前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物质燃料的缺点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:生物质 生物质电厂 秸秆 收集
一、生物质能源概述
生物质能是动植物和微生物通过光合作用形成的。它归根结底还是太阳能的一种表现形式。因此从理论上讲这种能量和太阳能一样是取之不尽用之不竭的,并且可以再生。生物质能目前在国内外已经得到了广泛的利用,并且将逐步发展壮大下去。生物质是全球的第四大能源,前三个能源分别为炭、石油和天然气。而生物质能的燃料主要包括有小麦、玉米、棉花和高粱等农作物的秸秆,也有的用木材加工的废料。生物质是可再生能源,这种能源既环保又很清洁。虽然生物质在地球上的总量是很多的,分布也非常广泛,但得到利用的却很少很少,具有着非常大的潜力。
生物质能源中的碳和硫含量是很少的,因此燃烧产生的有害气体也是很少的,并且由于生物质在生长中也会吸收很多二氧化碳,因此不会影响温室效应的加剧。生物质能源的另一个重大好处便是方便运输和储存,由于一般的可再生能源例如风能和太阳能等都是不可运输不便存储的。生物质能中所占比例最大的要数农作物的秸秆了,我国农作物秸秆资源是非常丰富的。不过虽然丰富,但农作物秸秆却也有着储运不方便、资源分散、和能源密度低等缺点。由于这些缺点导致到目前为止利用率依旧不高。
二、目前国内外生物质电厂发展状况
目前世界上都在竭力将生物质能源运用到各个领域中,其中非常成功的领域要数生物质发电技术了,以高效直燃形式发电,以这种方式用于电厂的技术在国外已经非常成熟了。由丹麦率先提出了农林生物质进行高效直燃发电技术,并且提出后立刻被联合国列为了重点项目。虽然我国的生物质发电才起步不久,不过也已经有一些以生物质发电为主的电厂相继建成并且投入使用了。
1.国外生物质秸秆发电现状
发达国家一直竭力于开发可再生能源,其中丹麦国家的BWE公司率先研发了生物质发电技术,并且取得了非常大的成功..到目前为止,丹麦全国已经有将近140家的秸秆发电厂了。这种发电技术为丹麦国家带来了非常高的收益,也使得丹麦的石油年消费量下降了好多。随着丹麦国家的成功案例,使得接下来荷兰等欧洲国家相继开始投入到生物质发电研究中。
2.国内生物质秸秆发电现状
我国是农业发展大国,秸秆的资源可以说是非常丰富的,如果不能很好的利用的话就实在太可惜了。目前农民都把大部分的秸秆直接在田里燃烧掉,这样是非常浪费资源的,同时对于环境的污染也是不容忽视的。如果这些秸秆资源都能够投入使用的话,结果一定很不一样,农民既可以得到另一份的收入,也可以为生物质发电厂提供更多的能源,同时对于环境的保护也是有一定的影响的。
我国是从2003年开始有生物质发电厂项目的。截止到2007年底,一项不完全统计显示我国已经批准有87个生物质发电项目,总的装机容量也是达到了220万千瓦,示范项目地点总体分布于我国的北部,例如山东、黑龙江、辽宁、吉林、新疆等等。但我国的生物质秸秆发电却也存在着一些问题,这些问题导致我国的生物质发电技术难以以更快的速度发展壮大。首先是秸秆收购上存在着相应的困难。由于秸秆收集的劳动量是很大的,因此很多农民选择进城打工获取更高的收益,有的在厂地周边的人又本身生活很富裕,也不在乎收秸秆的一点收入。现如今农民选择的收割方式也是非常不利于秸秆收集的,农民基本上都是直接取走玉米,将秸秆留在原地。还有一个问题就是运输方面很困难,秸秆本身是很轻的,体积又非常大,因此非常不利于长距离的运输。同时生物质发电电厂的投资量都是非常大的,设备基本上都需要进口,基本上生物质发电厂都处于亏本状态。
我国发展生物质电厂是非常必要的,因为首先我国的生物质能源的资源是非常丰富的,我国的农作物秸秆大约有3亿顿可以作为燃料,加上其他生物质资源如林木废弃物等大约有6亿吨的生物质可以作为燃料使用,这个总量可以说是非常大的。发展生物质能同时也起到了保护环境的作用,我国由于燃烧秸秆等造成的环境污染还是非常严重的,将秸秆进行统一收集统一处理是一个非常好的环保手段。另一方面农民也可以因此而获得更高的收益。
三、生物质电厂燃料秸秆收集情况
由于燃料的难以供应,导致我国的很多生物质电厂都面临着亏损状态,甚至面临着破产的困境。生物质发电厂一直以来是那么的受众人恩宠,但现如今却全部亏损,最主要的原因就是秸秆的收集状况非常困难。
生物质电厂找不到秸秆资源的最主要的原因就是秸秆的收集非常难,很多发电厂都不得不使用树皮、木屑等作为替代原料。一家生物质发电厂的负责人指出,按原先的计划,他们需要用30多万吨的秸秆作为燃料用于发电,现如今却只有五分之一。他们只好通过其他燃料代替,例如一些树皮、稻壳等等,可谓是“生活非常艰难”。
据相关部门的了解,生物质发电厂的收购费用已经占据了生产成本的百分之八十左右,可谓基本上都放在了燃料的收集上。许多专家认为,政府应该考虑到秸秆的利用情况,使规划布局变得更加合理,并且提出相应方案对生物质发电厂给予相应的扶持和帮助。这样我们的生物质电厂才能发展的更加好。
总的来说,随着地球上能源的逐渐短缺,生物质能源这种可再生能源的利用是势在必行的,一个国家要想持续发展,一定到想办法利用起生物质能源来。生物质发电厂现如今处在了非常艰难的时刻,希望能够通过政府和社会解决秸秆收集难的问题,帮助生物质电厂不断发展壮大下去。
参考文献
[1]王志刚.基于12MW秸秆发电工程控制方案的研究[J].科技创新导报.2010年07期.
