前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇纳米材料发展报告范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
摘要:《高分子纳米材料》是我校高分子材料专业开设的一门专业选修课。在分析了课程的目的、特点和教学存在问题的基础上,详细阐述了运用视频课程、颠倒课堂、电子产品辅助教学等多元化教学手段,实现本课程的教学改革。
关键词:高分子纳米材;教学改革;颠倒课堂
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)49-0080-03
一、引言
纳米科学与技术是20世纪80年代末期兴起的,经过三十多年的发展,纳米技术已逐步迈出实验室走向市场,其商业化应用在全球范围内迅速展开。全世界都认识到,纳米技术将引起新一轮的产业变革,未来拥有并掌握纳米技术及其应用的国家将更具备核心竞争力。纳米材料科学是涉及到凝聚态物理、胶体化学以及材料的表面和界面等多门学科的交叉科学,而高分子纳米材料同样是涉及高度交叉的综合性学。纳米结构的聚合物材料由于尺寸效应、表面效应、量子效应和宏观量子隧道效应使材料具有独特的性能而在机械、光、电、磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方面具有广阔的应用前景[1],从而掀起了对纳米结构聚合物材料研究的热潮。在纳米科技迅速发展的大背景下,很多高校的材料专业开设了“纳米材料”或“纳米技术”相关课程[2-3]。但据作者所知,江南大学是少数对高分子材料专业开设《高分子纳米材料》课程的高校之一,笔者结合自己的授课经验以及《高分子纳米材料》课程的特点,从其现在面临的题及采用多元化教学手段等方面研究探索该课程的教学改革。
二、课程特点及现有问题
《高分子纳米材料》课程介绍高分子纳米材料的独特性能、制备方法,并将其和学科发展前沿联系起来,主要教学内容侧重如下几个方面:(1)高分子纳米材料的基础知识(包括基本效应、特殊性质);(2)高分子纳米材料的制备方法;(3)高分子纳米材料的表征方法;(4)特殊功能的纳米材料(如高分子纳米复合材料、高分子纳米涂料、生物医用高分子纳米材料、光/电/磁性高分子纳米材料、超疏水/疏油(双疏)性高分子纳米材料);(5)高分子纳米材料的应用及生物安全性问题。涉及较多的应用研究型内容、既有理论又有实践,强调理论和实践的结合,且课程的知识点较多,知识的交叉性强。
本课程的开设旨在为具有高分子材料与工程学科背景的学生增加纳米科学及技术的基础知识。通过学习本课程,学生对高分子纳米材料的发展趋势和研究热点有了很深的理解,涉猎了未来高分子纳米材料的重大学科领域。学生的创新思维以及能力得到了不同程度的提升。
作为典型的交叉学科,《高分子纳米材料》课程的教学具有一定的难度。首先,课程内容涉及知识面广,该课程主要解决以下问题:“什么是纳米技术”、“怎么制备高分子纳米材料”、“高分子纳米材料的特殊功能”等,而特殊功能性就包括了光/电/磁性、pH/温度响应性、超双疏性等多部分内容。因此难于在有限的课堂教学时间内全面系统地深入介绍学科内容,容易导致没有节制的填鸭式教学,使学生无法在短时间内消化,影响后续课程的学习。如何准确把握课程的基础理论框架,引导学生开展自主学习,是授课教师在设计课程内容时需要解决的重要问题。其次,课程内容前沿性强,知识更新速度快,研究热点不断变化,新的研究方向与研究成果层出不穷。这就需要授课教师投入更多的时间和精力纵览多个学科的发展,以便能够站在学科的前沿引领学生去认知和创新性思考。再次,内容抽象,尽管纳米材料这门课较新,学生们兴趣较高,但在讲授过程中缺乏实物,无法为学生带来更直观的感觉,从而影响了学生进行独立的思考、个性思维的发展和创新能力的培养。
三、课程教学手段改革
为提高课堂教学质量,提高学生的综合能力,以使学生成为适应社会发展需要的复合型人才,教师必须转变教学理念,激发学生的学习兴趣、主动性、积极性[4]。
(一)课堂多样化教学法
传统教学方式中,老师在课堂上满堂灌,使学生缺乏思考,觉得学习枯燥无味,丧失学习激情。因此,应结合不同的教学内容,授课教师运用“提问式”、“讨论式”等方式方法结合起来讲授,注重与学生的互动。对于理论性较强的内容,多采用图片形式展示,如结合Photo Shop、AutoCAD等绘图软件制作一些多媒体教学课件,根据需要进行拆分和组合讲解,增强学生的直观认识,达到传统教学手段无可达到的演示效果。同时,注重语言的深入浅出,或理论联系实际,如在介绍超双疏高分子纳米材料部分课程时,从自然界中的荷叶效应开始解释,说明荷叶结构与性能关系,从而引入超双疏高分子纳米材料,在快速理解的同时,激发学生的学习热情和投身其研究的兴趣。
