首页 > 文章中心 > 纳米技术特征

纳米技术特征

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇纳米技术特征范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

纳米技术特征

纳米技术特征范文第1篇

关键词:功能性纺织品 纳米技术开发 应用 研究

前言

传统的纺织企业被发达国家逐渐淘汰,目前,先进的科学技术已经替代了传统纺织企业。纳米技术、生物技术、信息技术等新型的技术在纺织品制造中应用,能够有效的完善纺织品的功能。其中基于纳米技术下的纺织品的市场需求量逐渐增加。如,纳米领跑、纳米羊绒衫、纳米保暖内衣等产品市场前景光明,为了拓展的纺织品市场,需要深入的研究纳米技术应用。

一、功能性纺织品加工方法与发展思路

(一)功能性纺织品加工方法

功能性纺织品加工的方法比较多,常见的方法有以下几种:第一,基于新的原料仿制功能性纤维。该种方法中所提到的新材料是指虾、蟹、昆虫壳中所提炼出来的纤维。此外还有自然界中的竹炭纤维、竹原纤维;第二,对纺织品的化学改性处理,该种方法是在原始的材料基础上应用化学材料进行材料的性质改变,最终使得纺织品原液中的掺入功能剂;第三,应用新型的纺丝技术,该种技术下所生产出来的纺丝比较柔软,并且表面上的纤维功能被优化;第四,基于后整理的纤维织物功能优化,应用功能性整理剂对纺织品进行后整理的方式,能够赋予纺织品新的功能。

(二)功能性纺织品发展思路

功能性纺织品的产生,以人们的生活需求,社会的发展需求为核心,在未来,其发展道路更加的宽广。在发展功能性纺织品环节中,首先需要强化基础科学研究,其次,关注多学科、多领域以及相应产业链之间的合作与发展。第三,大力发展功能性纺织品市场。

二、纳米技术在功能性纺织品加工中的应用

(一)仿荷叶效应防水材料

荷叶上的水珠不会浸湿荷叶,会聚积成为水珠,这样的自然现象说明荷叶具有较好的防水性,该种现象对于功能性纺织材料的设计提供了新的思路。防水纺织品在人们的生活中应用广泛,因此对于防水材料的研究比较关键。在电子显微镜下,莲叶表面上覆盖着无数尺寸约为10个Um的凸起包,并且在每个小凸起包上又布满直径约为的几百nm的绒毛。基于荷叶表面的结构特征,使得其具备了较强的防水性能,该种结构为较为特殊的纳米结构,研究人员在此基础上研发出仿荷叶结构纳米防水布。该种防水布借助其表面上凹凸不平的结构,能够实现疏水疏油。

(二)仿“孔雀羽毛”结构的生色纤维

孔雀的羽毛色泽艳丽、美观,将纳米技术应用到功能性的纺织品加工中,通过分析孔雀时羽毛结构生色,总结出这样结论:动物羽毛中的蛋白质晶体纤维会在自然光的照射下发生干涉,并且使得羽毛产生绚烂多彩的视觉色彩。为了借助纳米技术仿造孔雀羽毛材料,采取对孔雀羽毛结构进行观察的方式,了解其蛋白纤维的结构特征。在研究中发现孔雀羽毛的蛋白纤维、二维光子晶体结构产生过程比较特殊,是在积聚状态下产生。在功能性纺织品研发中,应用纳米技术,需要解决将nm单位的纤维设置在阳光折射率不同的尼龙材料中。该问题比较关键,需要在实际研究中,对重叠厚度设定中按照nm单位进行控制,那么,在这样的设计下,就能够制造出能够发出红、绿、蓝、紫等四种颜色的纺织材料。该种材料与传统的纺织材料相比,其实际的辨识度比较高,提升了纺织品的装饰性。

(三)仿“小鸟绒毛”的中空纤维

鸟类的羽绒质软,并且保暖性能较强,在羽绒服等御寒服装中常见,但是该种羽绒材质造价比较高,因此,在纺织行业中运用纳米技术研发出与小乌羽绒功能相似的中空纤维材料。该种纤维材料的产生为―种人工合成纤维,能够有效的替代羽绒纤维材料,目前,该种材料已经成为了功能性纺织品中较为重点的材料。在绒毛纤维仿造中,借助虎皮鹦鹉的绒毛纤维特征进行生产,在研究中,通过虎皮鹦鹉绒毛纤维的电镜照片,能够发现绒毛细长,并且包含棱锥状的附节。基于该种结构材料在实际应用,具有较好的方向性。在功能性纺织品生产中,借助胶原蛋白和静电纺丝技术,能够研制出一种兼具保暖性、蓬松性的产品。

