内容抽象,学生以前几乎都没有接触过,甚至都没听过,所以,如何在短时间内使学生理解所讲知识,是我们要探索的一个问题。要求教师在讲解的时候要使用多种教学方法与手段,如利用多媒体课件、录像、现场观看等,使学生有直观印象、便于接受。

(3)"学生工作页"在"铁路行车组织"中的应用

集成电路可靠性范文第2篇

【关键词】 雷达 微电子技术 分析

在现代化的军用雷达与电子设备之中军用微电子技术属于非常重要的技术之一,是现代军事信息作战的基础。在军用微电子工业当中,集成电路属于最具活跃的产品。在美国非常重视开发与应用军用集成电路。美国相关的国防部门早在十几年前曾提出^超高速集成电路与微波单片集成电路的发展规划。只要真正的实现这两者的发展计划对于军用雷达与武器装备未来的发展有着巨大的影响,对打赢未来信息战争发挥举足轻重作用。

一、超高速集成电路与微波单片集成电路的特点

1、超高速集成电路的特点。在未来的信息作战当中,电磁信号的环境十分汇集而且复杂,军用雷达与电子情报系统需要面对一百至二百万脉冲美妙的信号方面的强度,处理信号的系统极有可能需要执行几十亿条指令。面对极其复杂的信息作战环境,然而目前一般的集成电路处理信号系统的效率很难满足相关的需求。要想真正的处理好这方面的问题,美军便加大力度促进超高速集成电路发展。

2、微波单片集成电路的特点。微波单片集成电路将超大规模集成电路、超高速集成电路以及超高性能集成电路使用至数字电路中的微波电路,它属于集成电路处于微波电路中主要的发展。微波单片集成电路将诸多晶体管、电阻、电容等管线集中至一个芯片上,制成许多功率放大器、低噪声放大器、移相器等。仅有很少的微波单片集成电路芯片组合起来就能组成一个收发构件,用来代替很多元件。

二、超高速集成电路与微波单片集成电路的发展现状

1、超高速集成电路的发展现状。美国国防部门早在很多年前年对超高速集成电路的发展就已经开展实施以硅为主要材料发展计划,之后又转化成将硅和砷化稼作为主要材料并举的超高速集成电路发展计划,为了促使军用电子系统发展的快速进程。此计划主要是为了促进民用半导体商家的发展所难以解决的军用信号需要的元器件工艺,就是为了满足军用信号处理、抗辐射、故障容限等能力的有关需求所提出的。这个计划的的总提目标就是为了研制出功能先进、价格合理、高质量的超高速集成电路芯片,确保处理信号速率、功耗减少、可靠性、维护性合理提高的终点目标,并且使目前具备处理数据的速度必须提升一级。其实际的目标是为了使芯片的微加工线宽达到标准的规格,各项功能要比同样种类民用的产品高出百倍,将其的可靠性提升十倍。按照制定的范围超高速集成电路应当于1990年完成计划,共投资量达到十亿美元,通过集中开发了来实现亚微米特有的尺寸要求的技术。

2、60年代中期才得到逐渐的发展,70年代,砷化镓材料制造工艺的逐步成熟,对于微波单片集成电路的发展形成了很大影响。因为砷化镓材料的电子迁移率比硅高出7倍,且半绝缘砷化镓的电阻率的高度达到108,因此砷化镓属于最合理的微波传输介质材料,非常适合用在单片微波单片集成电路的衬底。正是因为砷化镓技术的普遍推广,促进了工业界集团朝向微波单片集成电路的方向发展。

三、超高速集成电路与微波单片集成电路在信息作战领域的应用

1、超高速集成电路在雷达和军用电子设备中的应用。超高速集成电路应用至军事雷达与电子装备系统中有效的提高了的在战场上获取情报、侦查情报、分析目标、处理数据等方面的能力;在很大幅度上,有效的提高了雷达、电子设备、武器系统在复杂的环境当中,以最快的速率反应能力与应变能力,实现了信息作战武器系统的高速、高效和精准性。

