前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学沉淀法的基本原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
化学沉淀的基本原理是利用投加在废水中混凝剂的吸附架桥、电中和、吸附中和等物理化学作用与放射性废水中微量的放射性和其它有害元素发生共沉淀,或聚集成比重较大的沉淀颗粒,并与水中的悬浮物结合为疏松绒粒,达到吸附废水中放射性核素的作用。常用的混凝剂有CaCO3、NaHCO3、Ba-Cl2、AlCl3、FeCl3、(Al)2(SO4)3、(Al)2(PO4)3、KMnO4、MnO2。化学沉淀法适宜的pH值为9~13,放射性活度脱除系数可达10以上。化学沉淀法不仅可去除放射性物质,还能去除悬浮物、胶体、无机盐、有机物和微生物等。一般与其他方法联用时作为预处理方法。与化学沉淀法相关的一个重要问题是如何处置沉淀过程中产生的含放射性核素的大量泥渣。由于浓缩作用泥渣的放射性比原放射性要高出几十倍,甚至几百倍,因此,这些泥渣排入周围环境前,必须加以处理。当废液中铁和铝的质量浓度均为60mg/L时,产生的污泥量一般能占到处理废水总量的10%。近年来化学沉淀法的研究持续深入,新改进的混凝剂陆续应用,不溶性淀粉黄原酸酯可处理含金属放射性废水,效果显著,适用性宽,放射性脱除率可到达90%以上。在碱性条件下,淀粉经交联后再与CS2进行黄原酸化制得的淀粉衍生物不溶联淀粉黄原酸酯,能与多种金属离子絮凝螯合,不仅效果显著,而且没残余硫化物存在,因而更适用于对废水处理[4]。最近有专家提出了一些其它非常用沉淀剂,效果也很显著。如罗明标[5]等人研究了粉状氢氧化镁和以白云石为原料制备的氢氧化镁乳液处理含铀放射性废水的条件,试验结果表明,氢氧化镁处理剂具有良好的除铀效果,在所选择的条件下,能将废水中的含铀量降至0.05mg/L以下,且pH值控制在6~9之间。
2离子交换法
离子交换法处理放射性废水的原理是:当废液通过离子交换剂时,放射性离子交换到离子交换剂上,使废液得到净化。目前,离子交换法已广泛应用于核工业生产工艺及放射性废水处理工艺。许多放射性元素在水中呈离子状态,其中大多数是阳离子,且放射性元素在水中是微量存在的,因而很适合离子交换处理,并且在无非放射性离子(少数是阴离子)干扰的情况下,离子交换能够长时间的工作而不失效。方法的缺点是:对原水水质要求较高;对于处理含高浓度竞争离子的废水,往往需要采用二级离子交换柱,或者在离子交换柱前附加电渗析设备,以去除常量竞争离子;对钌、单价和低原子序数元素的去除比较困难;离子交换剂的再生和处置较困难。在有机离子交换体系中,有机溶剂和有机离子交换树脂耐辐射和耐高温性能欠佳,导致废液浸出的空穴在固化中普遍存在,分解产物后续处理较困难,处理效果大打折扣。相比而言,无机离子交换材料优势较明显:①有较好的耐酸性和耐辐照性,可在较强放射性条件下进行吸附和分离;②与玻璃和水泥的良好相容性及其耐高温的优良性能有助于放射性废物的最终处理与处置;③选择性良好,如Cs+和Sr2+可以被杂多酸盐(磷钼酸铵)和聚锑酸高度选择性吸附;④操作简便;⑤来源广泛。所以,无机离子交换广泛应用于放射性废物处理中[6]。目前使用的无机离子交换材料主要有:①天然/人造沸石;②复合离子交换材料[磷酸钛(TiP)-磷钼酸胺(AMP),磷酸锆(ZrP)-AMP,磷酸锡(SnP)-AMP];③金属亚铁氰化物及铁氰化物;④杂多酸盐(AMP)、磷钨酸胺(APW)、磷钨酸锆(PWZr),磷钼酸锆(PMoZr);⑤多价金属磷酸盐(ZrP、TiP,SnP);⑥多价金属(过渡金属)的水合氧化物和氢氧化物[7]。3离子浮选法隶属于泡沫分离技术范畴的离子浮选法是基于待分离物质利用化学或物理的力与捕集剂结合,富集在鼓泡塔中的气泡表面,并随气泡逸出溶液主体,从而净化溶液主体和浓缩待分离物质。,溶液组分在气-液界面上的选择性和吸附程度决定离子浮选法的分离作用。捕集剂的主要成分包括表面活性剂、起泡剂、络合剂、掩蔽剂等[8]。美国橡树岭国家实验室进行了泡沫分离法处理低水平放射性废水的试验,结果表明,对90Sr的总去污倍数为220。赵宝生等用离子浮选法处理含铀量为50mg/L的废水,经二次离子浮选处理后,含铀量可降至0.02mg/L(中国含铀废水的排放标准暂定为0.05mg/L);浓缩废液体积约为原液体积的1%。易于操作、低能耗、高效率和普适性等优点使离子浮选法在处理铀同位素试验研究和生产设施退役中所产生的含有多种去污剂和洗涤剂的放射性废水中效果异常显著,特别是有机物含量较高的化学清洗剂废水,可充分利用该废水易于起泡的特点而达到回收金属离子和处理废水的目的。
3蒸发浓缩法
蒸发浓缩法是通过加热的方式使溶液中部分溶剂蒸发而汽化,而后冷凝凝结为含溶质较少的冷凝液,从而使溶液得到净化。放射性废水采用蒸发浓缩法处理时,蒸发器中废水溶液中的水吸收热量被汽化,而放射性物质不随水挥发,保留在溶液中,以此达到浓缩废水的目的。对于含有难挥发性放射性核素的废水,采用该法处理时,去污系数、浓缩系数均较高。该方法的优点是:效率高、灵活,理论与技术均较成熟,安全性和可靠性较好。不过,蒸发浓缩法也存在一些缺陷,比如:易起泡沫和含有挥发性核素的废水不适宜用该法处理;能耗和运行成本偏高;在设计和运行过程中,需要慎重考虑腐蚀、结垢、爆炸等安全隐患[9]。