[2]张卫杰.关海滨.姜建国.李晓霞.闫桂焕.孙荣峰.许敏.孙立.我国秸秆发电技术的应用及前景[J];农机化研究;2009年05期
生物质能的分类及其发展
生物质包括植物光合作用直接或间接转化产生的所有产物,从这个概念出发,生物质能就是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。生物质主要有4类:农作物秸秆及其他残余物、林产品和木材加工残余物、动物粪便、能源植物。但是,从作为可以产生能源的资源角度看,城市和工业有机废弃物和有机废水也是生物质能资源。
生物质能具有可再生性、低污染性、广泛分布性等特点。根据技术手段可分为直接燃烧技术、热化学转换技术、生物转换技术、液化技术和有机垃圾处理技术等。依据这些技术手段,生物质能可分为固体燃料、液体燃料和气体燃料。
直接燃烧和发电
直接燃烧发电的过程是:生物质与过量空气在锅炉中燃烧后,得到的热烟气和锅炉的热交换部件换热,产生出的高温高压蒸气在蒸汽轮机中膨胀做功发电。
直接燃烧是使用最广泛的生物质能源转化方式,技术成熟。在发达国家,生物质直接燃烧发电站可再生能源发电量的70%。与燃煤发电相比,生物质直接燃烧发电的规模较小,锅炉负荷大多在20兆瓦~50兆瓦,系统发电效率大多为20%~30%。目前,美国生物质发电装机容量已达10500兆瓦,70%为生物质一煤混合燃烧工艺,单机容量10兆瓦~30兆瓦,发电成本3~6美分/千瓦时,预计到2015年,装机容量将达16300兆瓦。
国外生物质直接燃烧发电技术已基本成熟,进入推广应用阶段。该技术规模效率较高,单位投资也较合理,但它要求生物质资源集中,数量巨大,如果考虑生物质大规模收集或运输的支出,则成本较高,比较适合现代化大农场或大型加工厂的废物处理等,不适合生物质较分散的发展中国家。我国目前农业现代化程度较低,生物质分布分散,采用大规模直接燃烧发电技术有一定困难。
生物质气化及发电
生物质气化的基本原理是在不完全燃烧条件下,将生物质原料加热,使较高分子量的有机化合物裂解为低分子量的CO、CH4等可燃气体。转化过程的气化剂有空气、氧气、水蒸气等,但以空气为主。气化原料是农作物秸秆或林产加工废弃物。生物质气化产出气的热值根据气化剂的不同存在很大差异,当以空气为气化剂时,产出气的热值在4200千焦/立方米~5300千焦/立方米之间,该气体可以作为农村居民的生活能源,也可以通过内燃机发电机组发电。
生物质气化发电技术在国际上已受到广泛重视。国外小型固定床生物质气化发电已商业化,容量为60千瓦~240千瓦,气化效率70%,发电效率为20%,以印度农村地区的应用比较成功。发达国家如奥地利、丹麦、芬兰、法国、挪威、瑞典和美国等,比较关注的是生物质气化联合循环发电技术(BIGCC)。该技术的系统效率可达40%,有可能成为生物质能转化的主导技术之一。这一技术存在的问题是单位投资额非常高,并且技术稳定性不够。
我国有着良好的生物质气化发电基础,在上世纪60年代就开发了60千瓦的谷壳气化发电系统。目前已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料,生产燃料气,主要用于村镇级集中供气。
生物质致密(压缩)成型燃料技术
将生物质粉碎至一定的粒度,不添加粘接剂,在高压条件下,可以得到具有一定形状的固体燃料。成型燃料可再进一步炭化制成木炭。根据挤压过程是否加热,生物质致密(压缩)成型燃料有加热成型和常温成型两种;根据最后成型的燃料形状可以分为棒状燃料、颗粒燃料和块状燃料三种。生物质致密(压缩)成型技术解决了生物质能形状各异、堆积密度小且较松散、运输和贮存使用不方便的缺点,提高了使用效率。
成型燃料在国外很受重视,开始研究时的着眼点以代替化石能源为目标。上世纪90年代,欧洲、美洲、亚洲的一些国家在生活领域大量应用生物质致密成型燃料。后来,以丹麦为首开展了规模化利用的研究工作。丹麦著名的能源投资公司BWE率先研制成功了第一座生物质致密成型燃料发电厂。随后,瑞典、德国、奥地利先后开展了利用生物质致密成型燃料发电和作为锅炉燃料等的研究。美国也已经在25个州兴建了树皮成型燃料加工厂,每天生产的燃料超过300吨。但生物质成型燃料仍以欧洲的一些国家如丹麦、瑞典、奥地利发展最快。
我国生物质成型燃料技术基础好,设备水平与世界先进水平差别不很大,不足的是我国成型燃料的应用水平还不高。
沼气技术
有机物在厌氧及其他适宜条件下,经过微生物分解代谢,产生以甲烷为主要气体的混合气体,即沼气。一般沼气中甲烷含量为50%~70%,每立方米沼气的热值为17900千焦~25100千焦。生产沼气的原料可以是高浓度的有机废水,也可以是畜禽粪便、有机垃圾和农作物秸秆等。
在发达国家,主要发展厌氧技术处理畜禽粪便和高浓度有机废水。目前,日本、丹麦、荷兰、德国、法国等发达国家均普遍采取厌氧法处理畜禽粪便。美国、英国、意大利等发达国家的沼气技术主要用于处理垃圾。美国纽约斯塔藤垃圾处理站投资2000万美元,采用湿法处理垃圾,日产26万立方米沼气,用于发电、回收肥料,效益可观,预计10年可收回全部投资。英国以垃圾为原料实现沼气发电18兆瓦,今后10年内还将投资1.5亿英镑,建造更多的垃圾沼气发电厂。
在发展中国家,沼气池技术主要使用农作物秸秆和畜禽粪便生产沼气作为生活炊事燃料,如印度和中国的家用沼气池。同时,印度、菲律宾、泰国等发展中国家也建设了大中型沼气工程和处理禽畜粪便的应用示范工程。我国是利用生物质生产沼气最多的国家。
燃料乙醇
生物质可以通过生物转化的方法生产乙醇。目前在生物能源产品产业规模方面,发展最快的就是燃料乙醇。生产燃料的乙醇主要有甘蔗乙醇、玉米乙醇和木薯乙醇三种,燃料乙醇的消耗量已超过世界乙醇产量的60%以上。
巴西是世界上最早利用甘蔗生产燃料乙醇的国家。以甘蔗为原料,工艺相对简单,既节能又节省投资,生产成本较低。目前,巴西有520多家燃料乙醇生产厂,年产燃料乙醇1200万吨,有1550万辆汽车以乙醇汽油作为燃料。
美国从上世纪70年代末开始用玉米生产燃料乙醇,到2005
年产量已经超过1200万吨。尽管目前乙醇的生产成本较高,但在美国,玉米燃料乙醇已成为一种成熟的石油替代品。