视频课件内容丰富、信息量大,教师可以制作或下载相关教学视频,引入更多与课程相关的新知识、新技术和新成果。如介绍生物医用高分子纳米材料在药物缓释领域的应用时,纳米材料怎样进入体内病变部位,怎么靶向、释放药物,达到治疗的效果,如果没有视频,学生很难理解、很难想象;而通过视频将其原理、过程更直观、更形象的展现在学生面前,让学生更容易、更有兴趣地去学习并掌握知识点。
另外,对于相关制备技术与创新应用方面,则要重视启发――探究式的教学,注重理论联系实际以及学生创新思维和能力的培养,比如对于高分子纳米材料的测试表征手段的教学,教师可以结合实验教学,带领学生参观所学习的相关仪器设备,动手操作仪器,这样既可以提高学生的学习兴趣,又可以巩固所学的理论知识,其实践能力也可以得到培养。
(二)颠倒课堂教学法
颠倒课堂教学法坚持“以学生为中心”的教学理念,借助于信息技术在时空上颠倒传统教学中教师的知识传授与学生的知识内化过程,让学生可以在家或课外通过观看教学教案、教学视频中教师的讲解,自主完成对新知识的学习,课堂上教师通过设计一些真实的问题情境,组织学生协作探究解决问题的方法,而学生可以通过与教师、同伴的交流讨论,实现对知识的吸收与深化[5]。颠倒课堂在国外已经取得了较好的效果,而在国内还鲜少尝试。
在《高分子纳米材料》课程中,可以根据需要有选择的对部分教学内容进行颠倒课堂。我们根据前期对学生的调查,学生们一致对生物医用高分子纳米材料非常感兴趣,有很多的问题想了解,如果还是以传统法教学,则无法较好的和他们讨论、回答他们问题,无法满足他们的好奇心。因而,在进行这部分内容教学时,可以采用颠倒课堂的方式。首先在班级的微信群或QQ群里上传教学PPT及相关视频,学生通过学习后,对生物医用高分子纳米材料的发展概况、基本知识、结构设计有了一定的了解;在课堂上,学生先提出问题,分组交流讨论、教师参与讨论;教师最后再补充知识、总结学生问题的基础上,再设计问题让学生深入思考,解决问题。
(三)教学与科学研究复合的教学法
为培养学生应用所学的知识解决实际问题的能力,教师可以将教学与科学研究进行复合。如结合教师们的课题,把最新的科研成果有机地融入课堂教学中,为学生讲解具体的高分子纳米材料制备及性能研究,并让其参与其中,将研究的样品实际展示给学生,调动学生兴趣,突出高分子纳米材料的趣味性、理论性、科学研究性和前瞻性,并加强学生的自主创新意识和科研能力。
另外,邀请国内外高分子纳米材料专家做专题报告和前沿讲座,使学生能够及时了解前沿技术与l展动态;结合教学内容,提出本学科的研究热点问题,与课堂讨论相结合,不仅增强了师生间的互动、活跃了课堂氛围。
(四)借助智能电子产品建立学习平台
21世纪以来,各类高大上的电子产品,如iPad、手机等已成为年轻人须臾不可离的随身之物,这类电子产品极大的分散了学生上课的注意力及降低了学生对学习的兴趣和主动性,因而一直不被教师、家长看好,将之拒于学校与课堂大门之外。然而,随着数字校园向智慧校园的迈进,手机的这种应用及趋势只会越来越频繁,全面禁止大学生在教学过程中接触手机只会适得其反。因此,应顺应学生的心意,改革和完善现行教学方式,在课堂教学、课后练习中有效利用智能电子产品,使其成为辅助教学的良好工具[6]。
在《高分子纳米材料》课程教学中,我们建立了班级QQ群、微信群,通过群平台进行信息、专题讨论、资源共享等,有利于及时消息、正确引导学生、掌握学生动态。教师对根据学生的学习能力、反馈信息,提供个性化的教学要求和实施目标。
微信公众号平台经常相关的知识、发展动向、微课等内容,这是一个可以让学生在课后补充学习的平台。因而,要求学生关注如“纳米人”、“高分子科学前沿”等公众号,认真学习和掌握高分子纳米材料的发展动向。同时,智能手机中的一些APP也对我们课程有很好的帮助,如ACS Mobile、RSC Mobile等,旗下杂志一有新的研究进展及时更新至APP中,让学生更及时了解高分子纳米材料的研究动态与最新成果。
四、结束语
作为本世纪最瞩目的前沿科技研究热点之一,高分子纳米材料也取得了长足发展,很多新的高分子纳米材料产品如高分子纳米涂层、高分子复合材料、药物缓释纳米材料等从实验室走向实际应用,成为保障人类生活和工业发展的重要基础。《高分子纳米材料》课程教学内容的选择要充分考虑到广度和深度的统一、基础和前沿的兼顾、新旧内容的衔接、理论联系实际、巧用电子产品的资源等多个方面。在整个教学过程中,学习者表现较积极,能主动发言并积极参与讨论,各个小组的汇报效果也较好,能够激发学习者的学习兴趣,培养学生创新意识及创新能力。
参考文献:
[1]Vikas Mittal.Advanced Polymer Nanoparticles,Synthesis and Surface Modifications.2011,CRC Press,Taylor & Francis Groups.
[2]刘玉芹,杜高翔,杨静.《纳米材料》课程教学内容与教学方法探讨[J].科技教育创新,2008(3):210-211.