4结语
【关键词】废水;来源;危害;化学处理方法
随着化学、冶炼、电镀等工业生产的不断发展,所需镉、汞及其化合物的用量也日趋增多,随之排放出来含汞、镉的污染物也愈加严重,现以成为世界上危害较大的工业废水之一。为了保护环境,造福人类,下面介绍含汞、镉废水的来源、危害及其常用的化学处理方法。
一、含汞、镉废水的来源
汞:采矿业,汞矿的开采和冶炼;仪表制造业,温度计、压力计、比重计等;化工业,作为催化剂用于有机物的聚合、氢化、脱氢、氧化、氯化等;电子业,用汞连接电路,制造开关和电池;冶金工业,汞齐法摄取黄金;农业,用作杀虫剂、杀菌剂、防霉剂和选种剂等;医药业,口腔科用汞合金补牙,温度计量体温等。
镉:水体中镉的污染主要来自地表径流和工业废水。硫铁矿石制取硫酸和由磷矿石制取磷肥时排出的废水中含镉较高,每升废水含镉可达数十至数百微克,大气中的铅锌矿以及有色金属冶炼、燃烧、塑料制品的焚烧形成的镉颗粒都可能进入水中;用锅作原料的触媒、颜料、塑料稳定剂、合成橡胶硫化剂、杀菌剂等排放的镉也会对水体造成污染,在城市用水过程中,往往由于容器和管道的污染也可使饮用水中镉含量增加。
二、含汞、镉废水的危害
汞:汞蒸汽有高度的扩散性和较大的脂溶性,侵入呼吸道后可被肺泡完全吸收并经血液运至全身。血液中的汞,可通过血脑屏障进入脑组织,然后在脑组织中被氧化成汞离子。由于汞离子较难通过血脑屏障返回血液,因而逐渐蓄积在脑组织中,损害脑组织。在其他组织中的金属汞,也可能被氧化成离子状态,并转移到肾中蓄积起来。汞慢性中毒的临床表现,主要是神经性症状,有头痛、头晕、肢体麻木和疼痛、肌肉震颤、运动失调等。大量吸入汞蒸汽会出现急性汞中毒,其症候为肝炎、肾炎、蛋白尿、血尿和尿毒症等。急性中毒常见于生产环境,一般生活环境则很少见。汞被消化道吸收的数量甚微。通过食物和饮水摄入的金属汞,一般不会引起中毒。
镉:镉是人体非必需元素。镉会对呼吸道产生刺激,长期暴露会造成嗅觉丧失症、牙龈黄斑或渐成黄圈,镉化合物不易被肠道吸收,但可经呼吸被体内吸收,积存于肝或肾脏造成危害,尤以对肾脏损害最为明显。还可导致骨质疏松和软化。进入人体的镉,在体内形成镉硫蛋白,通过血液到达全身,并有选择性地蓄积于肾、肝中。肾脏可蓄积吸收量的1/3,是镉中毒的靶器官。此外,在脾、胰、甲状腺、和毛发也有一定的蓄积。镉的排泄途径主要通过粪便,也有少量从尿中排出。在正常人的血中,镉含量很低,接触镉后会增高,但停止接触后可迅速恢复正常。镉与含羟基、氨基、巯基的蛋白质分子结合,能使许多酶系统受到抑制,从而影响肝、肾器官中酶系统的正常功能。
三、常用化学处理方法
1.含汞废水的处理
(1)金属还原法。可以用铜屑、铁屑、锌粒、硼氢化钠等作为还原剂处理含汞废水。这种方法的最大优点是可以直接回收金属汞。
铜屑置换法。用废料――紫铜、铅黄铜屑、铝屑,可以回收电池车间排放出得强酸性含汞废水中的汞。反应式:Cu+Hg2+=Cu2++Hg
(2)化学沉淀法。此法适用于不同浓度、不同种类的汞盐。缺点是含汞泥渣较多,后处理麻烦。该法一般又分为:硫氢化钠、硫酸亚铁共沉淀;电石渣、三氯化铁沉淀等。现以硫氢化钠沉淀为例,用硫氢化钠加明矾凝聚沉淀,可以处理多种汞盐洗涤废水,除汞率高达99%,反应方程式:Hg2++ S2-=HgS
2.含镉废水的处理
(1)中和沉淀法。在含镉废水中投入石灰或电石渣,使镉离子变为难溶的Cd(OH)2沉淀,反应方程式:Cd2++2OH-=Cd(OH)2
此法适用于处理冶炼含镉废水和电镀含镉废水。
(2)离子交换法。基本原理是利用Cd2+ 离子比水中其他离子与阳离子交换树脂有较强的结合力,能优先交换。
参考文献:
关键词:蛋白质双向电泳;植物蛋白质样品制备;TCA/丙酮法;酚抽法
中图分类号:Q51 文献标识码:A DOI编码:10.3969/j.issn.1006-6500.2015.06.002
Abstract: Two-dimensional electrophoresis is the fundamental technology of proteomics, it makes great progress in protein analysis of animals and microbes. However, it makes little progress in protein analysis of plants due to the hardness of the preparation of plant protein’s samples suited for two-dimensional electrophoresis. In this paper, methods for the preparation of plant protein's samples were reviewed, merits and drawbacks of these methods were analyzed, and the research focus on the preparation of plant protein's samples in the future was putted forward.