我国从2002年开始用陈化粮生产燃料乙醇,生产规模达102万吨,主要以玉米和小麦为原料。其背景是在1996年~1999年连续4年粮食总产量稳定5亿吨左右,粮食供过于求,粮食阶段性过剩并出现大量积压的情况下提出的。实践证明,粮食燃料乙醇生产技术成熟、工艺完善,是目前比较现实的石油替代燃料。
但面对我国人多地少的实际,大规模推广应用粮食燃料乙醇显然存在着原料供应的瓶颈问题,长远来说必须开发非粮食为原料的乙醇燃料。“十五”期间,国家开展了非粮食能源作物――甜高粱培育等关键技术的研究与开发,包括利用甜高粱茎秆汁液和纤维素废弃物等生物质制取乙醇的技术工艺。对第一种技术工艺,我国初步具备了规模化开发的基础,但纤维素废弃物制取乙醇燃料技术还存在技术不成熟、诸多关键技术尚未解决等问题。
生物柴油
生物柴油是利用动植物油脂生产的一种脂肪酸甲(乙)酯。制造柴油的原料很多,既可以是各种废弃的动植物,也可以是含油量比较高的油料植物。实践证明,生物柴油不仅具有良好的燃烧性能,还有良好的理化特性和动力特性。
国外通常采用大豆和油菜籽生产生物柴油,但成本稍高。为降低成本,一些国家开始用废弃食用油和专门的木本油料植物生产生物柴油。目前,生物柴油在欧盟已经大量使用,进入商业化发展阶段。2004年欧盟生物柴油产量为224万吨,并计划到2010年达到800万吨~1000万吨。
我国人多地少,发展生物柴油只能靠非食用油料资源。因此,我国目前生产生物柴油的原料主要是餐饮废油、工业废油、某些植物油和菜籽油、棉籽油的下脚料等。利用这些原料既回收利用了资源,又解决了环境污染问题。我国生物柴油的生产起步晚,但发展较快。目前已有30多家生物柴油生产厂。
除了上述生物质能利用技术外,还有生物制氢技术、热裂解技术等,基本处于研究阶段。
我国发展生物质能的必要性
开发生物质能具有能源与环境双重效益,有可能成为未来可持续发展能源系统的主要能源之一。因此,许多国家都高度重视生物质能源开发,并制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的乙醇能源发展计划等。联合国开发计划署(UNDP)、欧盟和美国(DOE)的可再生能源开发计划中也都把生物质能列为重点发展方向。
目前,生物质能是仅次于煤炭、石油和天然气的世界第四大能源。据估算,地球陆地每年生产1000亿吨~1250亿吨干生物质;海洋年生产500亿吨干生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。
我国的生物质资源也相当丰富。目前我国生物质能年获得量达到3.14亿吨标准煤,到2050年资源潜力可达到9.04亿吨标煤且潜力巨大。
根据发达国家的经验可知,现今正是我国实现工业化的关键时期。大部分发达国家在此期间(此时人均GDP在3000美元左右)都经历了人均能源、资源消费量快速增长和能源、资源结构快速变化的过程。这对能源安全等问题提出了更高的要求。据预测,2020年中国一次能源的需求为25亿吨~33亿吨标准煤,最少将是2000年的2倍;2050年的一次能源需求估计将在50亿吨标准煤左右。根据我国现在的能源需求增长趋势推算,到2020年,我国仅石油的缺口就将达1.3亿吨~1.5亿吨。能源供应不足问题已成为我国经济社会发展的主要矛盾之一。因此,要从根本上解决我国能源供应不足的问题,必须实施多元化能源发展战略,积极开发生物质能源是出路之一。
从保护环境角度看,我国SO2,排放量已居世界第一位,CO2排放量仅次于美国居第二位。2006年,SO2排放量达2550万吨,其中约85%是燃煤排放的。酸雨面积已超过国土面积的1/3。SO2和酸雨造成的经济损失约占GDP的2%。生物质能属于清洁能源,生物质中有害物质(硫和灰分等)的含量仅为中质烟煤的1/10左右。同时,生物质二氧化碳的排放和吸收构成自然界碳循环,其能源利用可实现二氧化碳零排放,扩大生物质能利用是减排CO2,最重要的途径。
另外,生物质一直是我国农村的主要能源之一。因地制宜开展生物质能利用技术及产品的研究、推广和使用,可以把农民从烟熏火燎中彻底解放出来,既节约资源,又可以改善农民的居住环境,减少水土流失,提高其生活水平。
我国发展生物质能存在的问题
全球石油化工巨头埃克森美孚近日的《全球能源展望2012》报告中提到,受经济增长和人口因素影响,到2040年全球能源需求将比2010年高出30%。今年3月20日,国内成品油价格又进行了上调,93号汽油从7.85元/升上调至8.33元/升,这是自2010年4月以来,国内成品油价格上调幅度创了新高。
能源危机已经触动每个人的神经,也激起了人们寻找可替代能源的强烈愿望。
很多东西能替代汽油
闵恩泽院士介绍,目前国内外研究、应用较多的几种生物质燃料主要有秸秆乙醇汽油、甜菜生物质汽油、纤维素生物质汽油、生物柴油、第二代生物柴油、微藻生物柴油等,很多东西可以替代汽油,我国发展生物质燃料的前景非常广阔。
含10%乙醇的秸秆乙醇汽油已在我国推广应用。与传统汽油相比,它优势明显。比如辛烷值提高了、含氧多、燃烧充分,减少汽车尾气一氧化碳排放35%以上、碳氢化合物排放15%以上。生物质生长过程,还能吸收二氧化碳。目前,我国已建有20万吨/年以上、以非粮作物木薯为原料的工厂。在国外,美国能源部投资10亿美元,发展秸秆乙醇工艺。计划到2030年,秸秆乙醇供应达到美国汽油总量的30%,约1.9亿立方米,生产成本也将低于石油汽油。闵恩泽院士说,要立足我们的基础,与国外合作,先实现工业化,再把规模扩大至10万吨/年以上。而大规模发展,酶制剂是基础,原料是关键,要调研了解国内的原料供应情况,研发具有自己特色的酶制剂。
以甜菜为原料的生物质汽油——最新一代生物质车用汽油,比乙醇汽油能量更高,使用更经济;不需要更新销售系统和加油站,不需要调整发动机。国外2010年开始建设工业生产装置。生产工艺包括原料预处理、水相重整、碱催化聚合、加氢脱氧。
同时,国外也在大力研究以纤维素为原料的生物质汽油。纤维素比甜菜等原料来源广泛、价廉。采用纤维素为原料,我国更有可能形成具有自主知识产权的技术。国内对纤维素生产生物质汽油的研发已经开展,并取得一定进展。应重点突破,占领这一高科技发展前沿制高点。