[3]李本侠,王艳芬,胡路阳.浅论“纳米材料与纳米技术”[J].课程教学研究.2014,40(1):72-74.
[4]白绘宇,罗静,倪才华,东为富,刘晓亚,陈明清.高分子流变学教学的探讨-借鉴美国大学高分子流变学课程教学经验[J].2015,(7):89-93
纳米材料学研究作为纳米科技发展的基础其地位尤为重要。纳米科技在信息、国防、能源、医药、环境、材料、工程等众多领域都存在重要的应用前景。由于纳米材料对未来社会发展、经济振兴、国力增强有战略性影响力,为提高大学生的创新能力,近年来很多高校开始增设该课程为本科生和硕士生的专业课。
2005年起,笔者任教的内蒙古大学化学化工学院为本学院材料物理与化学专业的本科生及硕士研究生开设了该课程做为专业必修课。目的是让材料专业大学生掌握更多的纳米材料的基础理论知识,掌握纳米技术的前沿动态,拓宽他们的知识面,培养创新型人才。笔者在几年的纳米材料科学与技术课程教学工作中有以下几点体会。
一基础理论知识的透彻讲解
纳米材料是一种介观物质,其物理化学性质不同于宏观物体,也不同于微观原子和分子。众所周知,宏观材料的尺寸改变时其物理化学性质不会有大的改变,但当材料的尺寸减小到纳米级时,其物理化学性质会有很大的变化,显示出不同于宏观材料的物理化学特性,如量子尺寸效应、表面效应、小尺寸效应、量子隧穿效应、库伦阻塞效应、巨磁阻效应等。这些特殊性质使得纳米材料在众多领域中有着重要的潜在应用前景,因而吸引着科研工作者的研究兴趣。
我学院为本科生开设这门课程是在大学四年级的第一学期,学生已经具有了一定的无机材料理论基础和实验经验,因此比较容易理解该课程内容。任课教师在讲解时注意引导学生对已学过的知识的运用。例如,介绍纳米微粒的制备方法时先讲解学生已经掌握的液相制备法如沉淀法和水热法,让学生认识到纳米材料不再神秘,又能触手可及,可以锻炼学生解决问题的能力。
在讲解量子隧穿效应时,运用量子力学的定态薛定谔方程来推导出一维势垒金属纳米粒子内部及外表面的电子运动状态波函数,结果金属纳米粒子外表面存在电子波函数,这种现象称为“隧道效应”。即金属纳米粒子表面处存在势垒,阻止内部电子向外逸出,但由于隧道效应,仍有一部分电子穿过表面势垒到达金属表面以外,并形成一层电子云。讲解量子隧道效应在扫描隧道显微镜纳米金属探针中的应用,使学生更容易理解和记忆枯燥的理论,进而达到活学活用的目的。
我院材料专业本科生在三年级时学习了X射线衍射技术。因此在讲解纳米颗粒粒径的表征方法时介绍了学生熟悉的X射线衍射技术中X射线衍射线线宽法(谢乐公式)测定一次颗粒晶粒度的方法。
碳纳米材料中多壁、单壁碳纳米管是大家关注的纳米材料。讲解单壁碳纳米管的结构时运用石墨片的模型。石墨片可以沿不同方向卷曲,得到各种螺旋度的纳米管,根据手性矢量Ch=na1+ma2的计算,可以将碳纳米管记为(n, m)。n和m的数值确定了纳米管的电学性质。例如当n=m时,纳米管为金属型,电子沿纳米管壁传输,因此金属型碳纳米管可用作纳米回路的导线等等。讲解单壁碳纳米管的表征方法时,采用透射电子显微镜的高分辨图片HRTEM和Raman光谱中的环呼吸振动峰等来进行表征。
二理论联系实际,激发学生积极性
纳米材料是一门实用性很强的学科,具有知识更新速度快的特点。大学四年级的学生面临着找工作、考研究生、考公务员等实际状况。如果任课老师此时一味地讲解基础理论知识,会使学生觉得枯燥无用,从而导致学生听课疲劳、厌学等现象,所以讲解时要注重理论联系实际。首先讲解与日常生活紧密相关的纳米材料,单臂碳纳米管阵列、磁性液体、钛酸钡纳米片及纳米纤维等。让学生了解这是一门有用的课程,激发他们深入学习的积极性,达到事半功倍的效果。
例如,讲解单臂碳纳米管阵列的合成及应用时,借助图像和动画,生动、直观地介绍了用微点阵技术将金属催化剂固定在硅基板上,然后采用化学气相沉积法在特定条件下使碳纳米管在硅片上垂直生长,形成单臂碳纳米管阵列。因为碳纳米管具有优异的场发射性质,单臂碳纳米管阵列可用于场发射高清晰度平板显示器等。
详细讲解磁性液体的多种用途,如用于旋转轴的动态密封、剂、增进扬声器功率、矿物浮选、传感器、阻尼器件等。
广泛应用于数码产品中的多层陶瓷电容器的发展方向趋于大容量和薄层化,其主要原料钛酸钡高纯超细粉体的制备工艺备受学术界关注。任课老师查阅最新的钛酸钡纳米片及纳米纤维的制备及表征的文献,介绍给学生并进行探讨,激发学生的学习兴趣。
三注重课程在研究课题中的应用
研究合成无机材料的同学很多会用到透射电子显微镜(TEM)技术进行晶体结构表征。讲解纳米材料的结构表征时,让本科学生了解透射电子显微镜(TEM)的结构的同时掌握支持膜法制备纳米粉末样品。而且该课程的内容可能在以后的研究生学习中起到重要的作用。
在为硕士生讲解时,要求他们掌握电子衍射原理和初等结晶学等内容,并选用立方晶系材料的选区电子衍射图片具体讲解了衍射斑点的指数标定方法,让学生认识到学习该课程的重要性。准备一些与课题有关的或最新的纳米材料英文文献,分组翻译,并进行讨论,将基础理论知识与研究课题相结合,提高他们的综合能力。
四营造和谐互动的课堂气氛
笔者是一位留学回国人员,在国外攻读硕博课程期间有很多的学习体会。例如每周举行一次组会。组会具体内容有基础理论学习、课题进展报告、文献研读等。与学生一起分享自己的研究和学习的经验,讨论学习方法、学习经验,从而可以使学生有计划、有目的地使用时间,获得事半功倍的学习效果。例如,利用关键词搜索大量文献,通过泛读找到与课题有关的研究背景,再进行精读,来了解课题进展情况等。根据自己的学习经历,参考部分国外的教学模式,例如组会模式,活跃课堂气氛,激发学生学习的积极主动性。