Key words: two-dimensional electrophoresis; preparation of plant protein's samples; TCA acetone precipitation method; phenol method
随着人类基因组框架图的公布和拟南芥等模式生物基因组序列测定的完成,生命科学研究逐渐进入后基因组时代。尽管已有多种植物的基因组被测序,但在这些植物基因组中往往有一半以上基因所表达的功能是未知的。而蛋白质是生理功能的执行者,是生命现象的直接体现者,是揭开基因表达功能的一把金钥匙。直接研究蛋白质的表达模式和功能模式成为生命科学发展的必然趋势。蛋白质组的研究应运而生,而研究蛋白质组的科学则被称为蛋白质组学[1-2]。
由于蛋白质组学是从整体层面研究细胞、组织、器官甚至个体内的蛋白质表达变化,所以需要强有力的方法来分离和显示上千种蛋白质。而蛋白质双向电泳技术具有高分辨率、快速和简单的优点,因而成为蛋白质组学的支撑技术。目前双向电泳技术在微生物和动物蛋白质分析上取得较大进展,但在植物蛋白质分析上往往难以取得比较理想的实验效果,使得植物蛋白质组学研究相对落后于动物和微生物蛋白质组学研究。究其原因,主要是植物组织(尤其是绿色叶片)中含有多酚类、醌、脂类及其他多种次生代谢产物,这些物质一旦存在于植物蛋白质样品中就会严重干扰蛋白分离效果及电泳图谱质量,无法很好地显示出植物中各种蛋白质之间的差异。同时,植物组织中存在的蛋白酶能够水解目的蛋白,降低蛋白质样品的纯度。由此可见,植物蛋白质样品的制备是植物蛋白质双向电泳实验的关键,只有制备到纯度高、杂质少的蛋白质样品才可能获得质量高的电泳图谱。因而有必要归纳和总结适于双向电泳的植物蛋白质样品制备技术,便于研究者根据实际情况选择合适的样品制备方法,获得良好的电泳分离效果和高质量的电泳图谱[3-4]。
1 植物蛋白质样品制备方法
植物蛋白质样品的制备,要准确分析蛋白质样品来源的成分,在维持目的蛋白活性和结构不变的基础上逐步去除无关物质,获取合适的蛋白质样品。在长期的植物蛋白质组研究中,研究者们根据研究的对象和目的,在实验中逐渐摸索,发明并改进了5种常用的样品制备方法。
1.1 TCA/丙酮法
TCA/丙酮法的原理是利用蛋白质在丙酮溶液的疏水条件下变性使蛋白质浓缩并去除污染物。根据谢进等[5]的实验,TCA/丙酮法主要操作步骤是:洗净植物组织,使用液氮速冻,进行低温条件下研磨或超声处理,加入以TCA/丙酮为主要成分的溶液振荡混匀,沉淀过夜,再低温离心去上清,反复操作洗涤沉淀到丙酮溶液无色为止,敞口挥发丙酮,再将沉淀冻存。实验操作应当在低温环境下用尽量短的时间完成,以免蛋白质大量变性。
1.2 酚抽法
酚抽法的原理是利用了蛋白质和脂类溶于酚相而难溶于水相的特性。盐类、核酸、多糖通过溶于水而被去除,脂类通过溶解在乙酸铵甲醇溶液中被去除,再用冷丙酮溶解去除色素和铵离子。操作步骤是:洗净植物组织,使用液氮速冻,进行低温条件下研磨或超声处理成粉末状,转移至离心管内,加入蛋白质提取液振荡混匀,再加入等体积的Tris-饱和酚,冰浴,振荡混匀,低温离心处理,逐步抽取酚相,向酚相加入乙酸铵甲醇溶液低温沉淀过夜,低温离心后获取沉淀。将沉淀用预冷丙酮多次洗涤,敞口使丙酮挥发,将沉淀低温保存[6]。彭存智[7]在运用酚抽法提取红树叶蛋白时将Tris-饱和酚换为酸性的水饱和酚,而刘楠等[8]在运用酚抽法提取蒙古沙冬青根蛋白时将洗涤沉淀的丙酮换为甲醇溶液,也取得预期的实验效果。在使用酚抽法时,应当增加离心力和离心时间,尽可能地把密度大的糖分离至上清液的上层。
1.3 Tris-HCl法
Tris-HCl法的基本原理是利用去污剂SDS破坏疏水键,增加蛋白质的溶解性,而Tris-HCl平衡pH值,防止蛋白质变性。根据曾广娟等[9]和田忠景等[10]的实验,Tris-HCl法的主要操作步骤是:洗净植物组织,使用液氮速冻,进行低温条件下研磨或超声处理成粉末状,转移至离心管内,并加入SDS、甘油和Tris-HCl为主要成分的缓冲液,振荡混匀,低温离心处理后提取上清,加入TCA/丙酮混匀,低温离心后获取沉淀。将沉淀用80%预冷丙酮多次洗涤,室温风干,低温保存。
1.4 Trizol沉淀法
Trizol是一种新型RNA抽提试剂,可以直接从组织中提取RNA。它促进不同种属不同分子量大小的多种RNA的析出,通过分层分别将不同层中的RNA(上层)、DNA(中层)、蛋白质(下层)分离纯化出来,效率极好。根据周雪等[11]和康俊梅等的实验[12],Trizol沉淀法的主要操作步骤是:洗净植物组织,使用液氮速冻,进行低温条件下研磨或超声处理成粉末状,转移至离心管内,先后按比例加入Trizol和氯仿,振荡混匀,低温离心处理后去除上层水相中的RNA,加入无水乙醇沉淀去除中间层和下层酚相中的DNA和与之结合的高丰度的组蛋白,振荡混匀,低温离心处理后提取上清,先后按比例加入Trizol和异丙醇,振荡混匀,低温离心处理后提取沉淀,沉淀用95%乙醇和无水乙醇洗涤,真空干燥后低温保存。
1.5 尿素-硫脲提取法