(四)仿“蜘蛛丝”的防弹纤维

纳米技术特征范文第2篇

关键词:纳米,中医药,经济,技术

引言:通过现在的问题反映,首先提出一些纳米技术的需求,再而阐述了纳米中医药的现状接着提出纳米中药化的好处和现在存在的一些问题,通过笔者的分析,一步一步的摄入了纳米技术在当前中国的国情来说要发展,提出一些相对的解决方法。引入纳米技术是社会的要求。最后说明自己的观点(总结)。

随着经济的发展,环境问题变得越来越严重。从而导致发病率变得越来越高。如果还是单靠过去的一味中药很难把病情完全治好。加上现在环境问题的特为严重和社会的需求量增多。很多中药材都是靠人工培育,但人工培育的功效始终比不上天然的。虽然实行了中医药的政策,解决了老百姓的看病难,看病贵的问题。但始终是不能从根本解决问题。加上纳米技术的进一步发展,因此将纳米技术融入中医药是社会的要求,社会的主流。纳米技术使中医药的药效得到更好的发挥。

那先由我们看看纳米中医药的发展

纳米中药制备技术的研究现状

医学上的发展就目前来说,提出最多的是中西合作和中医药现代化,但我们在中医药的现状中发现很多问题,例如上面所提的民生问题,为此我们要想一下有没有更好的方案解决目前的问题,随着经济的发展我,我国的纳米技术已达到一定的程度,并取得一定的成效,为使中药面向世界,并形成医学科新的经济增长点,应将现代的高新技术引入到中药制剂之中。随着科学技术的飞速发展,中药的现代化生产已成为现实。纳米技术的出现使得超微粉碎成为全世界各个生产领域的先进技术,日益显现出它强大的生命力和蕴藏的无穷财富。对于中国的国药—中草药尤为如此。可以说中药超微粉碎是中药的一次飞跃性革命。如果中国能胜利的打完这场“革命”,在医学生又是一个新的焦点。纳米技术是如何引进中医药中呢?首先注意的是纳米粒制备的关键是控制粒子的粒径大小和获得较窄且均匀的粒度分布,减小或消除粒子团聚现象,保证用药有效、安全和稳定。

根据目前的科技情况。纳米药物粒子的制备技术可以分为三类,机械粉碎法、物理分散法和化学合成法。通过宏观到微观的转型,实现了微观世界的并且是医学界的狂飙式发展。

中医药的理论基于对宏观的自然界,而纳米技术科研研究则是微观技术,现在把宏观与微观技术的有机组合能不能在医学上形成一们崭新的“宏微”中医理论学科呢?至于宏观中医药大家对它有了一定的了解,现在我只是对微观进行阐述。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术的引入是医学微观化,一方面由于纳米技术的引入为携带提供了一定的方便,以前,无论什么看一次病总要大袋小袋的提着,这只是对病者,如果像医院或一些医护机构,当他们想购买大量药物时不是很麻烦。引入纳米技术在这里就起了相当重要的作用,比如运输大量的药物,现在只须小盒便能搞定;另一方面,害怕吃药吗?害怕打针吗?不用怕,纳米技术中药话可以帮助你,把纳米级药物制成药膏然后贴于患处,可以通过皮肤直接接受不需要注射。由于纳米技术是对药物的微观化,比如将药物磨成粉状,加大了与病菌的接触面积,例如中药超细后的产品除用于散剂、颗粒剂、胶囊剂、片剂、中药口服散剂、胶囊剂、微囊外,把药物微化,这样可以提高药物在体内的生物利用度。增强中药的疗效,再者,纳米技术在中药加工方面的应用能保持中药原有成分的基础,使药效充分析出。另外,纳米粒子包裹的智能药物进入人体后,可主动搜索并攻击癌细胞或修复损伤组织。在人工器官移植领域,只要在器官外面涂上纳米粒子,就可以预防器官移植的排异反应。使用纳米技术的新型诊断仪,只需检测少量的血液,就能通过其中的蛋白质和DNA诊断出各种疾病。在抗癌的治疗方面,德国一定医院的研究人员将一些极其细小的氧化铁纳米颗粒,注入患者的癌瘤里,然后将患者置于可变的磁场中,使患者癌瘤里的氧化铁纳米颗粒升温到45-47摄氏度,这温度足以烧毁癌细胞,而周围健康组织不会受到伤害。同时,配合使用纳米药物来阻断肿瘤血管生成,饿死癌细胞。纳米中药化不知那些好处,据了解,纳米中药化将药物加工成纳米级的微细粒子,病人服药时,首先减轻病人的痛苦,有些病人怕吃药,如果制成了粒子状,病人一般是比较易接受,药物的真对性特别的强,药物就可能针对性地直达病灶,激活中药细胞活性成分,直接攻击病毒、细菌、重金属、毒质,细胞壁或细胞膜等障碍将不复存在,这样中药疗效可大大速率,尽快的减轻病人的痛苦,如治疗消化道疾病的药品“思密达”经纳米化处理后其药效提高了3倍。中药药效的加大、加快,使中药可与西药相媲美,为今后中药的发展创造了条件。使中药具有新的功能将中药加工至纳米尺寸之后,其细胞内原有不能被释放出来的某些活性成分由于破壁而被释放出来,有可能使纳米中药具有新的功能。此外,由于其给药途径,药物吸收方式等的改变,可能在药代动力学、药效学、药理学、药物化学等方面产生新的作用。并且中药有没有西药那样很多副作用,发展纳米中医药看来是必然的事了。特别的,一些科学家预言:由于纳米微粒的尺度一般比生物体内的细胞、红血球小得多,所以,有可能把含有计算机功能、人机对话功能和有自身复杂能力的纳米机器人送入体内而又不严重干扰细胞的正常生理过程。通过体外控制操作,获取体内多种生化反应的连续的动态信息,从而破解中药复杂的作用机制。