人类的每一次进步都和一种或多种新材料的开发密不可分。新技术的产生是以新材料为基础的。纳米材料对我们国家经济振兴及国力增强,实现中国梦具有战略性影响力。因此高校为本科生和硕士生开设纳米材料科学与技术的专业课程是有必要的。纳米科技具有发展迅速、知识更新速度快的特点,任课老师要针对课程特点不断地查阅最新文献,更新纳米材料科研成果的内容。讲解时要注重纳米科技理论知识和实际应用的联系,借助图像和动画等形式,激发学生的学习兴趣。营造和谐互动的课堂气氛,以学生为主体,帮助学生做好学习规划,有效利用时间,获得事半功倍的效果。
参考文献
[1]杨志伊.纳米科技[M].机械工业出版社,2004.
[2]汪信.纳米材料化学[M].化学工业出版社,2006.
[3]徐并社.纳米材料及应用技术[M].化学工业出版社,2004.1
[4]张全勤.纳米技术新进展[M].国防工业出版社,2005.
[5]朱永法.纳米材料的表征与测试技术[M].化学工业出版社,2006.
本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代[1],不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。
1突破传统制造技术的观念
纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果[2~7]。接下来深入到纳米线、纳米管和纳米带的研究[8~14],出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景[15~17]。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。
T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法[18],这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5mm其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。
2纳米材料的完美定律
描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。
完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术[1],电化学沉积法制备金属纳米线阵列技术[19],以及电炉烧结法制造氧化物纳米带技术[20]等等。
3涂层纳米材料将给我们带来什么?
涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池[21]、各向异性结构材料[19]、新型面光源材料[22]等,这里举例介绍基于热电效应的新型纳米热电变换材料。
热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11mm,长5mm,厚0.104mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T)与电流(I)关系,电流坐标表示相应通过器件的电流。为热端温度Th与电流I的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。
电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。
类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。
4含铁碳纳米管薄膜场发射
碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。
5电子强关联体系和软凝聚态物质
上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electronstrongcorrelationsystem)与软凝聚态物质(softcondensationmatter)。
在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题[24]。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。
软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materialsofmolecularmanipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。
物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。
信息、生物、新材料三大前沿领域
信息、生物、新材料是21世纪前30年发展最快、最热门的三大领域,它们集结了当今世界最强势的研究力量。但在这些关系未来发展的关键领域中,我国许多核心技术仍依赖追踪、模仿和引进国外技术,原始创新能力明显不足。
从更宽的视野来看,不仅仅是这三个领域的发展需要高扬“自主创新”的信心与勇气。实际上,整个中国科技正面临着前所未有的发展压力:对外要适应国际科技竞争的紧迫形势,对内要满足经济社会发展进程中的重大战略性需求。而原始创新能力和技术创新能力的薄弱,已成为当前和未来相当长时期内影响我国整体竞争力的极大障碍。
面向未来15年的《国家中长期科学和技术发展规划纲要》即将,科技部等有关部门正在着手制定科技“十一五规划”——关于中国科技“未来”的探讨与关注,在最近一年多来达到了前所未有的程度。就是在这样带着几分焦灼、几分期待、几分信心的探讨氛围中,“自主创新”成为人们关于中国科技发展的共识。
带着这个共识,再来看中国科技发展面临的“压力”,在很大程度上已经变成了未来发展的重大机遇。未来10年,中国在这三大领域中最有可能实现自主创新的关键技术群究竟有哪些?有限的科技经费究竟应当投入到哪些突破口?