尿素-硫脲提取法的基本原理是利用尿素和硫脲破坏疏水键、还原剂DTT破坏二硫键增加蛋白质的溶解性,并使得蛋白酶失活。根据刘伟霞等[13]和王海玲等[14]的实验,尿素-硫脲提取法的主要操作步骤是:洗净植物组织,使用液氮速冻,进行低温条件下研磨或超声处理成粉末状,转移至离心管内,溶于尿素、硫脲、SDS、DTT、Triton-114为主要成分的溶液中,振荡混匀,低温离心处理后提取上清,加入预冷丙酮,低温过夜,离心后收集沉淀,挥发掉丙酮。样本中存在尿素,溶液温度不能超过37°C。
TCA/丙酮法是促使蛋白质在水中沉淀进而分离的方法,属于沉淀类方法;酚抽法和Trizol沉淀法是利用酚类物质萃取蛋白质进而分离的方法,属于萃取类方法;Tris-HCl法和尿素-硫脲提取法是促进蛋白质溶解于水进而分离的方法,属于溶解类方法。
除此以外,Wei等[15]将TCA/丙酮法与酚抽法结合为TCA-丙酮-酚抽法后用于提取蛋白。杨秋玉等[16]提取4种杜鹃叶片蛋白质时就采用TCA-丙酮-酚抽法:即先采用TCA-丙酮法沉淀蛋白,冻干后按照酚抽法的程序萃取蛋白。提取的蛋白质样品再进行双向电泳,获得比较理想的电泳效果。TCA-丙酮-酚抽法兼有沉淀类方法和萃取类方法的特点。
2 植物蛋白质样品制备方法比较
植物组织的蛋白质是动态的,至今没有一种通用的制备方法能将材料中的蛋白全部提取出来。研究目的的不同,是尽可能获得多的蛋白还是仅获得兴趣蛋白,影响了制备方法的选择。但是无论是采用哪种方法,有一点必须做到的是尽可能多地去除核酸、多糖、多酚类、脂类、盐类等杂质,否则会影响蛋白分离效果和电泳图谱质量。不同的研究对象含有的杂质不同,因此也影响了制备方法的选择。
TCA/丙酮法是植物蛋白质样品制备最基本的方法。它的优点是耗时少、容易操作,减少了蛋白酶的修饰作用,蛋白质粗提物产量大,一般作为植物蛋白提取的初始方案。缺点是蛋白质容易变性,很难重新溶解,对一些植物组织中多酚类物质的去除能力有限,因而可以加入适量的吸附剂PVPP或PVP对TCA/丙酮法进行改良。刘国勇等[17]的实验证实不溶于水的PVPP去除酚、醌类物质的效果比可溶于水的PVP好。
酚抽法的优点是能够去除大量干扰物质,获得相对较多的低分子量蛋白。在植物组织含有大量易水解的多糖或易溶于水的盐类时如海滨木槿和枇杷叶片组织[18-19],酚抽法能够将其顺利引入水相而去除。特别是含有大量多酚类、多糖和色素等次生代谢产物的顽拗植物组织,在蛋白分离效果方面酚抽法比TCA/丙酮法优势明显。缺点是操作复杂耗时,Tris-饱和酚具有一定的毒性,易对环境造成污染。
Tris-HCl法的特点是加入SDS以增强蛋白质的溶解性,Tris-HCl缓冲液平衡pH值,远离各种氨基酸溶解度最小的等电点,因而其优点是能够分离出酸性蛋白、极高极低分子量蛋白,在疏水性蛋白的提取方面也有所改善,缺点是缓冲液需要密封保存。
Trizol沉淀法的特点是使用能够分离DNA和RNA的Trizol试剂,因而优点是能够去除大量干扰物质如DNA、RNA和高丰度组蛋白Rubisco。缺点是操作较为复杂,耗时耗力,成本较高。Trizol沉淀法用得比较少,一般用于植物叶片和幼苗的蛋白质提取,如野牛草叶片、紫花苜蓿幼苗和黄花苜蓿幼苗[12,20-21]。
尿素-硫脲提取法的优点是对低分子量蛋白质分辨效果较好,价格低廉,操作简便。缺点是在电泳中能够检测到的蛋白质斑点较少,对多酚类、色素、盐类等干扰物质的去除能力不够。从文献中来看,尿素-硫脲提取法用得比较少。
TCA-丙酮-酚抽法则将TCA-丙酮沉淀法和酚抽法融合在一起,去除引起样品溶液黏稠的多糖和核酸效果较好,在样品溶液过于黏稠时相比于酚抽法具有一定的优势[16]。但该法也存在着操作繁琐、蛋白损失较大的缺点。此方法在拟南芥叶片、非洲山毛豆叶片、银杏小孢子叶球[22-24]等很多植物蛋白的提取中均取得了较好效果。
3 结论与展望
到目前为止,适于双向电泳的植物蛋白质样品制备方法总共有6种,它们分别是:TCA/丙酮法、酚抽法、Tris-HCl法、Trizol沉淀法、尿素-硫脲提取法、TCA-丙酮-酚抽法:TCA/丙酮法是最基本、应用最为广泛的方法,蛋白质粗提量大,加入PVPP可以去除多酚类;酚抽法适合于含有大量多糖、盐类等次生代谢产物的植物蛋白质样品提取;Tris-HCl法能够分离出酸性蛋白和极高极低分子量蛋白;Trizol沉淀法适合于含有大量高丰度组蛋白Rubisco的植物叶片和幼苗的蛋白质提取;尿素-硫脲提取法能够分离出低分子量蛋白且操作简便;TCA-丙酮-酚抽法去除引起样品溶液黏稠的多糖和核酸效果较好。
在现在的植物蛋白质双向电泳的实验中,研究者往往需要同时运用多种方法进行样品制备并进行比较。希望在日后的研究中,研究者能够在前人研究的基础上,依据样品自身的特性次生代谢物成分和研究目的总结归纳各种方法的适用范围,做到具体问题具体分析,摸索优化出适合各种植物组织蛋白质样品制备的实验方案,加快植物蛋白质组学发展,更好地服务于生命科学研究。
参考文献:
[1] 阮松林,马华升.植物蛋白质组学[M].北京:中国农业出版社,2009:1-13.