生物柴油大有可为
闵恩泽院士介绍,生物柴油是21世纪崛起的新兴产业,世界生物柴油产能已在3000万吨/年以上。目前,美国产能已发展到1093万吨/年、欧盟为1300万吨/年。国际上已经制定完善的生物柴油标准。
我国生物柴油总产能约150万吨/年,近几年产量30万~50万吨/年,大多以废弃油脂为原料。中国海油建设在海南东方的6万吨/年生物柴油装置,采用中国石化的SRCA工艺,实现了清洁生产,并已在海南的加油站销售。
闵恩泽院士说,中国石化发展生物柴油产业有基础。中国石化拥有完整的从小型到2000吨/年生物柴油中型试验装置;拥有生物柴油质量分析、模拟评定、台架试验装置以及行车试验的经验;拥有世界一流的、处理废弃油脂原料的生物柴油成套技术,以及处理木本植物油和微藻油原料的碱催化蒸馏工艺。此外,中国石化向科技部申请了“十二五”国家生物柴油重大支撑项目,中国石化咨询公司受国家能源局委托,正编制我国生物柴油行业发展的指导意见。这些,对中国石化发展生物柴油提供了有力支持。
期望微藻“点绿成金”
微藻是地球上最简单的一种生物。微藻生物柴油可以减排二氧化碳,减少温室效应,减少对石油的依赖,还能处理废气废水,保护环境。微藻生物柴油技术被誉为“一石三鸟”的技术,各国政府均大力支持研发,如美国制定了微藻生物柴油路线图,埃克森美孚2009年投资6亿美元研发微藻生物柴油。人们对这一技术,抱有热切期望。
【关键词】可再生能源;存在问题;解决措施
1.能源资源状况
(1)小水电:全县有大小河流7条,大多数属平原季节性人工河流,主要作用是抗旱排渍,自然落差不大,水能理论蕴藏量不大,只有2100kw,可开发量1700kw。
(2)太阳能:全县年日照1995小时左右,日照率为46%,太阳能年总辐射量0.45MJ/cm
(3)风能:年平均风速2.3米/秒,相当于2级风,开发利用价值不高。
(4)生物质能:农作物秸秆仍是吉水县农民生活用能的主要来源,每年用作生活用能的农作物秸秆16.8万t,占总量的68.7%,返田作肥料占31.3%;薪柴是农村广泛使用的传统生物质能,薪柴资源包括薪炭林、防护林、速生用材林、灌木林、疏林和“四旁”树等,全县薪柴开发总量为3.99万t,随着国家封山育林及林业加工业的发展,薪柴可用作农村生活用能量日趋减少;全县生猪存栏9.35万头,鸡10.6万羽,年产生畜禽粪便9.1万t,可利用量为15.1万t。
从以上可以看出,吉水县能源资源构成特点是:煤炭等化石能源极度缺乏,生物质能、太阳能等可再生能源资源丰富,新能源开发潜力大。
2.农村能源消费特点
生活用能的需求与生活水平密切相关,长期以来,农村地区生活用能主要靠当地秸秆和薪柴,采取直接燃烧方式,能源有效转换率仅有10~30%,造成能源利用的低效和浪费,能源缺乏与浪费之间矛盾突出。随着农村社会经济发展,吉水县农村生活能源使用出现了新趋势,呈现出“三减三增”特点:一是自及自足能源消费减少,商品能源消费增加;二是秸秆能源消费比例减少,液化气、煤等化石能源消费比例增加;三是高能耗用能方式逐步减少,可再生能源利用不断增加。
3.可再生能源开发利用现状
我国农村地区生物质能、太阳能资源丰富,蕴含着发展新能源的巨大潜力。经过多年发展,可再生能源开发利用已经取得了很大的进展,太阳能和沼气等可再生能源在吉水县农村已经得到广泛应用。
3.1生物质能开发
(1)沼气。沼气是我国广大农村地区开发应用的一种技术成熟的可再生能源,到2010年底,全国已经累计建成户用沼气超过4000万户,受益人口达1.55亿人。沼气是有机物在缺氧条件下通过厌氧微生物的发酵作用产生的混合气体,其中甲烷约占55~75%,1m3沼气相当于0.7~0.8kg标煤,热值较高,燃烧后只产生和CO2和H2O,是一种高品位的清洁能源。
二氧化碳和甲烷是产生温室效应的主要气体,每年可减少二氧化碳排放1.07万t,甲烷0.102万t。
沼渣中含有丰富的有机质、腐殖酸和矿物质灰分,改良土壤功效十分明显,其中有机质含量36.9%~49.9%,腐殖酸10%~24%,粗蛋白5%~9%,全N0.8%~1.5%,全P0.4%~0.6%,全K0.5%~1.2%;沼液含有多种速效营养成分。
沼渣沼液可广泛用于作物浸种、叶面喷肥、基肥或用于防治作物病虫害,也可作为家畜添加剂和鱼铒料,具有较高经济价值。用沼液浸种,水稻增产9.4%,玉米增产9.35%;沼液作叶面喷肥,密柑单株增产20.2公斤,茶叶喷施沼液能够促进茶叶株高增长,增加茶叶的百芽重和单叶重,促进茶树增产,增产率为9.0%。沼液、沼渣综合利用已成为农业增收、农民增效的一个新亮点。
(2)农作物秸秆及薪柴。
秸秆及薪柴具有体积大、密度小、热值不高的缺点,远距离输运成本大,堆放在房前屋后影响村容村貌,将其进行气化或压缩处理做为燃料是提高利用效率可行办法。
①秸秆气化。秸秆气化是采用一种生物质热解技术,先将农作物秸秆等生物质原料切碎,在缺氧条件下,使秸秆不充分燃烧,产生大量的氢气、甲烷和一氧化碳等可燃气体。一个4口之家每月需要燃烧秸秆130kg,每100kg燃料费用为13~15元,每农户月燃料费16.9~19.5元,秸秆气化成本明显低于其他常规燃料。秸秆的平均含硫量只有0.38%,远低于煤的含硫量(约1%),秸秆气化使用方便,清洁卫生,可以部分代替高品位商品能源。
②固化成型。将秸秆或薪柴干燥粉碎后,经过成型机械挤压成密度为0.8~1.2t的柱状或颗粒状燃料,1t成型燃料相当于0.429~0.571t标煤。是一种能代替燃煤的新型低碳、节能、环保燃料,具有燃烧热效率高、使用安全、清洁环保、节省空间等优点。
3.2太阳能利用
①太阳能热水器。在太阳能利用方面,应用最广泛、技术最成熟的是太阳能热水器,已经实现了产业化和市场化。每平方米太阳能热水器年可替代标煤150~180kg,2009年全国农村太阳能热水器保有量2955.56万台,面积已达4997.06万m2, 嘉鱼县农村太阳能热水器普 及率已达11%。一台太阳能热水器全年可节电1.8GJ(约512kwh),按本地农村电价0.6元/度计,每台热水器全年可节约307.2元,农户6~7年就可收回投资,而太阳能热水器使用寿命可达15a。