下一代移动通信技术
移动通信是人类社会发展中的一大奇迹。2004年12月,全球(蜂窝)移动通信用户总数已达17亿以上,超过已有百年发展历史的固定通信用户数。过去10年,移动通信技术完成了由第一代模拟通信技术向第二代数字通信技术的过渡,当前正处于由其巅峰状态向第三代(3G)移动通信技术过渡的进程中。
目前,世界发达国家纷纷投入力量进行第三代及下一代移动通信标准、技术和产品的开发。
——3G移动通信:国际电信联盟(ITU-T )批准为3G 的三大标准分别是欧洲的WCDMA,美国高通公司的CDMA2000和中国大唐电信的TD-SCDMA。3G已在全球30多个国家开始商用。
——增强型3G(Enhanced 3G):为了克服3G 技术不能很好支持流媒体等业务的不足,国际电信联盟已在制定增强型3G技术标准。专家预测,增强型3G技术将进入商用。
——4G(或Beyond 3G):下一代移动通信即所谓超3G(以下统称Beyond 3G)技术的研究是国际上的热点。Beyond 3G具有更高的速率与更好的频谱利用率。 欧盟、日本、韩国等国家已开始4G框架的研究,预期Beyond 3G技术可望在2010年后开始商用。
中国移动用户总数已达3.34亿,居世界第一,总体技术水平与国际同步,处于由第二代向第三代的过渡时期。我国3G移动通信技术已经具备了实现产业化的能力,我国大唐电信2000年5月提出的TD-SCDMA标准已成为国际电信联盟正式采纳的三大标准之一。此外,在国家“863”计划的支持下,开展了Beyond 3G技术的研究,预期该技术可望在2010年后开始商用。
Beyond 3G技术对我国经济社会发展和国防建设具有十分重要的意义。 德尔菲专家调查统计结果显示,我国研发水平比领先国家落后5年左右, 通过自主开发或联合开发,在未来5年可能形成自主知识产权。以华为、 中兴为代表的一批高技术通信设备制造业公司,在第三代移动通信设备(3G)等研发方面紧跟国际前沿,打破了国外公司对高技术通信设备的垄断,开始参与国际通信标准的制定,开发具有自主知识产权的核心技术,具备了参与国际竞争的能力,具备实现技术和产业跨越式发展的契机。
中国下一代网络体系
下一代网络(NGN)泛指以IP为核心,同时可以支持语音、 数据和多媒体业务的因特网、移动通信网络和固定电话通信网络的融合网络。
世界各国和国际通信标准化组织都在积极开展下一代网络的研究开发工作。国际电信联盟电信标准化部门(ITU-T)、欧洲电信标准化协会(ETSI)、互联网工程任务组(IETF)、第三代伙伴组织计划(3GPP)等,都在致力于下一代网络体系的研究。目前,美国、日本、韩国、新加坡以及欧盟都已启动了下一代互联网研究计划,全面开展各项核心技术的研究和开发。
我国在下一代网络的研究方面已取得了较大进展。“九五”期间,863计划建成了“中国高速信息示范网”(CAINONET)、国家自然科学基金委支持的“中国高速互连研究试验网NSFCNET”等重大项目,目前已开始基于NGN的软交换技术在移动和多媒体通信中的应用研究。中兴、华为等企业还推出了基于软交换的NGN解决方案;在下一代互联网研究上,中兴、港湾网络等推出的高端路由交换机,可应用于国家骨干IP网络建设,以及大中型宽带IP城域网核心骨干和汇聚。国内公司还开始自行设计高端分组交换定制ASIC芯片。我国已成为少数几个能够提供全系列数据通信设备的国家之一。
下一代网络技术对促进我国高新技术的发展,以及对改造和提升我国传统产业具有举足轻重的作用,对国家安全至关重要。从总体上看,我国互联网技术跟随国外发展,在技术选择上缺乏系统研究,走过一些弯路,至今与国外仍存在较大差距。无论网络用户规模、网络应用、网络技术或网络产品都尚有很大的发展空间。从全局着眼,应不失时机地开展中国下一代网络体系的研究、应用试验、关键技术研究和产品开发。不能像第一代互联网那样,技术、标准都是外国的,给国家安全造成隐患。
纳米级芯片技术
当前,集成电路的发展仍遵循“摩尔定律”,即其集成度和产品性能每18个月增加一倍,按照器件特征尺寸缩小、硅片尺寸增加、芯片集成度提高和设计技术优化的途径继续发展。
自上世纪90年代以来, 全球集成电路制造技术升级换代速度加快。 当前国际上CMOS集成电路大规模生产的主流技术是130nm, 英特尔等部分技术先进的芯片制造公司已在用90nm进行高性能芯片生产。2005年,美国AMD公司已开始量产90nm的高性能芯片,国际上对65nm技术的开发也已成功。伴随130nm到90nm技术的升级, 考虑到扩大生产规模和降低成本,大多数公司将使用12英寸替代8英寸硅基片, 这也必将带来半导体设备的大量更新。