[2] 夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社,2004:233-304.
[3] 何瑞锋,丁毅,张剑锋,等.植物叶片蛋白质双向电泳技术的改进与优化[J].遗传,2000,22(5):319-321.
[4] Canovas F M,Dumas-Gaudot E,Recorbet G,et al. Plant proteome analysis[J].Proteomics,2004(4):285-298.
[5] 谢进,田晓明,刘淑欣,等.适用于毛白杨芽双向电泳分析的蛋白质提取方法[J].北京林业大学学报, 2013,35(4):144-148.
[6] 陈晶瑜,郭宝峰,何付丽,等.适合双向电泳的植物全蛋白提取方法比较[J].中国农学通报,2010,26(23):97-100.
[7] 彭存智,李蕾,刘志昕.红树叶蛋白质样品制备方法的比较及其双向电泳分析[J].热带生物学报,2010,1(1):12-16.
[8] 刘楠,高飞,周宜君,等.蒙古沙冬青根蛋白的提取及双向电泳体系的建立[J].北京师范大学学报:自然科学版,2013,49(4):365-368.
[9] 曾广娟,李春敏,张新忠,等.苹果叶片蛋白质双向电泳样品制备方法的比较[J].中国农学通报,2008,24(8):105-108.
[10] 田忠景,康美玲,王秀文.石榴叶片蛋白提取方法研究[J].北方园艺,2012(19):137-139.
[11] 周雪,冯辉,冀瑞琴.适合双向电泳的大白菜花蕾蛋白提取及浓度测定方法[J].分子植物育种,2013,11(2):249-254.
[12] 康俊梅,熊军波,孙彦,等.利用双向电泳技术分离野牛草叶片蛋白的方法研究[J].西北农业学报,2010,19(2):29-34.
[13] 刘伟霞,潘映红.适用于小麦叶片蛋白质组分析的样品制备方法[J].中国农业科学,2007,40(10):2 169-2 176.
[14] 王海玲,池旭娟,阚雪芹,等.桑椹与叶片蛋白质双向电泳样品制备方法的比较试验[J].蚕业科学,2009,35(4):847-850.
[15] Wei W,Rita V,Monica,et al. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis[J]. Electrophoresis,2006(27):2 782-2 786.
[16] 杨秋玉,耿兴敏,彭方仁.杜鹃叶片3种蛋白质提取方法的比较[J].安徽农业大学学报,2014,41(3):440-444.
[17] 刘国勇,梁宏伟,陈发菊.巴东木莲雌蕊柱头蛋白的提取与双向电泳分离[J].江西农业大学学报,2009,31(3):393-396.
[18] 李翠云,姜彦成,乔桂荣,等.海滨木槿叶片蛋白质双向电泳体系的建立[J].西南林业大学学报,2012,32(4):30-35.
[19] 马斌,孙骏威,余初浪,等.枇杷叶片和果实总蛋白质提取及双向电泳的优化方法[J].果树学报,2011,28(2):358-362.
[20] 熊军波.紫花苜蓿响应盐胁迫的蛋白质组研究[D].北京:中国农业科学院,2011.
[21] 王楠.低温胁迫下黄花苜蓿蛋白质组的初步分析[D].北京:中国农业科学院,2008.
[22] Maldonado A M, Echevarría-Zome O S, Baptiste S J,et al. Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis[J].Journal of Protemics,2008(71):461-472.