②太阳能路灯。太阳能路灯主要是通过太阳能板的光生伏特效应原理,白天吸收太阳能光子能量产生电能储存,夜幕降临时产生照明。太阳能路灯不需要架设输电线路,不用专人管理和控制,技术和经济效益上可行,一次性成本回收较快,节能效果显著。
③太阳能温室大棚。不仅在瓜果蔬菜、花木苗圃等种植业上广为应用,在水产养殖、畜禽饲养等方面的应用也不断扩大,对提高农牧业产量、增加农民收入起了很大作用。
4.新农村发展可再生能源的现实意义
在新农村建设中,因地制宜,合理开发利用农村可再生能源,对促进农村经济社会发展有重要意义。
4.1有利于构建资源节约型环境友好型社会,促进生态文明建设
以沼气为纽带的农业生态建设,使农业废弃物得到循环利用,延长了农业生态链,既生产了清洁能源,又提高了农业经济效益;开发利用太阳能,既能有效提供安全、无污染的清洁能源,又能促进农业生产,改善生态环境,因此发展包括太阳能、生物质能等在内的可再生能源,不仅使农村资源得到有效利用,而且促进了生产、生活、生态协调发展。
4.2有利于优化农村用能结构,促进节能减排
农村广泛使用沼气、秸秆气、太阳能等清洁能源,是农民现代文明生活的一个缩影。目前形势下,越来越多的国家面临着减排问题,逐步会将减排成本纳入考量的范畴,传统能源的成本将显著上升,发展可再生能源,符合减排趋势。
4.3有利于发展农业循环经济,转变农业增长方式
大力推广猪—沼—菜(粮、鱼、果)生态利用模式,以沼气为纽带,把养殖业和种植业有机结合起来,把养殖业产生的废弃物转换成清洁能源和高效有机肥料,既解决农村燃料问题,又减少了农药使用,培肥了地力,还提高了农产品品质,增加了农民收入。
生物质热解液化制取液体燃料
成果介绍及技术指标:生物质主要指秸秆、谷壳、速生林和林业加工废弃物等,据估计我国资源总量不低于10亿吨/年,其中各类秸秆和谷壳的年产量不低于7亿吨,约合2~3亿吨石油当量。生物质能源的特点是可再生和与环境友好,它除了直接使用之外,还可以采用热降解和生物降解的措施转化为液体燃料。
生物质热解液化是在完全缺氧或有限供氧的情况下使生物质受热主要降解为液体产物生物油的一种技术。影响生物质热解液化四个主要参数分别是加热速率、反应温度、气相滞留时间和冷凝收集。
该项目采用快速流化的方式使生物质与热载体在反应器内实现良好的热量交换,并通过特殊的结构设计和自制的催化剂,使生物质能够高效洁净地转化为生物油,生物油产率按质量计算最高可达70%。
该生物油呈棕褐色,是含氧量很高的复杂有机混合物,其有机物种类有数百种之多,从属于数个化学类别,几乎包括了所有种类的含氧有机物诸如:醚、酯、醛、酮、酚、有机酸、醇等。不同生物质制取的生物油在主要成分的含量上大都比较相近,因而可以容易地混合在一起。生物油的密度比水大,约为1.2×103kg/m3。生物油的粘性与热值与其含水率的高低有很大关系,当含水率为25%时,其动力粘性系数和高位热值分别约为60cP和18MJ/kg。
生物质气气化合成二甲醚液体燃料
项目简介:在固定床或循环流化床中将生物质气化,变成H2、 CO、 CO2等组分,然后经过气体净化,在重整反应器中和沼气一起在催化剂的作用下进行重整来调整H2、 CO的比例,同时降低二氧化碳的比例,使之适合于合成二甲醚。然后气体经过压缩进入二甲醚反应器。在催化剂的作用下合成二甲醚。该套技术已经申请了国家发明专利。
二甲醚(简称DME,CH3OCH3)是一种清洁的燃料与化工产品,有很大的市场。液化二甲醚可以完全替代液化石油气(LPG),与LPG相比具有无毒无臭、不易爆炸、热效率高、燃烧彻底、无污染等特点,因此,DME作为LPG的替代品在中国特别是农村有巨大的潜在市场。作为清洁燃料DME可以替代柴油用作发动机燃料,十六烷值达55,与柴油热效率相同,DME不会产生黑烟和固体颗粒,NOx排出量大大减少,是很有前途的绿色环保型发动机燃料。
该项目采用的以生物质废弃物(包括木粉、秸秆、谷壳等)作为原料,通过催化裂解造气作为气头的新工艺,目前还未见报道。DME的合成也采用先进的一步法合成工艺,该方法作为应用基础研究最近几年才在国际上展开。广州能源研究所在世界上首先实现了在小型装置上由生物质一步法合成绿色燃料二甲醚的连续运行。将该技术进行产业化推广可以解决缓解广东省液化气日益紧张的形势。
生物柴油
技术(产品)用途介绍:生物柴油,又称燃料甲酯,是由甲醇或乙醇等醇类物质与天然植物油或动物脂肪中主要成分甘油三酸酯发生酯交换反应,利用甲氧基取代长链脂肪酸上的甘油基,将甘油基断裂为三个长链脂肪酸甲酯,从而减短碳链长度,降低油料的粘度,改善油料的流动性和汽化性能,达到作为燃料使用的要求。生物柴油的主要成分是软脂酸、硬脂酸、油酸、亚油酸等长链饱和与不饱和脂及酸同甲醇或乙醇所形成的酯类化合物。由于可再生,无污染,因此生物柴油是典型“绿色能源”。其性能与0#柴油相近,可以替代0#柴油,用于各种型号的拖拉机、内河船及车用柴油机。其热值约1万大卡/Kg,能以任意比例与0#柴油混合,且无需对现有柴油机进行改动。
目前,生物柴油的主要加工方法为化学法,即采用植物油(或动物油)与甲醇或乙醇在酸、碱性催化剂作用下酯交换,生成相应的脂肪酸甲酯或乙酯燃料油。但化学法合成生物柴油有以下缺点:
(1)工艺复杂,醇必须过量8倍以上,后续必须有相应的醇回收装置,能耗高;
(2)色泽深,由于脂肪中不饱和脂肪酸在高温下,容易变质;酯化产物难于回收,成本高;
(3)生成过程有废碱液排放;
(4)不能处理废油脂,因为废油脂含有大量的游离脂肪酸,容易和催化剂碱形成皂角,很难分离皂角。
为解决上述问题,人们开始研究用生物酶法合成生物柴油,即动植物油脂和低碳醇通过脂肪酶进行转酯化反应,制备相应的脂肪酸甲酯及乙酯。酶法合成生物柴油具有条件温和、醇用量小,无污染物排放等优点。目前酶法主要问题:
(1)脂肪酶成本较高,酶使用寿命短;
(2)副产物甘油和水难于回收,不但形成产物抑制,而且甘油对固定化酶有毒性,使固定化酶使用寿命短。
生物质制取液体燃料技术