近年来我国一些先进集成电路制造公司的崛起,使国内集成电路制造工艺技术与国际先进水平的差距有了显著的缩小,但整体水平仍与先进国家相差2~3代。目前,我国集成电路设计公司年设计能力已超过500种,主流设计水平达到180nm,130nm技术正在开发中,90nm技术的研发也开始着手进行。从产业发展看,我国集成电路已初步形成由十多家芯片生产骨干企业、十多家重点封装厂、二十多家初具规模的设计公司、若干家关键材料及专用设备仪器制造厂组成的产业群体,设计、芯片制造、封装三业并举的蓬勃发展态势。以中科院计算所为代表的研究机构和企业在CPU研发方面所取得的新进展,标志着我国集成电路设计具有较强能力,与国际先进水平的差距进一步缩小。目前我国芯片业大多集中在低端的交通、通信、银行、信息管理、石油、劳动保障、身份识别、防伪等领域,IC卡芯片所占比重一直占据芯片总体市场的20%左右。
世界第一颗0.13微米工艺TD-SCDMA 3G手机核心芯片10月9日在重庆问世
今后的IC是纳米制造技术的时代,而纳米级芯片技术是我国赶超国际的关键,它的成功将会是我国IC工业发展史上的重要里程碑和持续发展的动力,专家认为应优先发展。
中文信息处理技术
包括汉字和少数民族文字在内的中文信息处理技术,是汉语言学和计算机科学技术的融合,是一门与语言学、计算机科学、心理学、数学、控制论、信息论、声学、自动化技术等多种学科相联系的边缘交叉性学科。
随着互联网的发展,中文信息处理技术已渗透到社会生活的各个方面。1994年,微软开始进入中文软件市场,微软的WORD把国产WPS挤出了市场,继而Windows中文版又把国产中文之星挤垮。微软凭借其强大的优势地位,使国产的中文信息处理软件举步维艰。中文版的Windows、Office等占据了大部分的中文软件市场,使中文信息处理逐渐丧失了其特殊地位。
经过二三十年的努力,我国的中文信息处理,包括中文的编码、字型、输入、显示、输出等的基本处理技术已经实用化,目前正在逐渐摆脱“字处理”阶段,处于向更高级阶段快速发展的时期。包括中文的文字识别机和手写文字识别、语音合成、语音识别、语言理解和智能接口等技术的研究已获得进展。中文的全文检索、内容管理、智能搜索、中文和其他文字之间的机器翻译等技术也正在开发、研制,并取得了较大进展,涌现了联想、方正、四通、汉王、华建等公司。
随着中国加入WTO与世界各国交流的逐渐扩大以及网络信息时代的来临, 中文信息处理技术越发显得重要,其自动化水平的提高,将大大促进我国科技、国民经济和社会发展,同时使中华民族的文化在信息时代得到新的发展。未来无疑应当加强中文信息处理技术的研发投入与政策倾斜。
人类功能基因组学研究
20世纪末启动的人类基因组计划被公认为生命科学发展史上的里程碑,其规模和意义超过了曼哈顿原子弹计划和阿波罗登月计划。随着人类基因组、水稻基因组以及其他重要微生物等50多种生物基因组全序列测定工作的完成,国际基因组研究进入到功能基因组学新阶段。
功能基因组学已成为21世纪国际研究的前沿,代表基因分析的新阶段。它是利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究,是在基因组静态的碱基序列弄清楚之后转入对基因组动态的生物学功能学研究。从1997年迄今已发表的有关功能基因组学的论文数以千计,其中不少发表在《细胞》《自然》《科学》等国际著名刊物上。
目前功能基因组研究的重点集中在四个方面:一是基因测序技术研究。预计今后几年内,测序技术将继续发展,特别是有一些重要的改进将直接用于功能基因组的研究;二是单核苷多态性(SNP)以及在此基础上建立的SNP单体型研究;三是基因组有序表达的规律研究。主要包括基因的深入鉴定、基因表达与转录组研究、蛋白和蛋白质组研究、代谢网络和代谢分子研究、基因表达调控研究等;四是计算生物学和系统生物学研究。
近几年来,在国家“863”计划、国家重大科技专项等的资助下,我国功能基因组学研究取得了一系列进展。中华民族占世界人口的1/5,有丰富的遗传疾病家系资源,这是我国发展功能基因组研究的有利因素。“十五”期间,我国参与国际蛋白质组计划、国际人类基因组单体型图计划,高质量按时完成了项目中所承担的21号染色体区域的任务,建立并完善了中华民族基因组和重要疾病相关基因SNPs及其单倍型的数据库的建设,在国际一流杂志上发表了一批高水平学术论文,申报了一批国家专利,收集、保存了一批宝贵的遗传资源,并初步建立了遗传资源收集网络和资源信息库的采集管理系统,组建了一批国家级基地,培养了一支队伍,建立了一批技术平台。但总体而言,我国在功能基因组研究及应用方面的原始创新成果数量较少,还不能为医药生物技术产业的发展提供足够的知识和产品。
未来研究重点包括:
——功能基因组研究。重点开展植物功能基因组研究、人类功能基因组研究和重要病原微生物及特殊微生物功能基因组研究;
——蛋白质组学研究。蛋白质组学是一个新生领域,目前还处于初期发展阶段,仍有许多困难有待克服。我国应选择具有特色的领域开展研究;