关键词:污水除磷、化学除磷、处理技术
中图分类号:K826文献标识码: A
一、前言
水体富营养化大多由于水体中磷的含量过高,水中藻类与浮游植物会在水体富营养化的环境下迅速繁殖,从而导致水体中的溶解氧的含量大幅降低,水质严重受到影响,水体中鱼类及其它的的生物的因生长环境发生改变而大量死亡。水体中的营养会在水体富营养化产生时被水生生物吸收,然而当这些水生生物死亡后其尸体腐烂过程中又会产生新的营养素被微生物利用,以此循环往复,水体富营养化会不断恶化,因此必须重视水污染后的治理。
二、污水除磷技术的现状
磷的浓度越高水体富营养化的恶化程度就越严重,无论是在静止的还是在流动的水体中都表现得非常明显。众所周知,水体富营养化的的危害是当前人类面临的一大环境问题。要解决水体富营养化的问题关键是找到问题产生的原因,据国际经验,城市污水中磷的含量过高占流入地表总的含磷量的34%。因此降低城市污水中磷的含量是防止水体富营养化加剧的关键。磷的性质与氮、硫不同,因此磷多数以化合物的形式被排放,因此,目前污水除磷的方法主要是化学除磷、物理除磷、生物除磷。
除磷技术从上世纪60开始发展,出现了规模较大的污水处理厂,其中一些相应的技术在国际和国内都取得了一些成果,并有效的应用于城市污水处理。除磷的方法根据其工作原理的不同可分为以下三种:化学除磷、物理除磷、生物除磷。
化学除磷或化学辅助生物除磷在国外得到了较为广泛的应用。其中,美国五大湖地区对磷的排放有非常严格的要求。污水处理厂在该地区主要采用化学除磷和生物辅助化学除磷,这两种措施在该地区广泛应用;而在丹麦则是以生物除磷为主化学除磷为辅;也有以化学除磷为主的地区,如瑞典。生物除磷没有被污水处理厂广泛采用。
三、化学除磷处理技术
化学除磷具有较多的优点,主要包括:除磷效率高,技术资料和文献较为完整,进水磷浓度和出水要求决定着药剂投入量,除磷控制操作过程简单易行,铁盐的来源可以是钢铁厂酸洗废液,从而很大程度上降低了药剂费用,与此同时除磷过程中还可以有效除去各种重金属,采用石灰作混凝剂时,石灰投量取决于进水碱度,通过pH控制,而不取决于磷浓度,初沉池为投药点,能够有效降低二级处理过程中的有机物负荷,污水处理厂投资较少,改造过程也相对简单。
1、结晶除磷技术
结晶法除磷技术是一种实用的结晶沉淀法,主要通过向已投加钙盐的污水中添加一种结构和表面性质与难容磷酸盐的固体颗粒,破坏溶液的亚稳态。通过结晶沉淀过程实现除磷目的。磷离子与水中的钙离子结合形成磷酸钙,当水体成碱性时,磷石灰随碱性的升高而降低,因此,升高污水的pH值,使处于亚稳态的磷离子与晶体接触,在晶体表面析出磷石灰,从而减低污水中磷的浓度。综上污水中的pH值是结晶法除磷的主要影响因素。除此之外反应器的除磷效果与结晶好坏也对除磷效果有影响。水力负荷是动态运行时的主要因素。生活污水二级处理时,采用曝气吹脱C02,使污水pH值到8左右,防止结晶床的CaC03的结垢,使出水磷浓度可以达到一级处理出水的标准。
2、化学凝聚沉淀除磷技术
化学凝聚沉淀法是最早使用且目前使用最广泛的一种除磷方法。化学凝聚沉淀除磷的基本原理是利用化学药剂的加入,使其生成不溶性磷酸盐沉淀物,接着经固液分离操作将沉淀物从污水中除去。磷的化学沉淀一般可以分为4步:沉淀反应、凝聚作用、絮凝作用、固液分离。在一个混合单元内进行沉淀和凝聚反应,为了使沉淀剂在污水中能够进行快速有效地混合。目前被经常使用的沉淀剂有铁盐(硫酸铁、硫酸亚铁硫酸铁、氯化亚铁、氯化铁)、钙盐(石灰)、铝盐(聚合氯化铝、硫酸铝)以及当前发展速度比较快的无机有机复合型絮凝剂等。磷酸盐沉淀通常被认为是有配位基参加竞争的电性中和沉淀,也就是通过磷酸根与铝离子、铁离子或钙离子的化学反应使之产生沉淀,并将其加以去除。如:钙盐除磷是在含有磷的污水中加入石灰,由于石灰的加入,污水中形成了氢氧根离子,污水pH值进而升高,此外,污水中的磷和石灰中的钙也发生化学反应,形成沉淀并将其除去。这种方法就是将水进行了软化,石灰的加入量只和污水的碱度有关,与污水中的磷含量并无关系。其原因是:石灰法在使用的时候,必须将pH调到较高值时才可以将残留的溶解磷浓度降低到一个较低的水平,然而污水碱度所使用的石灰量一般比生成磷酸钙沉淀所使用的石灰量大好几个数量级。石灰法除磷的投药设施设备投资和运行费用较高,这一不足让这种工艺在与其他常规污水除磷工艺比较时缺少了经济实用性。
3、吸附除磷技术
吸附法是物理除磷常用的方法,该方法主要是利用某些多孔或者较大比表面积的固体物质对水体中磷酸根离子的亲和力不同,从而实现污水除磷过程的方法。实现磷从污水中分离的过程,主要通过磷在吸附剂表面的物理吸附、表面沉淀、离子交换。采用吸附法还可以通过解离对磷进行回收再利用。吸附法是除磷方法中工艺较为简单且能够有效运行的方法。吸附法能单独使用也可以作为生物除磷法的补充。
天然吸附剂和合成吸附剂是除磷吸附剂的两大种类。其中天然吸附剂主要包括:活性炭、粉煤灰、沸石、活性氧化铝、钢渣等等;合成吸附剂的推广很大程度上扩大了吸附材料的选择范围,多种金属盐化物及其盐类都作为选择材料被研究应用于新型吸附剂。
4、化学辅助生物除磷技术