纳米中医药也存在一定的问题,那是值得我们深虑:

1.成分的混乱;由于纳米中药化加大了药的效用,但同时也是所需药的成分难以把握,例如你本来是需要的是5两A药材6两B药材4两C药材,但当你纳米化时,你会使药用发生了变化,使得吸收的药的分量不同,可能导致A多了或少了。纳米技术中药化使得生物利用度、溶出度较低等得以纠正,疗效得以增强。这种改变性质的作用使得传统中药所含的有效成分及其药效变得面目全非。严重的会造成安全隐患。为此对研究和发展纳米中药化造成了巨大的压力。

2.由于纳米技术是一种微观的世界,如果科学家对药物不是有充分的了解,当实行微观处理时可能会导致一些药物的分量不够或减少了别的分量,另外,需要谨慎地掌握纳米粒度与相关中药所含有效成分分子组成和分子量的关系,以防为获得纳米微粒而损坏了药物的有效成分。纳米级的研究并不像宏观的研究那么简单,如果一些技术错误了,结果可能要重做。

3.纳米中药因其粒度超细,表面效应和量子效应显著增加,使得药物的有效成分获得了高能级的氧化或还原潜力,从而影响药物稳定性,增加了保质和储存的困难。

4.加大了鉴别的难度,即超细状态下的中药是否还具有普通粉碎时所有的显微特征?如果原有的显微特征发生了改变,则又应建立何种更精细的鉴别方法?这是个重大的问题,对于纳米级的研究,考的是先进的技术。

5.纳米尺度的物质存在着生物安全性威胁问题,如果不能够有效地防止纳米尺度物质的接触或者摄入,可能会引起多系统的复杂病变。

所谓万物都有双面性,纳米中医药的引入一定上给我们带来了很多好处,但也有一些负面的影响,综合中国现在的情况,许多专家都认为发展纳米中医药是利大于弊。那就根据我国的国情出发,如何将纳米技术中医药引入。何如加大对纳米技术中医药的发展呢?

1.由于各级的懒散性比较强,如果国家不统一制定完全的行业技术标准,可能会导致某些地方的药用不高或某些地方的纳米中药技术只是一个梦想。如果国家有了一定的机构管理,一定的技术标准,那样可以使纳米药物统一化,安全化。所以国家应成立你执迷中医药的研究中心,一方面集中科研相关的技术连接,另一方面可以组织协调科研机构,高校试验室以及产业界的公共参与,进行重点攻关。

2.国家政府必须认真重视纳米医药的发展,毕竟市场是一个充满“利润”式的社会,很多时候,如果国家不重视药物的安全管理,可能不导致药物市场混乱,同时国家有必要组织一定实力和特色的中药类高校与纳米研究机构进行强强联合,通过集大家之智慧来进行纳米中医药化。这就是国家要加强宏观调控对纳米药物的管理。

3.由于纳米中药化是刚刚引进来的一个新学科,很多方面还没有完善,特别是纳米对技术的要求高,所以国家应增加国内纳米重要的博士研究站,在较高会议上培养和吸引综合性的科研人才投身到这个领域中去

4.加强国内研究基地的建设。改善基础设施条件,增加专项的投入,并重视知识产权的保护,加大纳米中医药的财政支出,因为外国对这方面有了一定的认识,由于他们的技术含量高,纳米技术早就名噪一时,所以,国家可以加大中外的合作,另外还有派人到外国学习先进的技术,通过只是的交流,国与国的合作,进一步提高中医药的纳米技术的发展。

总结:纳米技术是2l世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。通过对比中国的利弊,实行纳米中药化的转型不但可以促进经济的发展和提供取药的方面,在历史上也是一次伟大的改革,在一定的程度上提高了医学家纳米中医药的定位,而且在国外也是中医的地位提得更高。科学技术的迅猛发展,中医药也逐步走向世界,面临着前所未有的机遇和巨大的发展空间—纳米技术中药化,然而,基于其独特的理论体系,现代科学技术尚难与之有机地结合起来,这也成为阻碍中医药发展的最主要因素。随着纳米技术在中药研究开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。在中医理论的指导下,中药纳米化技术作为实现中药现代化的关键技术,必将推动我国的中药尽可能快地走向国际市场。

参考文献:

1杨祥良基于纳米技术的中药基础问题研究[J].华中理工大学学报,20一104—105

2赵宗江,胡会欣,张新雪.中药归经理论现代化研究[J].北京中医药大学学报,2002年25

3.徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用[J].中国药科大学学报,2001年32

纳米技术特征范文第3篇

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

一、纳米的发展历史

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.