2、微波单片集成电路在军用雷达中的应用。与普通使用的陆基雷达相比较之下,微波单片集成电路器件与之同样的雷达在相同条件下所耗费的性能提高十倍。相控阵雷达的真正优势在于产生的微波功率的与传输效率较高,发射机的功能消耗等于使用功率管的三分之一,同时接收机的灵活度也提高了2倍。另一方面的优势在于可靠性较强,在此过程中,就算其中有百分之五的构件失灵。雷达系统依然能保证供应更好更多功能工作性能。微波单片集成电路 T/R组件极具紧凑、可靠性高、重量轻、成本低等结构方面的优势。

结束语:综上所述,超高速集成电路能够有效的提高处理信号与处理数据的能力,还能增强信号方面的接收、传输、发射能力的微波单片集成电路电路能实现构建出新一代全新的军用微电子系统,这种系统在军事信息作战领域特别是雷达和电子设备中拥有良好的应用前景。在下一代中的军用雷达关键特征在于它器件方面的模块化与集成化,而超高速集成电路与微波单片集成电路属于提高军用雷达器件集成化、模块化过程中最重要手段之一。

参 考 文 献

[1]严伟. 微电子组装技术在现代雷达中的应用[J]. 微电子学,1994,01:59-63.

集成电路可靠性范文第3篇

IC芯片是将大量的微电子元器件(晶体管、电阻、电容等)形成的集成电路放在一块塑基上,做成一块芯片。而今几乎所有看到的芯片,都可以叫做IC芯片。当今半导体工业大多数应用的是基于硅的集成电路。

集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为 杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。

(来源:文章屋网 )

集成电路可靠性范文第4篇

【关键词】集成电路;芯片;封装技术

1.引言

封装技术是一种将集成电路用塑料、陶瓷或玻璃等材料包装的技术。以CPU为例,我们实际看到的体积和外观并不是真正的内存的大小和面貌,而是内存芯片经过封装后的产品。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路进行腐蚀造成电气性能下降。此外,封装后的芯片更便于安装和运输。封装技术的好坏还直接影响到芯片性能的好坏和与之连接的PCB(印制电路板)的设计和制造,所以说它是至关重要的。

由于现在处理器芯片的内频越来越高,功能越来越强,引脚数越来越多,封装的外形也不断在改变。电子产品向便携式、小型化、网络化和多媒体化方向发展的市场需求对封装技术提出了更加严格的需求,集成电路封装技术正在不断的发展。

2.IC封装的现状

2.1 现阶段较广泛应用的集成电路封装

2.1.1 DIP双列直插式封装

DIP封装是最普及的插装型封装,适用于中小规模集成电路(IC),其引脚数一般不超过100个。采用DIP封装的芯片有两排引脚,需要插入到具有DIP结构的芯片插座上,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装具有以下特点:

①适合在PCB上穿孔安装,操作方便;②比TO型封装易于对PCB布线;③芯片面积与封装面积之间的比值比较大,故体积也比较大。

Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。

2.1.2 PLCC塑料有引脚片式载体封装

PLCC封装属于表面贴装型封装。PLCC是一种塑料有引脚的片式载体封装,引脚从封装的四个侧面引出,呈丁字形,采用片式载体是有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。PLCC封装主要用于高速,高频集成电路封装。

2.1.3 QFP/PFP方形扁平式/扁组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数常在100个以上。此形式封装的芯片必须采用SMT(表面安装设备技术)将芯片与主板焊接起来。采用SMT安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。引脚端子从封装的两个侧面引出,呈L字形,引脚可达300脚以上。

PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:

①适于SMT表面安装技术在PCB电路板上安装布线,操作方便,可靠性高;②芯片面积与封装面积之间的比值较小;③封装外形尺寸小,寄生参数小,适合高频应用;④引脚从直插式改为了欧翼型,引脚间距可更密,引脚宽度可更细。

Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

2.2 现阶段较先进的集成电路封装

2.2.1 BGA球栅阵列式封装

BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。BGA是表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚。引脚可超过200,是多引脚大规模集成电路(LSI)常用的一种封装。BGA封装具有以下特点:

①I/O引脚数虽然增多,但引脚间距远大于QFP,故提高了组装成品率;②功耗虽增加,但BGA能用可控塌陷芯片法焊接,故可改善它的电热性能;③厚度比QFP减少约1/2,重量减轻约3/4;④信号传输延迟小,使用频率大大提高;⑤组装可用共面焊接,可靠性高;⑥占用基板面积过大。

2.2.2 CSP芯片尺寸封装

随着全球电子产品个性化、小型化和便携化的需求,出现了CSP芯片尺寸封装。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。CSP封装具有以下特点:

①近似芯片尺寸的超小型封装;②保护裸芯片;③满足了LSI芯片引出脚不断增加的需要;④电、热性能优良;⑤解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;⑥便于焊接、安装和修整更换。

目前日本有多家公司生产CSP,而且正越来越多地应用于移动电话、数码录像机、笔记本电脑等产品上。从CSP近几年的发展趋势来看,CSP将取代QFP成为高I/O端子IC封装的主流。

2.2.3 MCM多芯片模块系统封装

为了解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMT技术组成多种多样的电子模块系统,从而出现MCM多芯片模块系统。MCM的特点有:

①封装延迟时间缩小,易于实现组件高速化;②缩小整机或组件封装尺寸和重量,通常体积减小约1/4,重量减轻约1/3;③可靠性大大提高。

目前MCM已经成功地用于大型通用计算机和超级巨型机中,今后将用于工作站、个人计算机、医用电子设备和汽车电子设备等领域。

3.国内外封装技术比较

我国的封装技术比较落后,目前仍然停留在PDIP、PSOP、PQFP、PLCC、PGA等较为低档产品的封装上。国外的封装早就已经规模化生产,在国内封装企业主要集中在长三角的合资或国外独资企业,没有一家企业位能独立进行批量生产,其根本原因是政府的政策不够完善,我们的观念、技术和管理与国外还存在很大差距。其具体原因有:

①封装技术研发环境欠佳,可操作性不够强;

②封装设备相对落后,材料性能的落后,而且质量不稳定;

③封装设备维护保养能力不足,缺少有经验的维修工程师,而且可靠性实验设备不齐全,测试手段不足;

④国内封装企业普遍规模较小,从事低端产品生产的居多,可持续发展能力不强,缺乏向高端产品封装技术发展的技术和资金;

⑤掌握封装技术专业人才相对短缺、缺少正规的培训人才的途径和手段;

⑥缺少团队精神,缺乏现代企业管理的机制和理念;

⑦政府的政策导向不够明确,现有机制不够灵活,产业结构没得到很好调整。

4.IC封装的发展趋势

在过去几十年里,为适应集成电路向小型化、高速化、高频化、大功率发展的需要,集成电路封装技术得到了不断的提高和改进,朝着小尺寸、多I/O、高密度、高可靠性、高散热能力、自动化组装的方向发展。

就芯片水平来看,二十一世纪的封装技术发展将呈现以下趋势:

①单芯片向多芯片发展。为了适应多功能化需要,多芯片封装成为发展潮流,采用两芯片重叠,三芯片重叠或多芯片叠装构成存储器模块等方式,以满足系统功能的需要。

②平面封装(MCM)向立体封装(3D)发展。伴随着芯片体积的增加导致封装出来的产品面积也会明显增加,在现有技术条件和有限的空间内,如何进一步提高晶体管的密度,必然在二维平面封装(MCM)的基础上向Z方向发展,即实现3D封装。3D封装可实现超大容量存储,不但使电子产品密度更高,也使其功能更多,传输速度更快,性能更好,可靠性更好,还有可能降低价格。