生物除磷是目前城市污水处理中应用最多、最经济的除磷方式,然而生物除磷对进水水质及其他工艺参数敏感,工艺中除磷与脱氮也存在碳源、污泥龄等诸多矛盾,导致除磷的稳定性较差。随着国家对污水排放要求的提高,投加化学药剂铁盐、铝盐辅助除磷被广泛采用。南非、美国的一些污水厂也采取了生物为主化学为辅的除磷措施。化学辅助除磷根据投加点的不同,分为前置除磷(生物处理之前投药)、同步除磷(生物池投药)、后置除磷。以生活污水为处理对象,考察同步除磷系统中,化学药剂的投加对生物除磷的强化效果,以及化学药剂对反应过程和出水水质的影响,初步探讨化学辅助生物除磷的机理。在硫酸亚铁、三氯化铁、硫酸铝中进行生活污水化学除磷药剂优选,采用SBR反应器进行生活污水化学辅助生物除磷的实验。结果表明,三种化学除磷药剂中,硫酸亚铁的除磷效果最好,曝气3h末按Fe/TP摩尔比1.5投加,可以使出水磷小于0.5mg几,增强了出水磷达标的稳定性。投加硫酸亚铁后,出水的电导率上升,pH略微下降,MLSS增加了5%,污泥的絮凝沉降性能更好,污泥的颜色偏黑。
四、结语
水体富营养化可通过污水除磷得到有效防止,结晶法作为众多污水化学除磷方法之一,该方法处理设备较为繁多,在资金不充足的境况下一般不易被使用。现有条件下化学凝聚沉淀法比较容易实施,针对我国目前的状况,这是值得推广和应用的方法之一。吸附剂性能是吸。附法的关键,很多吸附剂的研制主要体现在对天然材料进行表面改性,但是对材料表面改性的工艺较为复杂,不适合大规模生产和应用,所以,化学除磷技术需要进一步研发与沉降泥渣这样类似的在经济、技术这两个方面都满意的除磷技术。
参考文献:
[1] 邬剑平:《污水处理中化学除磷技术的应用与研究》,《经营管理者》,2009年15期
关键词: 超声技术;化学实验;化工;应用
中图分类号:O644 文献标识码:A 文章编号:1671-7597(2012)1120042-02
1 概述
近年来,超声波技术在化学实验和化工生产领域里的应用不断取得新的成果,应用范围越来越广泛,而且还具有很大的研究开发空间。超声波对某些化学反应具有显著的影响,其原理简要地分析是:由于通常的声波波长远远大于分子的直径,在液体中,超声波产生的特定频率的震荡,能够加剧溶液中物质分子等微粒的运动,在一定条件下也会增大其活化能,由于物理和化学作用的共同效应。结果导致温度变化更加剧烈,以至于在通常条件下不易发生的化学反应,获得了较为有利的反应条件,从而促进反应物微粒的裂解和新的自由基的形成,最终使化学反应速率大大提高,并降低了实验或生产成本。
超声波技术的合理应用,不仅可以改进化学反应条件,避免采用高温高压,缩短反应时间,提高反应产率和选择性,而且还可以在一定范围内在改变反应的历程,例如在加成反应(亲电、亲核、环加成等)、取代反应(亲电、亲核)和氧化还原反应中都能适用。利用超声技术改变反应环境,可以大大降低反应难度和成本,提高实验或生产效益,具有很强的实用性。以下列举一些应用实例,说明其应用原理、方法及效果。
2 超声波在植物提取方面的应用
2.1 超声波提取的基本原理
在液体介质中,超声波产生的强烈的空化效应、机械振动、高的加速度、乳化、扩散、击碎和搅拌作用,增大物质分子运动频率和速度,增强溶剂分子的活性,更加容易吸取植物中的有效成分。利用超声波可以提高提取速率,能提高植物有效成分的提出率,同时也就提高了药材的利用率,避免了高温对提取成分的影响,能够降低条件,节省时间,减小成本。超声技术已经越来越多地用于天然植物中药成分的提取,实践证明效果很好,应用前景广阔。
在提取天然植物药用成分时,通常要使其细胞破碎。利用超声波产生的超常规的振动频率和振动幅度以及强烈的空化效应,同时产生的高速并且均匀的搅拌作用,能够促进植物药材细胞的快速分离,更加有利于溶剂渗透进药材细胞周边,植物药材的有效成分在溶剂中加快溶解,因此提高了提取效率。
超声波是一种机械振动波,一般指频率为20kHz-50MHz的波段。超声波在通过介质传播时,会先后产生膨胀和压缩。超声波能产生巨大的能量并通过介质形成很大的加速度。在液体介质(溶剂)中,这个能量增大及加速过程促使形成负压。当超声波产生的能量达到一定程度时,就造成急剧膨胀,此时会在液体介质中生成气泡或对液体的冲击而形成许多微小空穴,这些空穴在瞬间闭合时将产生高达3000MPa的巨大压力以形成空化作用。这种持续产生的作用力不断地冲击物质颗粒表面,使物质颗粒表面及缝隙中的可溶性活性成分迅速分离出来。在空化作用下,还促使植物体内细胞壁破裂,导致细胞内可溶物快速扩散到所接触的液体介质中。同时,由超声作用产生的能量以及在微粒间相互作用时产生的高温高压有利于形成活跃的游离基。
超声波提取是利用其在溶液中产生的空化作用、机械效应以及热效应,以致增强介质的穿透力,并加快介质分子的运动速度,从而提高提取生物原料中有效成分的效率。
其基本原理可以概括为:
1)空化效应。在液体介质内部所溶解的数量不等的微气泡,在超声波的作用下产生强烈振动,当声压达到一定值时,气泡由于定向扩散而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种效应会在瞬间产生几千个大气压的压力,可使成植物细胞壁及整个生物体破裂,使包括有效成分在内的各种成分更容易分离。
2)机械效应。超声波在溶液中以较快的频率产生较强的振动,显著增强了液体状介质渗透及扩散作用,这种作用即机械效应。同时,超声波在扩散时还产生较大的辐射压强,对所加工的样品形成强大冲击,造成细胞微粒突变,样品中的蛋白质变性;另外,在介质和悬浮体中产生加速度,由于两者的运动速度差异很大,以致在两者之间形成摩擦力,促使植物体内分子解聚加快,即可促进其所含有效成分的扩散。