技术简介:生物质是一种CO2零排放的可再生能源。传统的生物质利用方式不仅低效而且排放的未完全燃烧碳氢化合物有害健康,例如秸秆就地焚烧严重污染环境。开发高效清洁的生物质利用技术至关迫切。生物质的特点为能量密度低、挥发分含量高、氧含量高。从生物质制备液体燃料可缓解中国日趋紧张的汽车油料。由于组成生物质的纤维素、半纤维素和木质素转化特性不同,单纯的生化或热转化工艺均难以高效利用生物质。将这两种方法结合在一起的工艺可望得到良好效果。根据生物质的组成和成分特点,利用分级转化原理,我所已开发出生物质生化-热转化综合工艺。
生物质生化-热转化综合工艺思路为:秸秆经过汽爆先得到木糖,汽爆残余再经固体发酵转化为乙醇,发酵残渣在循环流化床中快速热解制取生物油,半焦燃烧供热。本课题组与本所生化国家重点实验室合作,利用快速热解从生物质发酵渣获得生物质热解油品。由于生物质发酵过程中脱掉了大量的成灰元素,生物油的产率明显提高。本项目利用小试装置和5kg/h循环流化床快速热解反应器,进行了不同生物质、发酵渣、脱灰生物质的快速热解制备生物油的试验;利用TG-FTIR进行灰分对热解动力学影响的实验。
该项目研究了生物质种类、成灰元素对生物油产率、性能的影响;研究了循环流化床热解生物质的流体动力学;利用能量最小和多尺度模型研究了生物质热解反应器的流动结构;在5kg/h 规模的循环流化床中进行了生物质快速热解实验。结果表明,生物热解油的产率随灰分减少而增加;利用生物质综合处理工艺可大幅度提高生物油产率,产率达65%左右。
未来应用领域的初步预测:
生物质热解油可与化石柴油混合作燃料油;生物质热解油可和氨反应生产缓释肥料;生物质热解油可和石灰反应生成生物石灰,用于脱硫脱硝;生物质热解油可和醇反应生产燃料助剂或风味化学品;此外,生物质热解油可制成粘结剂,可制氢和气化生成合成气。
生物质能高效利用
项目研究内容介绍:中国科学院百人计划项目。从生物质制备清洁燃料为目标,从生物质的组成与结构分析到研究生物质制备清洁燃料的工艺和催化剂,进行生物质能高效利用的应用基础研究,为进一步开发提供理论指导。
具体包括以下几个方面:1.生物质组成与结构的研究;2.生物质制差工艺与催化剂的研究与开发;3.生物质组分分离方法研究;4.生物质直接液化工艺及产物分离方法的研究;5.生物质间接液化制甲醇、二甲醛及燃类的工艺与催化剂研究;6.以上过程涉及性的反应工程分离过程的研究。
生物质制取液体燃料技术
研究内容:生物质是一种CO2零排放的可再生能源。传统的生物质利用方式不仅低效而且排放的未完全燃烧碳氢化合物有害健康,例如秸秆就地焚烧严重污染环境。开发高效清洁的生物质利用技术至关迫切。生物质的特点为能量密度低、挥发分含量高、氧含量高。从生物质制备液体燃料可缓解中国日趋紧张的汽车油料。由于组成生物质的纤维素、半纤维素和木质素转化特性不同,单纯的生化或热转化工艺均难以高效利用生物质。将这两种方法结合在一起的工艺可望得到良好效果。根据生物质的组成和成分特点,利用分级转化原理,我所已开发出生物质生化-热转化综合工艺。
生物质生化-热转化综合工艺思路为:秸秆经过汽爆先得到木糖,汽爆残余再经固体发酵转化为乙醇,发酵残渣在循环流化床中快速热解制取生物油,半焦燃烧供热。本课题组与本所生化国家重点实验室合作,利用快速热解从生物质发酵渣获得生物质热解油品。由于生物质发酵过程中脱掉了大量的成灰元素,生物油的产率明显提高。本项目利用小试装置和5kg/h循环流化床快速热解反应器,进行了不同生物质、发酵渣、脱灰生物质的快速热解制备生物油的试验;利用TG-FTIR进行灰分对热解动力学影响的实验。
延伸阅读
太阳能风能光能助阵奥体中心做节能文章
据介绍,济南奥体中心“一场三馆”采用独具特色的东荷西柳造型,“柳叶、荷花”的建筑理念在让奥体中心美观独特的同时,也形成独具特色的外遮阳系统,遮阳系数约为0.4―0.7,不仅能够大大减少空调能耗,还可防止眩光的产生。
此外,充分应用自然采光也是奥体中心节能的主要方式之一。通过围护结构控制进入内部光线的强度,达到理想的照明效果,并有效防止眩光。在各场馆立面、屋顶设置了大量采光窗,并根据地势设置了大量通风采光天井,尽量增大自然采光的面积。
游泳馆的淋浴用水由太阳能热水系统供应,在屋顶设有约670平方米的承压式热管太阳能集热器,通过高位冷、热水箱保证热水的稳定供给。太阳能光电技术也融入景观设计中。路灯、景观照明的庭院灯、草坪灯利用太阳能光伏发电技术提供电源,安全、环保,节省电力资源。
与此同时,节能专家建议采用CFD(流体力学分支)的数值分析,确定合理的通风口位置及开口大小,有利于形成较好的自然通风效果。在天气适宜的时候,利用自然通风把场馆内的热负荷带走,从而提高室内舒适度,有效减少能源消耗。
过渡季节奥体中心可尽量利用新风,进行全新风运行,减少空调的运行。冬季内区的消除余热,可采用室外免费能源――新风,减少能源的浪费。
分层空调置换通风大空间冷热两重天
奥体中心内“一场三馆”承担多项室内比赛任务,如篮球、游泳等。如何让这些大空间室内场馆既温度适宜,又不会过于消耗能源,专家也提出了针对性方案。
所有空调设备采用中央自动控制技术,根据设定的温度控制、湿度控制、压差控制、流量控制来使设备达到最佳的匹配运行效果,使设备在最高效区域运行,以利于能源的综合利用,最大化地实现节能。
水蓄冷技术也在考虑之中,采用水蓄冷的集中能源中心方式,可在用电低谷期利用水作为介质制冷储存能量,然后在用电高峰期释放能量,缓解用电紧张,提高能源利用效率,充分利用峰谷电价,节省运行费用。经测算,水蓄冷运行费比常规制冷可节约203.45万元/年。
在大空间的节能上,专家也有高招,采用分层空调和置换通风,尽量减少无效空间区域的能量消耗,只满足有效区域的舒适度。
譬如,专家通过CFD方法对大空间的空调气流组织进行了分析,游泳馆空调比赛区空间温度可以被控制在28℃到29℃之间。室内的温度分层非常明显,屋顶最高点温度达到40℃以上,“冷热两重天”。
三种方式取暖首选集中供暖
济南奥体中心在设计时,就考虑到了建筑的节能。由于冬天有很多比赛,奥体中心用集中供暖、太阳能和地热三种方式来取暖。其中,集中供暖将是最主要的取暖方式。