——生物信息技术。我国的研究重点应集中在生物信息数据库的构建、生物信息的开发、加工、利用及生物信息并行处理方面;
——生物芯片技术及产品。通过微加工技术和微电子技术在固体芯片表面构建的微型生物化学分析系统,以实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。常用的生物芯片包括基因芯片、蛋白质芯片、生化反应芯片和样品制备芯片等。生物芯片的主要特点是高通量、微型化和自动化。我国生物芯片研究紧跟国际前沿,它将对我国生命科学研究、医学诊断、新药筛选具有革命性的推动作用,也将对我国人口素质、农业发展、环境保护等作出巨大的贡献。
专家认为,我国人类功能基因组学研究的研发水平比领先国家落后5年左右, 若能高度重视,充分利用我国已有的技术和资源优势,未来10年我国可能实现人类功能基因组学研究的跨越发展。
蛋白质组学研究
随着被誉为解读人类生命“天书”的人类基因组计划的成功实施,生命科学的战略重点转移到以阐明人类基因组整体功能为目标的功能基因组学上。蛋白质作为生命活动的“执行者”,自然成为新的研究焦点。以研究一种细胞、组织或完整生物体所拥有的全套蛋白质为特征的蛋白质组学自然就成为功能基因组学中的“中流砥柱”,构成了功能基因组学研究的战略制高点。
目前蛋白质组学的主要内容是建立和发展蛋白质组研究技术方法,进行蛋白质组分析。为了保证分析过程的精确性和重复性,大规模样品处理机器人也被应用到该领域。整个研究过程包括样品处理、蛋白质的分离、蛋白质丰度分析、蛋白质鉴定等步骤。
附图
自1995年蛋白质组一词问世到现在,蛋白质组学研究得到了突飞猛进的发展。我国的蛋白质组研究也在迅速开展,并取得了许多有意义的成果,中国科学家已经在重大疾病如肝癌,比较蛋白质组学的研究等方面取得了重要成就,在“973 ”计划的资助下,我国已经开始了二维电泳蛋白组分离研究、图像分析技术和蛋白质组鉴定质谱技术研究等。
如何抓住国际上蛋白质组学研究刚刚启动的时机,迅速地进入到蛋白质组学研究的国际前沿,是摆在我国生命科学研究发展方向上的一个重要课题。
目前我国在该领域的研发基础较好,只比先进国家落后5年左右。 蛋白质组学属科学前沿,专家建议结合我国现行的基因组研究及其他有我国特色或优势的领域开展研究,不要重复或追随国际已有的工作,而应走自己的路,未来10年内有可能取得重大科学突破。
生物制药技术
生物制药被称为生物技术的“第一次浪潮”,其诱人前景引起了全世界各国政府、科技界、企业界的高度关注。
在过去的30年间,全球生物技术取得了令人瞩目的成就。据美国著名咨询机构安永公司2004年和2005年发表的第十八和第十九次全球生物技术年度报告分析,2003年全球生物技术产业营收达410亿美元。目前已有190余种生物技术产品获准上市,激发起投资者对生物技术股与融资的兴趣。
近20年来,我国医药生物技术产业取得了长足的进步,据《中国生物技术发展报告2004》统计,我国已有25种基因工程药物和基因工程疫苗,具有自主知识产权的上市药物达9种,重组人ω-干扰素喷鼻剂2003年4月获得国家临床研究批文,可用于较大规模高危人群的预防。但总体上与世界先进水平相比还存在很大的差距,医药生物技术产品的销售收入仅占医药工业总销售额的7.5%左右。
为加快我国生物制药技术的发展,今后的研究开发重点是:
——生物技术药物(包括疫苗)及制备技术。围绕危害人民健康的神经系统、免疫系统、内分泌系统和肿瘤等重大疾病和疑难病症的防治与诊断,应用基因工程、细胞工程、发酵工程和酶工程等技术,开发单克隆抗体、基因工程药物、反义药物、基因治疗药物、可溶性蛋白质药物和基因工程疫苗,拓宽医药新产品领域;
——高通量筛选技术。目前,国外许多制药公司已把高通量筛选作为发现先导化合物的主要手段。典型的高通量筛选模式为每次筛选1000个化合物,而超高通量筛选可每天筛选10万多个化合物。随着分析容量的增大,分析检测技术、液体处理及自动化、连续流动以及信息处理将成为未来高通量筛选技术研究的重点;
——天然药物原料制备。目前,已经发现人类患有3万多种疾病,其中1/3靠对症治疗,极少数人能够治愈,而大多数人缺乏有效的治疗药物。以往多用合成药物,随着科技的进步,人们自我保健意识增强,对天然药物的追求与日俱增。当前世界各国都在加强天然药物的研发。
生物信息学研究
在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析,对基因组研究相关生物信息获取、加工、储存、分配、分析和解释——上世纪80年代一经产生,生物信息学就得到了迅猛发展。其研究一方面是对海量数据的收集、整理与服务;另一方面是利用这些数据,从中发现新的规律。