纳米技术特征范文第4篇

纳米技术的定义是指一些设备,本身或其关键部分是人工的,至少在某个方向上是1~100nm范围。与癌症相关的纳米技术设备可以是携带靶向性治疗药物的纳米载体;生物靶向性的纳米造影剂;也可以是高度特异检测DNA和蛋白质的纳米粒子和纳米设备,将在肿瘤的诊断、治疗领域产生巨大突破。

【关键词】 纳米技术 肿瘤 诊断 治疗

1 癌症纳米技术

纳米技术的正式定义是指一些设备,本身或其关键部分是人工的,至少在某个方向上是1~100nm范围。与癌症相关的纳米技术设备可以是注射的纳米载体;生物靶向性的纳米造影剂,用于手术中显像以区别神经—肿瘤的相互关系;也可以是高度特异检测DNA和蛋白质的磁性纳米粒子。Whitesides[3]在其纳米技术的定义中,对确切的大小没有过分限制,从生物学需要考虑,更强调生物纳米尺寸在实际操作中的合适性。

2 常用的纳米技术工具

2.1 用于药物投递和显像的纳米载体

癌症治疗中的纳米载体是一大类纳米技术装置,可以非侵袭性地发现早期肿瘤分子标志;同时靶向性投给药物。纳米载体一般至少由3部分组成[2]:核心的组成部分;治疗作用和(或)影像功能的有效负荷;生物表面调节分子,以增加纳米粒子在播散时的肿瘤靶向性。

脂质体是原始而简单的纳米载体,可以穿透癌症新生血管增加肿瘤位点的药物浓度。脂质体包埋的阿霉素现在用于乳腺癌或难治性卵巢癌[4]。几种类型的纳米粒子可以增加MRI的对比度,如含钆或氧化铁的纳米粒子;以及多结构纳米造影剂,可以将MRI与生物靶向性和可见光检测相结合。低密度脂性纳米粒子已用于提高超声影像的质量。

注射用的多孔硅纳米载体可以生物降解,比其他可生物降解的聚合体速度更快(几分钟~几小时vs几天~几个月),因此具有以前不可达到的时间特征。金纳米壳(Nanoshell)[5],由黄金在硅核心上涂布组成,可以通过组织的近红外线被选择性的激活,导致局部治疗性热消融。

2.2 含纳米材料的宏观设备

目前有能力在纳米范围内进行分子沉淀,使信息密度成百万倍的增加,微阵列进步为纳米阵列,直接用于核酸或蛋白组的测定。用于癌症领域的另一个纳米级装置是表面增强的激光解吸附—电离飞行时间(surface?鄄enhanced laser desorption/ionization time?鄄of?鄄flight,SELDI?鄄TOF)质谱技术,应用于癌症的早期诊断[6]。

多通路生物分子传感器,可以同时间对大量不同的分子标志(组织或血清蛋白组)进行检测,目前最有希望的有微悬臂和纳米悬臂阵列。

硅纳米导线或导管已用于小分子分离,控释药物的投给[7]。也可以作为纳米级的场效应生物晶体管,当其表面发生分子结合事件时,变化的导电率可以被检测。将尺寸控制在5~100纳米的通路和小孔已在硅芯片上制成,使体积移动精确到纳米范围。

3 癌症纳米技术的应用

纳米技术的应用包括:早期诊断,如对血标本进行蛋白组分析;其次,在体内对肿瘤的演化过程进行分析或分子显像;提高药物治疗的靶向性,避开体内的生物或生理学屏障;对治疗效果进行实时监测,替代治疗后的随访评估。

3.1 体内癌症生物标志的检测和监测

新的影像学技术使用的造影剂上结合有分子识别物质或靶向性药物(抗体),具有信号增强作用,可以检测更微小更早期的癌细胞。

近来证实,亲淋巴的顺磁性纳米粒子,可对前列腺癌的隐性淋巴结转移进行MRI显像,这为非侵袭性方法难以发现。Meta分析显示[8],使用纳米粒子造影的MRI对多种癌症的淋巴结转移的诊断具有很高的特异性(96%)和敏感性(88%)。Kobayashi等[9]在乳腺癌小鼠中使用钆纳米载体——聚合状的树状体(dendrimers)可以清晰显示淋巴结和淋巴管的排泄,提示在临床上可以替代前哨淋巴结活检。双峰纳米粒子,携带有近红外的肉眼可见的荧光基团,与MRI造影剂(交联氧化铁)共价结合,可以用于手术前脑肿瘤轮廓的描绘和手术中的病变显示。交联氧化铁纳米粒子与annexin?鄄Y共价结合,用于MRI可识别喜树碱诱导T细胞的凋亡。使用生物精确纳米粒子,端粒酶活性(增殖潜能的标志)也可以在细胞水平由MRI检测。