③为适应市场快速增长的以手机、笔记本电脑、平板显示等为代表的便携式电子产品的需求,IC封装正在向着微型化、薄型化、不对称化、低成本化方向发展。

④为了适应绿色环保的需要,IC封装正向无铅化、无溴阻燃化、无毒低毒化方向快速发展。

电子产品高性能、多功能、小型化、便携式的趋势,不但对集成电路的性能要求在不断提升,而且对电子封装密度有了更高的要求。随着时间的推移,封装会有越来越多的改进,性价比将得到进一步的提高,由于其灵活性和优异的性能,封装有着广泛的前景。我们应该加强封装技术的研究,把我国的封装技术水平进一步提高,为我国电子工业作出更大的贡献。

参考文献

[1]李枚.微电子封装技术的发展与展望[J].半导体杂志,2000,25(2):32-36.

[2]肖力.我国微电子封装研发能力现状[J].电子与封装,2007,7(4):1-5.

集成电路可靠性范文第5篇

关键词:电源通路管理器;PowerPath;LTC4098;高压保护

前言

USB端口是快速数据传输的首选方法,也正在迅速成为便携式设备电池充电的首选方法,因为可以不再需要单独的交流适配器。不过,用USB端口给设备电池充电时存在功率限制。另外,由于便携性需求,越来越需要在家庭之外的场所充电(例如,在汽车中)。但是汽车电源也有缺点,如电压瞬态或来自交流发电机的浪涌。因此,电池充电器集成电路需要很好地保护,以应对这类严酷的情况。模拟集成电路中的电源通路(PowerPath)充电系统拓扑为系统设计师和最终产品用户带来了无数优点,如能够自主和无缝地管理多个输入电源,为系统负载供电并给电池充电。这种集成电路拓扑除了能减少热量,还可实现较快的充电时间和即时接通工作。

这类集成电路的一个新趋势是集成高压能力和过压保护功能,以处理汽车、Firewire或未稳压交流适配器输入。这些电源通路管理器集成电路采用扁平封装,需要极少的外部组件,可为个人导航器、媒体播放器、数码相机、PDA和智能电话等手持式电子产品组成简单、紧凑和经济的解决方案。

设计难题

能承受汽车电源、Firewire端口或未稳压12V/24V适配器等高压输入电源为在家庭或办公室之外的场所充电提供了方便。例如,有了适配器电源,手持式产品中的适配器电压和电池电压之间的压差可以很大。而视所需充电时间和充电电流的不同,线性充电器也许不能承受这么大的功耗。这种情况通常需要一个具有开关模式拓扑的集成电路来保持快速充电,同时提高效率并减少热量管理问题。另外,具有高压能力和/或过压保护的集成电路还不容易受到输入电压瞬态的损害,提高了集成电路和系统的抗瞬态性和可靠性。

管理最终产品中的电源通路是另一个设计难题。今天,很多便携式电池供电电子产品可以由低压源(交流适配器、USB端口或锂离子/聚合物电池等)以及高压源供电。不过,自主管理这些电源和电池之间的电源通路并为负载供电带来了极大的技术挑战。传统上,设计师一直用少量MOSFET、运算放大器和其它组件来单独实现这一功能,但是一直面临着负载热插拔、负载上有大浪涌电流以及大电压瞬态等难题,这些问题可能引起严重的系统可靠性问题。

锂离子和锂聚合物电池是便携式消费类电子产品的首选,因为它们的能量密度相对较高,在给定尺寸和重量限制下,可比其它可用化学材料实现更高的电池容量。随着便携式产品变得越来越复杂,它们消耗的功率也越来越多,因此对较高容量电池的需求也增强了,相应地也需要更先进的电池充电器。较大的电池要充满电就需要较高的充电电流或者需要更长的充电时间。另外,在很多情况下,能用USB端口给电池充电意味着对用户更方便,但是USB兼容性造成了对USB电流(最大500mA)和功率(最大2.5W)的限制。基于USB的电池充电器必须尽可能高效率地从USB端口抽取更多功率,以满足今天功率密集型应用严格的热量限制。