根据计划,济南市将在燕山新区A地块,建设奥体中心的配套服务中心,来为整个奥体中心服务。这里将安装大型的采暖设备,该设备将接收市区供来的蒸汽,转换成热水,集中送到济南奥体中心各场馆内。各场馆也将全部采用地板供热,暖气设备都安装在地板下面,这种取暖方式不仅节能,而且节约建筑空间,节省采暖成本。
为了节能,济南奥体中心“一场三馆”的供暖都是单独控制的,用时打开阀门,不用时就可关掉。目前,济南市正在对奥体中心地板供热系统进行招标,待确定施工单位后,就可随着内外装饰进行全面施工。
在体育馆、游泳馆内,还安装了太阳能,这些太阳能可直接转换成热量,供给两大场馆,游泳馆的部分热水也可以用太阳能来转换。在体育场内还设计了地热取暖,这种方式造价比较高,主要是用来保证草皮的生长。
新型能源布满奥运场馆
据悉,奥运工程采用新型能源项目共有34项,先进热回收空调技术13项,先进能源利用技术22项。奥运工程采用新型清洁能源利用项目共69项,包括光电、光热、各种地热能、污水热能,风能等可再生能源的利用。
网球中心、北京大学体育馆等9项工程均采用了地热、地源或水源热泵系统。仅在奥运村,热泵技术的应用就将比普通中央空调节约电能15%至20%,每年节电34万度;国家体育场、五棵松篮球馆、奥林匹克森林公园中心区等7个工程采用了太阳能光伏发电技术;北京射击馆、老山自行车馆、奥运村和媒体村等10个工程采用了太阳能光热技术。
北京是水资源严重紧缺的城市。充分利用中水(污水经处理后获取的非饮用水)、高水平处理污水、尽量收集雨水……北京市在场馆建设中通过一系列工程措施和技术手段节约水资源。北京市"2008"工程建设指挥部负责人介绍,所有奥运场馆都采用了中水利用技术,国家游泳中心、奥运村、奥林匹克森林公园等5项工程建设了高水平的污水处理系统,国家体育场、丰台垒球场、国家会议中心等15项新建工程建设了高水平的雨洪利用系统,将充分利用雨洪水资源回灌和涵养地下水。
奥运村太阳能热水系统在奥运会期间可以为16800名运动员提供洗浴热水,奥运会后,将供应全区1868户6000名居民的生活热水需求,年节电达到1000万度、节煤2400吨。
奥运工程采用的61项先进空气处理技术,涵盖了热回收空调、自然通风、室内空气节能处理与净化等;绿色节能照明技术48项、节能建筑维护结构38项。这些都将在一定程度上节约能源,体现了"绿色奥运"的理念。
清洁能源包括地热能、风能、太阳能、生物质能、水能、海洋能等多种能源,北京市目前主要利用的是太阳能和地热能。其中地热能更是以其具有清洁环保、高效节能、可再生、技术成熟等优点,成为了北京2008年奥运会大力发展能源之一。在北京市出台的一系列规划、计划、发展纲要和补贴政策中,均重点提出了大力发展地热能,根据《北京奥运行动规划》提出的目标和任务,为实现"绿色奥运"的理念,提高城市可持续发展能力,北京市政府制订的《生态环境保护专项规划》中提出:要大力发展可再生能源,开发地热资源,2007年全市地热、地温供暖制冷面积达到500万平方米。《北京城市总体规划(2004年~2020年)》中第124条提出:因地制宜地发展新能源和可再生能源;积极发展新能源,推广热泵技术,推进浅层地热、风力发电、太阳能发电等能源新技术产业化进程;鼓励利用垃圾、污泥进行发电和制气。
北京08年奥运会将用上风电绿色能源
截止2007年年底,张家口市风电装机容量将新增20万千瓦。张家口市风电总装机容量达到42万千瓦,成为全国最大风力发电市,为北京奥运会提供充足的绿色能源。
张家口市位于华北平原与内蒙古高原之间,常年劲风不断,是全国少有的风能集中区,具有建设700至800万千瓦的风电场资源,坝上可建2至3个百万千瓦的风电场。在当地人印象里,坝上的风一直是一大公害。如今,张家口市变劣势为发展优势,紧紧抓住北京办绿色奥运的时机,把开发风电资源作为建设北方能源基地和增强县域经济实力的重要举措,科学充分利用风力资源,大力开发绿色清洁能源。
据悉,全国各地的客商也看到了风电的发展前景,纷纷抢滩“风电”资源项目,目前,北京、天津、河北、山东、湖北等19家客商累计签约的风电项目总装机容量达1200多万千瓦,占全国2020远景规划的60%多。到2010年,张家口市将累计投资180亿元,新增风电装机容量200万千瓦。这些项目建成后,不仅将大大缓解华北地区用电紧张的局面,而且将为北京输送大量绿色能源。
我国研制出系列燃料电池车服务08北京奥运会
在科技部的支持下,我国燃料电池车取得长足进展,已研制出具有自主知识产权的燃料电池大客车、小轿车、自行车和助力车等。
据中国可再生能源学会氢能专业委员会主任委员毛宗强教授介绍,我国最新的燃料电池大客车造价已经下降到300万元人民币,不到国外同类产品价格的五分之一,初具竞争力;我国自行研制的“超越3号”氢燃料电池小轿车,去年在巴黎举行的“清洁能源汽车挑战赛”中,取得了4“A”、1“B”的优异成绩,并完成了120公里的拉力赛;2008年北京奥运会期间,我国自制的燃料电池汽车将参与服务运营。
大力发展氢能燃料电池汽车是我国汽车工业不可多得的机遇。目前,国际汽车界投入氢燃料汽车的资金已超过100亿美元。
太阳能技术为青岛奥帆中心供能
青岛奥林匹克帆船中心根据青岛地区的光源、光辐射特点,结合帆船中心建筑特点和建筑使用功能要求,充分考虑太阳能与建筑的完美结合,将国际上先进高效的太阳能技术与区域市政热力管相结合,将板式集热器分别与弧形屋面、平面屋顶相结合,运用可靠的控制系统,在后勤保障中心和运动员中心设计应用了两套太阳能系统。
后勤保障中心建筑面积5800平方米,采用太阳能吸收式空调系统,使用集热器面积638平方米,成功实现了夏季制冷、冬季采暖和全年提供生活热水,系统预计每年可节电47.3万度。运动员中心建筑面积16613平方米,使用集热器面积666平米,利用太阳能为其所拥有的300平方米游泳池和洗浴提供热水。预计节电每年44万度。同时,由于集热器为后勤保障中心屋顶提供了阴凉,也减少对制冷量的需求。两套太阳能系统建设投资约1100万元,一年节电约90万度,按每度电0.78元计,一年可节省70万元,十五年即可收回投资。这在全国也属于领先位置。