持续血管生成发生于癌前病变中,是早期诊断中的重要标志。在动物模型中使用改良纳米粒子,以ανβ3?鄄integrin为靶点,可以对血管形成进行了MRI显像。另一个体内分子检测的是植入性传感器,体外设备进行信号接收,但植入性材料存在非特异性吸附血清蛋白——生物污垢,导致传感器对蛋白检测能力迅速下降。

3.2 体外癌症生物标志分子的早期精确检测

临床使用的一些癌症分子标志,如CEA、PSA,由于特异性不是很好,限制其应用于早期诊断。有几个纳米技术是很合适的侯选者,如纳米悬臂,检测蛋白组的SELDI?鄄TOF质谱分析。

生物分子的结合会产生压力和形变[10],使用合适的选择性纳米结构传感器可以进行检测和识别。主要的例子是微米和纳米悬臂,当其表面发生核酸杂交、分子结合事件,其共振频率会发生偏斜和改变。此偏斜或者直接被激光束探测,或者偏斜转换成可以测量的物理特征,如共振频率发生改变,见图1。值得提出的是,将成千上万个纳米悬臂阵列集成在厘米大小的芯片上,这样可以同时读码蛋白组信息,甚至整个蛋白组。此技术与微电子制作技术存在相同之处,因此提示可以大规模的,低成本可靠的生产。

纳米悬臂、纳米导线和纳米管的阵列是可以将癌症的诊断、预后和治疗的选择从单个生物标志向多个生物标志转化的工具。

此外,携带荧光基团的硅珠已经用于白血病细胞的检测;在人类SY5Y成神经细胞瘤和C6胶质细胞瘤中,荧光纳米粒子可以检测细胞内的钙浓度——细胞死亡的有效标志,因此可定量测量细胞对药物的反应。

纳米粒子比传统的细胞染色方法具有稳定性和可调性的优势。如量子点不会随时间丢失其信号强度,即不存在光漂白作用;而且,偶联不同抗体的纳米粒子与对应的分子靶向性结合后,可以显示不同的颜色 [11]。即使进行单波长光照射,单个细胞或细胞群中的分子标志分布地图将准确而清晰的显示。

纳米粒子已经用于血清蛋白组的检测,重点是痕量的低分子量蛋白水解片段,应用于卵巢癌和其他肿瘤。SELDI?鄄TOF蛋白组分析使用纳米粒子后,可增加单位面积的蛋白吸附能力,进行更多不同样本的分离和检测。

目前已经开始联合使用多个纳米诊断技术。如改良的寡聚核苷酸—金纳米磁性粒子具有500个zepto摩尔(zepto=10-21)的敏感性,用于核酸的检测。因不需要酶扩增,具有超过PCR的优势,而且也用于蛋白质分析[12]。更进一步的方法是改良金纳米粒子探针,与微悬臂结合,可以分析DNA的单个碱基错配。

3.3 药物的靶向性治疗

将具有识别功能的物质(如抗体)与纳米载体结合,使含有活性药物的纳米载体具有分子靶向性功能。与传统的抗体引导的治疗相比,分子靶向性纳米载体至少具有4大优势:在每个靶向性生物识别过程中,可以携带更多有效治疗负荷;能携带多个不同的靶向性药物,增强选择性;能够以整体的方法通过生物屏障;局部可以投给多种药物,导致靶向性的联合治疗。

通过叶酸介导的靶向性纳米粒子已经在移植鼻咽癌的裸鼠的治疗中得到证实。多功能纳米材料——树状多聚体在胞内与叶酸靶向性结合后,选择性的在细胞内投递抗癌药物甲氨蝶呤[13];若将荧光素结合到纳米载体则可提供可视的影像信号。多种抗原已用于引导纳米粒子识别血管内皮细胞。如将存在于内皮细胞的ανβ3?鄄integrin与全碳氟纳米乳液结合,用于小鼠模型中结肠腺癌和黑色素瘤的抗血管治疗。目前,已将靶向性溶解血管内皮细胞和化疗药物相结合的纳米粒子开发出来,并可以明显提高治疗效果,减少副作用[14]。

另一类靶向性方法由外部能量驱动,激活局部毒性反应。如使用聚焦超声爆破的脂质包裹微囊进行光动力学治疗;通过联合使用金纳米壳和近红外线光学激活,对深层的癌细胞进行局部热消融。其次,非特异的物理化学相互作用也会提高纳米载体的靶向性,如100nm的粒子更趋向于达到内皮细胞的末梢;比此尺寸更大或更小均导致靠边,因此使治疗的药物更容易到达内皮或组织部位。对pH敏感的多聚纳米载体可以生物分解而释放出抗癌药物紫杉醇,所以肿瘤部位特殊的pH水平使治疗作用优先得到靶向性激活[15]。将来的希望是将上述靶向性方法联合起来,使之在治疗上取得最大成功。