大多数消费者都希望缩短充电时间,因此提高充电电流似乎是显而易见的选择,但是提高充电电流有两个大的弊端。首先,就线性充电器而言,提高电流会增加功耗,这些功耗转换成了热量,从而将典型的实际“最大”功率降至2.1W。其次,充电器必须视主器件协商好的模式,将从5V USB总线吸取的电流限制为1 00mA(500mW)或500mA(2.5W)。充电过程中浪费的任何功率都直接导致较长的充电时间。需要高效率充电、电池充电器集成电路具有高的功能集成度以及需要节省电路板空间和提高产品可靠性,这些都给由电池供电的电子产品的设计师施加了压力。

制造商们也正在改变印刷电路板的使用方式,现在他们不是使用单个多层电路板,而是越来越多地在空间受限设计中使用相互堆叠的多个电路板。先进的封装有助于减少高度/厚度并节省印刷电路板面积,可以实现更高效的堆叠。

总之,系统设计师面临的主要难题包括:

・最大限度地提高从USB端口获得的电流(可提供2.5W);

・管理多个输入电压源和电池之间的电源通路,同时向负载供电;

・保护集成电路免被高压系统瞬态损坏;

・最大限度减少热量同时快速充电;

・最大限度提高充电效率和延长电池工作时间;

・最大限度减小解决方案占板面积和高度。

具有高压输入能力和过压保护功能、集成和紧凑的电源通路管理器IC简单轻松地解决了这些问题。

一个简单的解决方案

具有电源通路控制功能的集成电路能够自主和无缝地管理USB、交流适配器、电池等不同输入电源之间的电源通路,同时优先向负载供电。为了确保充满电的电池在连接USB总线时仍然保持满电量,这类集成电路通过USB总线向负载供电而不是从电池抽取功率。一旦电源去掉,电流就通过一个内部低损耗理想二极管从电池流向负载,从而最大限度地提高效率、降低功耗。理想二极管的正向压降远低于常规或肖特基二极管,因此最大限度地提高了能量传输效率,反向电流泄漏也更小。典型值为20mV的微小正向压降减少了功率损耗和自热,因此延长了电池工作时间。另外,三终端(或“中间总线”)拓扑去掉了电池与Vot。的耦合,允许最终产品一插上电源插头就立即工作,而不管电池的充电状态甚至电池缺失也一样,这通常称作“即时接通”工作。

电池充电器与电源通路控制器和理想二极管器件(“电源通路管理器”)集成,可高效管理各种输入电源、给电池充电、优先向负载供电并降低功耗。电源通路控制电路可以采取线性或开关拓扑,因为视具体充电要求不同,他们对系统而言都有一定的优点。

开关电源通路系统的优点

与电池馈送型系统相比,线性电源通路系统的优点是向负载/系统提供功率的效率高,但是在线性电池充电器单元中有功率损耗,尤其是如果电池电压较低(导致输入电压和电池电压之间出现大的压差)时更是这样。而基于开关模式拓扑的电源通路电路通过符合USB要求的降压型开关稳压器产生中间总线电压,稳压器稳定在比电池电压高300mV的电压上(参见图1)。这种形式的自适应输出控制被凌力尔特公司称作“电池跟踪(Bat―Track)”。稳定的中间电压刚好高到允许通过内部线性充电器恰当充电。用这种方法跟踪电池电压,最大限度地降低了线性电池充电器中的功率损耗、提高了效率并最大限度地提高了提供给负载的功率。具有平均输入限流的开关架构最大限度地提高了使用USB电源提供的所有2.5W功率的能力。可选外部PFET降低了电池和负载之间理想二极管的阻