3)热效应。超声波在液体介质中的扩散中,伴随着能量的传播和扩散,介质将所吸收的能量在这个过程中会转变为热能,引起温度的升高,也就加快了植物中所含有效成分的溶解。
2.2 超声波在提取植物有效成分的应用实例
茶叶所含的主要成分是茶多酚和多种香气物质,在医药和食品方面有重要用途,利用超声波作用,在较低的温度下就可以高效提取茶叶有效成分。茶多酚有多种提取方法,一直以来用得比较多的有溶剂提取法与沉淀法。在沉淀法中要使用大量的沉淀剂使得成本较高,因此通常大多采用溶剂提取法。在溶剂提取法的提取过程中,由于茶多酚被氧化而使产量降低,产品杂质较多,增大了分离的难度,所以应用也不够广泛。在溶剂法的基础上,应用超声波技术,将会显著改善提取茶多酚的条件,获得较好的提取效果。由于降低了提取温度、缩短了提取时间,所以不仅能够显著提高提取率,而且还提升了提取产品的质量。通过分析初步得出提取实验设置的条件是:配制适当的液体介质(80%乙醇),施加超声波振动,实验时间约为50min,提取剂(80%乙醇)用量大约是茶叶样品质量的8倍。对茶叶中茶多酚的浸提条件选择,通过正交实验归纳出最佳浸提条件为:乙醇浓度60%,浸提时间为45min,介质温度为80℃,浸提次数为1次。用20KHz超声波处理茶叶10min,茶多酚及儿茶素的总量均比水提法提取30min提高40%多,提取产物的性质与结构、茶多酚及儿茶素各组分的构成保持不变。
天然植物产物中的活性物质的化学成分较为复杂,以生物碱、昔类、菇类和挥发油等为主要成分。针对不同的样品以及提取物,有各种不同的提取方法和复杂的条件,提取方案和工艺的不同,会造成提取产率和品质的很大差异。经过许多人的大量实验,确认可以将超声波应用于生物碱的提取中获得明显效果。例如从吐根中提取生物碱,用超声波提取30min比用索氏法5h所提取的碱量还多。超声波用于从黄连中提取小桑碱的常规碱性浸泡工艺中,超声提取30min所得到的小桑碱提取率比碱性浸泡2h高50%以上。同样,用超声波从曼陀罗、萝芙木、耶仆兰胡椒、金鸡纳、天麻、颠茄、罄粟、马钱、益母草、北草乌、延胡索、人工冬草等植物中提取各种生物碱等,提取产物的效率、产品质量以及提取总成本,都获得了令人满意的效果。
2.3 超声技术在有机合成中的应用
超声波引入有机合成实验中可以使有机反应速率比普通加热快数十倍甚至数万倍,可以节约能源,缩短实验时间,提高反应产率;由于进行的是半微量反应实验,减少了污染,更符合当今“绿色化学”的要求。
实践证明,超声波技术用于有机合成取得了显著效益,具有明显的优点:
2.3.1 由于加快了合成反应速率而使产率提高。基于各种不同条件下或不同介质,以及应用于各种类型的提取样品,通过实验的观测和坚定,证明超声波都能显著加快反应速度,大幅度提高提取产率。如在超声辐射下,用KMnO4把PhCH2OH氧化成PhCHO,10min产率可达90%,而不用超声波时产率只有29%。而在超声波作用下,以Fe2(CO)9作催化剂,相对较无超声波时的常规实验,1-戊烯双键的转移速率增加约105倍,因此产率的增大是极为显著的。
2.3.2 降低反应条件,减少生产成本。超声波产生的空化效应,使溶液中出现微区和极短时间高温高压,但对于整个反应体系的温度和压强并没有造成明显的改变。这对于有机合成生产是很有利的,不仅可以减少高温高压的危险,提高安全系数。同时可以降低生产设备成本操作技术难度。
在均相溶液中进行的有机合成反应中,由于超声波产生的空化作用,其强大的能量可导致原有基团键的破裂,并形成活动性强的新的自由基,溶剂结构的迅速变化促进了反应速度的加快。这些有机金属化合物之所以能够起到催化作用,是由于在外力作用下,金属与配位体的结合键断裂,促进了化学反应。α-氰基乙酸乙酯含有α-H,在碱的催化下可与醛或酮发生缩合反应。传统的方法是用吡啶作催化剂加热回流,反应速率慢,产率低。利用超声波进行该反应,缩短了反应时间,大大提高了反应效率。通过对乙酸乙酯的水解实验研究发现:虽然在超声条件下反应的反应物的活化能也没有明显提高,然而在超声条件下的反应速度能提高6.2倍;在乙醇和水的双溶剂溶液中,超声波条件下的乙酸乙酯的水解速率为无超声条件的2.4倍,并且水解产物也能得到较高的纯度。
在有机合成中常用高锰酸盐作氧化剂,但用高锰酸钾氧化烯烃制备邻二醇时往往发生深度氧化而伴随副反应,致使邻二醇的产率不超过50%。将超生作用引入到高锰酸钾氧化烯烃制备邻二醇的反应中,由于反应时间大大缩短,使邻二醇的产率明显提高。原理是在无超声的室温条件下,烯烃的氧化非常慢,而在超声的作用下,促进了反应中间体环状锰酸二酯的分解,使整个反应速度加快。
3 总结
超声技术在实验室的应用已经很广泛,但在化工生产中的应用技术尚未十分成熟,在实际应用中还有一些需要解决的技术和装备问题。因为声化学效应的不稳定性,以及声化学主要机制——声空化没有统一定量表述,目前难以概括声空化的具体规律。很多声化学研究者都是以化学效应为目的,只把声作为一种手段或者辅助方法来进行研究。声化学和物理学以及物理化学有着密切的关系,广义的说声化学属于物理学或物理化学。
目前超声波提取技术主要用在小型实验室或小规模生产设备,要用于大规模的工业生产,要运用大型超声设备及其配套装备,要解决有关工业设备放大的难题,涉及到成本和工艺技术问题。尽管如此,超声技术在化学化工相关领域的应用,其实用价值已经得到了充分证明,随着技术的不断开发,其应用前景必定是广阔的。