获得和维持药物理想的生物分布,需要精确的给药剂量和时间。植入体内的纳米胶囊,没有多次注射和医院使用的不方便,还可以预先编程,使投递具有时间变化规律,或者通过传感器对植入点的微环境刺激作出自调节的反应。目前,从植入渗透泵恒速的投给激素药物醋酸亮丙瑞林已经在临床上用于治疗前列腺癌[16]。

3.4 工程纳米粒子避开生物、生理学屏障

药物和造影剂从投给部位向理想靶点的缓慢移动,充满磨难,纳米载体和传统的方法均如此。生物物理屏障包括上皮细胞之间的紧密联接(血脑屏障)或血管内皮细胞的保护性排出,网状内皮组织系统(reticulo?鄄endothelail system,RES)的捕获,以及供应癌症的脉管系统解剖结构的紊乱和癌症细胞中的高渗透压;延迟药物微粒进入或促进渗出。纳米技术基础的药物投递系统具有穿过屏障的优势,因为其组成的核心材料的独特特征,如使用缓激肽拮抗剂可以增加血管的通透性[1]。

通透性增强剂的局部给药,能可逆性地开启细胞间的联接,使生物分子药物更容易穿透肠道的上皮细胞屏障,进入血液循环。纳米技术具有多功能性,可以同时携带治疗药物、通透性增强剂和肠壁靶向性材料,因此也使药物避免被酶降解,延迟释放时间[17]。同样,尺寸更微小的多功能粒子被静脉注射,可以增加药物从癌症血管透出,或更容易通过血脑屏障。

细胞的RES可以隔离注射的纳米粒子,对纳米粒子包埋的药物是有效的免疫屏障。通过表面覆盖聚乙烯乙二醇,脂质体可以有效避免被RES的吸收,因此药物的半衰从几分钟提高到几小时或几天,增加了脂质体靶向治疗肿瘤的效果。

癌症病变内的高渗透压,导致治疗药物渗透和在肿瘤内扩散相当困难,即使药物直接注射到病变也容易再排除,尤其是晚期癌症。将来解决此麻烦问题的创造性方法是,多阶段、多负荷的投递系统,但目前这仅仅是一个理论上的构思。2005年1月Abraxane被美国FDA批准[18]为治疗转移性乳腺癌,此药物由紫杉醇纳米粒子组成,可以结合到白蛋白分子上。这种纳米粒子不需要治疗前使用甾体类抗炎药物(传统的紫杉类必须使用),白蛋白可以帮助纳米粒子从内皮细胞上穿过,此联合可以将紫杉醇的临床剂量提高50%。

4 纳米技术的安全性和展望

纳米技术对癌症治疗可能是最有希望的手段之一,然而,应该放在安全性考虑之后。这不仅是严格的审批管理的观点,当然也是健康工作者最关注的问题。纳米载体也会触发过敏反应。碳纳米管可以产生抗体,早期的纳米树状体也可导致较弱的抗体反应,但蛋白结合的树状体是很强的免疫原。因此,纳米技术的治疗不可能不导致过敏反应,需要设计合适对抗手段。

纳米粒子主要的优势是其多功能性,能够将多方法,如治疗、诊断和屏障避开制剂进行联合,与药物反应的生物副作用也会增加。Cristini等[19]发现,将靶向性细胞毒药物治疗肿瘤,尤其是抗血管治疗,将癌症病变分割成多个卫星灶,即治疗产生的重新排列(氧和营养支持的来源),使后序治疗的难度增加。

展望将来,对治疗的疗效进行实时评估方法,将替代直接对肿瘤大小、分子表达和靶向性信号通路进行的观察,甚至替代一些传统的终点分析方法,如缓解时间和生存时间。体内分子显像剂的开发,双重的治疗—显像纳米载体技术的建立,体内显微镜技术(通过荧光光子技术对单个细胞进行显像)的出现,将对最优的诊断治疗提供确实的依据[20,21]。

【参考文献】

[1] Brannon?鄄Peppas L,Blanchette JO. Nanoparticle and targeted systems for cancer therapy[J]. Adv Drug Deliv Rev, 2004,56(11):1649-1659.

[2] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nat Rev Cancer, 2005,5(3):161-171.

[3] Whitesides GM. The ‘right’ size in nanobiotechnology[J]. Nat Biotechnol, 2003,21(10):1161-1165.

[4] Allen TM. Ligand?鄄targeted therapeutics in anticancer therapy[J]. Nat Rev Cancer, 2002, 2(10):750-763.