抗,进一步减少了热损耗。这种架构是使用大电池(>1.5AHr)的系统“必须”采用的。

LTC4098―兼具高效率充电和高压保护

LTC4098(图2)是一种自主式高效率电源通路管理器、理想二极管控制器和电池充电器,用于通过USB供电的便携式设备,如媒体播放器、数码相机、PDA、个人导航器和智能电话,该器件采用超薄(0.55mm)20引脚3mm×4mm QFN封装。就汽车、Firewire或其它高压应用而言,LTC4098用凌力尔特公司的开关稳压器提供电池跟踪控制,工作输入高达38V(瞬态为60V),最大限度地提高了电池充电器效率、减小了热损耗,甚至用更高电压电源也可以无缝运作。

LTC4098提供高达66V的过压保护(OVP)电路,仅需要一个外部NFET/电阻组合,可防止偶然的高压情况引起的输入损坏。该集成电路自动降低充电电流可实现快速接通工作,确保一插上电源插头就向系统负载供电,甚至电池没电或缺失时也一样。其片上理想二极管保证总是向VOUT提供充足的功率,即使LTC4098的两个输入引脚的功率不充足也一样。该集成电路的理想二极管控制器可用来驱动可选PFET的栅极,将对电池的阻抗降至30mΩ或更低。

LTC4098的全功能单节锂离子/聚合物电池充电器允许负载电流超过从USB端口吸取的电流,同时符合USB负载规范。因为保存了能量,所以就快速充电而言,该集成电路的高效率开关输入级几乎将USB端口提供的所有2.5W功率都转换成了可用系统电流,从USB端口限制的500mA实现了高达700mA的电流。用交流适配器供电时还有1.5A的可用充电电流。

过压保护(OVP)

LTC4098仅用N沟道FET和6.04kΩ电阻这样两个外部组件,就能在VBUS或WALL意外地加上过大电压时保护自己免受损坏。最高安全过压幅度将由该外部NMOS晶体管及其漏极击穿电压决定。

电池跟踪开关稳压器的输入限流和高压控制

LTC4098从VBUS到VOUT的功率传递由2.25MHz恒定频率降压型开关稳压器控制。为了满足USB最大负载规格要求,该开关稳压器含有一个测量和控制系统,以确保平均输入电流保持低于CLPROG引脚的编程值。这样,VOUTS,就可以驱动外部负载和电池充电器的组合。

如果这个组合负载没有让开关电源达到编程设定的输入限流值,那么该集成电路的VOUT将跟踪大约比电池电压高0.3V。通过将电池充电器电压保持在这个低电压值上,最大限度地降低了电池充电器的功率损耗。

如果组合外部负载加上电池充电电流足够大,使得开关电源达到了编程设定的输入限流值,那么电池充电器将严格按照满足外部负载所需的量降低充电电流。即使电池充电电流被编程至超过容许的USB电流,就平均输入电流而言,也不会不满足USB性能规格。另外,如果VOU,端的负载电流导致超过从VBUS的编程设定功率,那么将通过理想二极管从电池吸取额外的负载电流,即使电池充电器正在工作也一样。

WALL、/ACPR和VC引脚可连同LT3480等外部高压降压型开关稳压器一起使用,以最大限度地减少用较高电压源工作时产生的热量。电池跟踪控制电路将外部开关稳压器的输出电压调节至较高的(BAT+300mV)或3.6V。这最大限度地提高了电池充电器的效率,同时在电池深度放电时仍然允许即时接通工作。

LTC4098先进的超薄(典型值为0.55mm)QFN封装在印刷电路板相互堆叠的空间受限应用中使用有优势。这种封装可组成“体积”紧凑的解决方案,为系统设计师提供了灵活性。另外,该器件具有与更高的(0.75mm)前一代QFN封装相同的热性能。

结语