太阳能景观灯和风能路灯是奥帆中心的又一大景观。这里共安装了168盏太阳能灯和41盏风能路灯,不仅绿色环保,到了夜间更是青岛海岸线上一道耀眼的风景。在风能资源丰富、独特的主防波堤建设安装了41盏风能灯,每盏灯14000元,总投资57400元,每盏可供55瓦钠灯每天照明8小时,每年节电6570度。以上项目建设完成后,在取得显著的节能效益的同时,还具有良好的环保效益。有趣的是,按照设计,风速达到每秒3米时,风能路灯顶部的风车就会转起来,而开展帆船比赛的风速下限也是每秒3米,当风车转起来的时候,观众就知道可以进行比赛了。
生物质废弃物催化气化制取富氢燃料气
近年来,关于生物质废弃物的热化学处理已引起了越来越广泛的注意。氢气是生物质热化学处理中得到的高品位的洁净能源。由于氢在燃料电池及作为运输燃料在内燃机中的广泛应用,从生物质气化中制取氢气已引起了很多国家的研究兴趣.在生物质气化制氢过程中,低温下焦油的生成是影响燃气质量和氢含量的一个重要因素,因此高温、水蒸气气化以及加催化剂等气化工艺是改善燃气质量的有效措施.生物质气化技术在国内外已得到了相当广泛的研究,而对生物质气化过程中使用催化剂的研究还比较少.在生物质气化过程中使用催化剂,可以有效改善气体品质,促进焦油裂解,本文就目前生物质催化气化在国内外的研究情况作一些讨论。
1. 生物质催化气化制氢概况
从总体上来说,生物质催化气化制氢的研究在国内外还处于实验室研究阶段,我国在这方面的研究比较薄弱,国外的研究主要集中在美国、西班牙、意大利等国家。
意大利L'Aquila大学的Rapagna等利用二级反应器(一级为流化床气化反应器,一级为固定床催化变换反应器)进行了杏仁壳的镍基催化剂催化气化实验,其制得的产品气中氢气体积含量可高达60%。美国夏威夷大学和天然气能源研究所合作建立的一套流化床气化制氢装置在水蒸气/生物质的摩尔比为1.7的情况下,可产生128g氢气/kg生物质(去湿、除灰),达到了该生物质最大理论产氢量的78%。
2. 生物质催化气化典型流程
生物质催化气化系统主要包括两大部分,一是生物质气化部分,在流化床气化炉(或其它形式的气化炉)内进行;一是气化气催化交换部分,在装有催化剂的固定床内进行。生物质废弃物由螺旋进料器进入预热过的流化床,在流化床内发生热解反应产生热解气和焦炭等,热解产物再与从底部进来的空气或水蒸气等发生化学反应产生气化气,气化气从流化床上部进入旋风分离器,将炭粒分离,然后进入焦油裂解床(通常为白云石),进行焦油的初步催化裂解,经焦油裂解后的气化气再进入通常装有镍基催化的固定床内进行进一步的催化裂解及变换反应。
3. 生物质气化过程中发生的主要化学反应
生物质在气化过程中发生热解反应、燃烧反应及气化反应,在热解反应中,生物质被裂解为焦炭、焦油和燃气,部分焦油在高温条件下继续裂解为燃气.在燃烧反应中主要发生碳氢化合物和CO的氧化反应。在气化反应中主要发生碳氢化合物和CO的水蒸气气化反应,显而易见,这是增加燃气中氢气含量的一个重要途径。
可以看到,在生物质气化过程中发生的化学反应复杂,研究其中每个化学反应的发生程度及其相互影响关系,进而设计催化剂,促进目的产物的产生是比较困难的,目前国内外大多是采用商业蒸汽重整催化剂及天然矿石等。
4. 影响燃料气组成和焦油含量的主要因素
(1)气化介质生物质。气化介质一般为空气(氧气)、水蒸气或氧气和水蒸气的混合气。气化介质的选择可以影响燃料气的组成和焦油处理的难易。Corella等认为在其它条件相同且采用白云石作催化剂时,以水蒸气或水蒸气和纯氧的混合物作为气化介质与以空气作为气化介质相比,前者在气化过程中产生的焦油更容易裂解。
焦油的成分非常复杂,可以分析出的成分有100多种,还有很多成分难以确定;主要成分不少于20种,大部分是苯的衍生物及多环芳烃;其中含量大于5%的大约有7种,它们是:苯、萘、甲苯、二甲苯、苯乙烯、酚和茚,其它成分的含量一般都小于5%,而且在高温下很多成分会分解。对大部分焦油成分来说,水蒸气在其裂解过程中起到关键的作用,因为它能和某些焦油成分发生反应,生成CO和H2等气体,既减少炭黑的产生,又提高可燃气的产量。
(2)催化剂应用及催化转化反应机理研究。将催化剂用于生物质热解气化主要有三个作用:一是可以降低热解气化反应温度,减少能耗;二是可以减少气化介质,如水蒸气的投入;三是可以进行定向催化裂解,促进反应达到平衡,得到更多的目的产物.在催化剂应用过程中,考虑到催化剂的机械强度及使用寿命等问题,一般将生物质气化和催化交换设在不同的反应器。但另设一固定床催化反应器,既增加了系统阻力,又增加了投资成本;如将生物质气化和催化交换设在同一反应器,就对催化剂的活性、耐温性能、机械强度及使用寿命等提出了比较高的要求.同时由于焦油催化裂解的附加值小,其成本要很低才有实际意义,因此人们除利用石油工业的催化剂外,主要使用一些天然产物。
目前用于生物质催化气化的催化剂有白云石、镍基催化剂、高碳烃或低碳烃水蒸气重整催化剂、方解石和菱镁矿等。
Delgado通过实验对白云石、方解石、菱镁矿的催化活性进行了比较,从实验结果分析,在裂解焦油方面,这三种矿石的活性顺序为:白云石(CaO-MgO)>方解石(MgO)>菱镁矿(CaO)。Delgado等认为这是由于在白云石中,两种氧化物的混合改变了Ca和Mg原子的排列顺序所致.关于焦油的催化裂解机理,Corella等认为在水蒸气重整生物质气化气消除焦油的反应过程中,同时可以发生CO2干重整反应,即CO2会与焦油及部分低碳烃发生反应,促进焦油的分解。
(3)气化炉。用于生物质气化的反应器主要有上吸式气化炉、下吸式气化炉及循环流化床(CFBG)等,上吸式气化炉结构简单,操作可行性强,但湿物料从顶部下降时,物料中的部分水分被上升的热气流带走,使产品气中H2的含量减少.下吸式气化炉在提高产品气的H2含量方面具有其优越性,但其结构复杂,可操作性差;CFBG具有细颗粒物料、高流化速度以及炭的不断循环等优点,因而相对于其它气化炉来说,无论是在产品气的氢气含量方面还是操作性方面,都是一种较理想的气化制氢形式。
5. 结论
(1)生物质定向催化气化制氢的研究在国内外还处于实验室研究阶段,在我国的研究尤其薄弱。
(2)对生物质催化气化及焦油裂解的机理的研究还远远不够。