[5] Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell?鄄mediated near?鄄infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003,100(23):13549-13554.

[6] Tolson J, Bogumil R, Brunst E, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients[J]. Lab Invest, 2004,84(7):845-856.

[7] Cai D,Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing[J]. Nat Methods, 2005,2(6):449-454.

[8] Will O, Purkayastha S, Chan C, et al. Diagnostic precision of nanoparticle?鄄enhanced MRI for lymph?鄄node metastases: a meta?鄄analysis[J]. Lancet Oncol, 2005, 7:52-60.

[9] Kobayashi H, Kawamoto S,Sakai Y, et al. Lymphatic drainage imaging of breast cancer in mice by micro?鄄magnetic resonance lymphangiography using a nano?鄄size paramagnetic contrast agent[J]. J Natl Cancer Inst, 2004,96(9):703-708.

[10] Hansen KM, Thundat T. Microcantilever biosensors[J]. Methods, 2005,37(1):57-64.

[11] Voura EB, Jaiswal JK, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission?鄄scanning microscopy[J]. Nat Med, 2004,10(9):993-998.

[12] Nam JM, Stoeva SI, Mirkin CA. Bio?鄄bar?鄄code?鄄based DNA detection with PCR?鄄like sensitivity[J]. J Am Chem Soc, 2004,126(19):5932-5933.

[13] Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex?鄄forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers[J]. Nucleic Acids Res, 2004, 32(7): 2102-2112.

[14] Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system[J]. Nature, 2005,436(7050):568-572.

[15] Potineni A, Lynn DM, Langer R, et al. Poly(ethylene oxide)?鄄modified poly(beta?鄄amino ester) nanoparticles as a pH?鄄sensitive biodegradable system for paclitaxel delivery[J]. J Control Release, 2003,86(2?鄄3):223-234.

[16] LaVan DA, McGuire T,Langer R. Small?鄄scale systems for in vivo drug delivery[J]. Nature Biotechnol, 2003,21(10): 1184-1191.

[17] Tao SL, Lubeley MW, Desai TA. Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery[J]. J Control Release, 2003,88(2):215-228.

[18] Gradishar WJ, Tjulandin S, Davidson N, et al. Phase Ⅲ trial of nanoparticle albumin?鄄bound paclitaxel compared with polyethylated castor oil?鄄based paclitaxel in women with breast cancer[J]. J Clin Oncol, 2005,23(31):7794-7803.

[19] Lesinski GB,Sharma S,Varker KA,et al.Release of biologically functional interferon?鄄alpha from a nanochannel delivery system[J]. Biomed Microdevices, 2005,7(1):71-79.

[20] Mooney D. Cancer: one step at a time[J]. Nature, 2005,436(7050):468-469.

纳米技术特征范文第5篇

【关键词】纳米纤维;纳米塑料;纳米技术发展

1 引言

目前,我们主要朝着两个方向来发展纳米技术,他们分别是开发新材料,如巴基球以及纳米管等等,和运用新科技来减少现在正在使用的材料,例如金属氧化物的用量等等。一些含有氟聚合物和特种复合材料中已经慢慢运用到了碳纳米管,除此以外,钛白粉和粘土以及SiO2等之中也运用到了纳米技术。纳米氧化物和材料、纳米粘土以及碳纳米管市场都是纳米材料市场的组成部分。德固萨公司是一家以生产先进的纳米氧化铈、氧化铟以及氧化锌为名的公司,它在2004年到2008年之间投资在纳米研究领域有2500万美元。密歇根大学目前正在跟比较前沿的巴斯夫公司合作,研究开发纳米立方体。这种立方体在中压时可以吸附氢气,在释放压力时又可以放出氢气,它是由含有苯和本基因有机体以及氧化锌分子组合而成的多孔结构。其实,目前已经有多家公司开始从事聚合物纳米技术的研究,并且还出产了许多商业化产品。

2 化工中如何运用纳米技术

2.1 开发运用碳纳米管

运用碳纳米管,我们可以制成储气能力极强的储氢材料,然后将它运用于燃料电池等领域。除此外,碳纳米管还可以制成具备高强度的碳Z-T-维材料以及将它作为增强填料形成各种复合材料。如果再大气中制取因,则可以大大地降低费用,这是日本丰桥(Toyohashi)技术科学大学与Futaba公司以及Tokai碳素公司联合开发研究出来的新方法。如果用200-300A的20V直流电在两个石墨电极之间,便会产生电弧,在这种情况下,阳极是不断地消耗的,在4000-10 000K下快速蒸发时候,电弧喷射便产生了。如果将电弧喷射快速急冷,让它到冷却板上,我们就可以得到纳米碳颗粒了,这种产物越有30%纳米管[3]和约70%碳颗粒凝聚体。碳纳米管可以用于生产高性能塑料的蓄电池、燃料电池电极材料以及电子元件和增强材料,目前,世界上拥有着最大规模的碳纳米管生产装置的公司就是日本三井化学公司,它的生产能力为120t/d 。美国西南纳米技术公司和大陆菲利普斯合作,它们的目标市场之一是应用于塑料参混物,现在正在不断加快低成本碳纳米管的商业化步伐。美国公司zeyo第一次提出了大大提高材料的导电和力学性能,可用于改性聚氨酯的单壁碳纳米管和多壁碳纳米管添加剂产品。我国的碳纳米管技术也是列于世界前位的,目前我国清华南风纳米粉体技术产业化啊工程中心的碳纳米管批量生产技术在国际上是最高的。

2.2 纳米催化剂

根据商务通讯公司的报道,在全球,纳米催化剂的市场资金将会越来越多,应用领域也将会越来越大,其包含有炼油和石化行业、化学和医药领域、食品加工和环保领域等等。纳米的催化性能以及吸附能得到了不断增强,这是由于纳米的表面积不断增大以及纳米微粒粒径不断减小的后果,除此之外,正是由于这些独特的效应,使得一些原来不能反应的能够进行反应了,而且也使得能反应的反应效率得到提高,有效地控制了反应效率。瑞士技术研究院开发了一种可应用于环氧化反应,并且低费用、高效的纳米颗粒二氧化钛,这就是二氧化硅催化剂。与穿透的环氧化催化剂相比,此种基于相同的材料但产生副产物很少的催化剂能够大大地提高转化率。所谓的环氧化物,就是生产表面活性剂、许多聚合物以及医药的关键中间体。

2.3 纳米复合材料

由于纳米粒子具备着量子尺寸效应、表面界面效应以及小尺寸效应,这些 效应和聚合物耐腐蚀却容易加工以及密度小的特点结合以后,就使得他们能够成为和常规不同的复合材料。它们分别包括了有纳米塑料、轮胎纳米聚合物、纳米功能性纤维等。因为聚合物纳米复合材料的快速崛起,所以传统的塑料产业也出现了新的力量,聚合物复合材料提高了传统材料的性能,体现了更加优异的综合性能。除此之外,纳米聚合物在轮胎中的运用能够起到节省能源的作用。意大利Nova—mont公司与别的公司合作,开发出能够大大减少轮胎滚动阻力的淀粉聚合物。最后,纳米技术的进步还使得功能性聚酯等纤维应用了纳米材料,得到进步。一些含有纳米材料的功能性纤维陆续出现,其中能够防辐射、变色、抗菌等等功能引起了人们的关注。

2.4 纳米材料在石油工业的应用展望

纳米材料在油田开发和石油化工方面都得到了应用。为了能够解决好低参透油田的注水开采的最终采收率低和开采速度慢的问题,我国在实际注入过程中采用了新型降压注水剂纳米聚硅材料。实际证明,这种材料能够提高低渗透压注水井的吸水功能。除此之外,又因为纳米表面积很大而且表面活性中心也多,所以它也是一种很好的催化材料。如果把一般的铂、镍、铁等金属催化剂制成纳米微粒的话,纳米它就可以大大地改善催化效果。

2.5 纳米材料

俄罗斯科学家曾经将纳米合金粉末和纳米铜粉末加到油中,可是使得油的使用寿命延长,而且性能得到十倍以上的提高,降低磨损率。目前,油田现场的油气井在完井时套管的管扣剂普遍采用的是黄油或是丝扣油,但是这种油经常会出现咬扣的现象,除此之外,这两种油的减摩效果也不是很理想,所以卸扣和上扣的劳动强度也得到增强。针对套管和油管目前正在使用的丝扣油具有的缺点,根据纳米材料低弹性模量以及硬度大的特点,和纳米粒子抗磨特征,为了能够达到减小上卸扣的困难以及避免咬扣或是粘扣的目标,提出了把纳米粒子加入在先有丝扣油中作为添加剂的建议。

2.6 存在的问题与发展方向

尽管纳米材料有着非常好的发展前景,但是我们也要认识到许多方面到目前为止也是美好的想象或者还处于试验阶段,必须还要解决离实际应用之路上的很多问题。

首先,虽然功能性纳米材料的成本算是比较低的,但是目前我们制备工艺还大多处于实验室阶段,所以纳米技术发展存在的一个关键问题是工业化设备问题。其次,其材料形式也是作为催化剂的纳米材料的一个很重要的问题。如果直接用颗粒存于反映体系之中,那我们就必须考虑它的回收难易性和活性再生难以及抗污染性等问题。还有就是在目前的水平中,纳米二氧化钛灯光催化剂的催化效率还处于比较低的水平,因为它仅仅只能利用波长低于400nm的太阳光。最后,纳米粒子在基础油中必须均匀、稳定地分散,这是它作为油添加剂被应用的前提。我们相信这些难题将会随着纳米技术的不断发张都会慢慢得到解决,纳米材料也会在应用中显示它的无比优越性。