具体地讲,生物信息学是把基因组DNA序列信息分析作为源头, 找到基因组序列中代表蛋白质和RNA基因的编码区;同时, 阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言规律;在此基础上,归纳、 整理与基因组遗传信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。另外生物信息学还利用基因组中编码区的信息进行蛋白质空间结构的模拟和蛋白质功能的预测,并将此类信息与生物体和生命过程的生理生化信息相结合,阐明其分子机理,最终进行蛋白质、核酸的分子设计、药物设计和个体化的医疗保健设计。
生物信息学的发展已经将基因组信息学、蛋白质的结构计算与模拟以及药物设计有机地连接在一起,它将导致生物学、物理学、数学、计算机科学等多种科学文化的融合,造就一批新的交叉学科。
科学家们普遍相信,本世纪最初的若干年是人类基因组研究取得辉煌成果的时代,也是生物信息学蓬勃发展的时代。据预测,到2005年生物信息的全球市场价值将达到400亿美元。
我国生物信息学研究起步较早。20世纪80年代末,国内学者就在《自然》上报道了免疫球蛋白基因超家族计算机分析的工作。目前,多家大学和研究机构也相继成立了生物信息中心或研究所,各种原始数据库、镜像数据库和二级数据库也已经逐步建立,同时我国还建立了相关的工作站和网络服务器,实现了与国际主要基因组数据库及研究中心的网络连接,开发了用于核酸、蛋白结构、功能分析的计算工具以及蛋白质三维结构预测、并行化的高通量基因拼接和基于群论方法开发的基因预测等多种软件。中国学者还运用自主开发的电脑克隆程序,开展了大规模EST 数据分析,建立了一系列基因组序列分析新算法和新技术,并在国内外著名科学杂志上发表了一系列论文,取得了引人注目的进展,尤其在人类基因组基因数目的预测上获得了与目前的实验事实相当吻合的结果,在国际上获得普遍认可。
农作物新品种培育技术
最近几年,农业生物技术的发展对农业产业结构调整产生的巨大影响,已引起各国政府和科学家的高度重视。农业生物技术领域研究中最活跃的是育种技术——应用现代分子生物学和细胞生物学技术进行品种改良,创造更加适合人类需要的新物种,获得高产、优质、抗病虫害新品种。这使得新品种层出不穷,品种在农业增产中的贡献率将由现在的30%提高到50%。国际水稻研究所已经培育出每公顷7500公斤的超级水稻,非洲培育出增产10倍的超级木薯。
我国该领域的基础研究和高技术研究取得了一批创新成果:如植物转基因技术、细胞培育技术、籼稻的全基因组测序、花粉管通道转基因方法等,使研制具有自主知识产权的转基因农作物新品种成为现实和可能。目前,已培育出亩产达到807.4公斤的超级杂交稻;2004年转基因抗虫棉的种植面积已占全国棉花种植面积的50%左右;利用细胞工程技术培育的抗白粉病、赤霉病和黄矮病等小麦新品种已累计推广1100多万亩;植物组织培养和快繁脱毒技术在马铃薯、甘蔗、花卉生产中发挥了重要的作用。
专家认为,我国农作物新品种培育的研发基础较好,整体科研技术与国外处于同等水平,只要充分利用资源,发挥优势,很可能在该领域取得突破。
纳米材料与纳米技术
纳米科技是上世纪末才逐步发展起来的新兴科学领域,它的迅猛发展将在21世纪促使几乎所有工业领域产生一场革命性的变化。纳米材料是未来社会发展极为重要的物质基础,许多科技新领域的突破迫切需要纳米材料和纳米科技支撑,传统产业的技术提升也急需纳米材料和技术的支持。
近年来,科技强国在该领域均取得了相当重要的进展。
在纳米材料的制备与合成方面,美国科学家利用超高密度晶格和电路制作的新方法,获得直径8nm、线宽16nm的铂纳米线;法国科学家利用粉末冶金制成了具有完美弹塑性的纯纳米晶体铜,实现了对纳米结构生长过程中的形状、尺寸、生长模式和排序的原位、实时监测;德国科学家巧妙地利用交流电介电泳技术,将金属与半导体单壁碳纳米管成功分离;日本用单层碳纳米管与有机熔盐制成高度导电的聚合物纳米管复合材料。
在纳米生物医学器件方面,科学家用特定的蛋白质或化合物取代用硅纳米线制成场效应晶体管的栅极用以诊断前列腺癌、直肠癌等疾病,成百倍地提高了诊断的灵敏度。另外,纳米技术在医学应用、纳米电子学、纳米加工、纳米器件等方面也有新进展。与此同时,国外大企业纷纷介入,推动了纳米技术产业化的进程。
当前纳米材料研究的趋势是,由随机合成过渡到可控合成;由纳米单元的制备,通过集成和组装制备具有纳米结构的宏观试样;由性能的随机探索发展到按照应用的需要制备具有特殊性能的纳米材料。
纳米材料和技术很可能在以下四个领域的应用上有所突破:一是IT产业(芯片、网络通讯和纳米器件);二是在生物医药领域应用纳米生物传感的早期诊断和治疗,到2010年将给人类带来新的福音;三是在显示和照明领域的应用已有新的进展,纳米光纤、纳米微电极等已产生极大影响;四是纳米材料技术与生物技术相结合,在基因修复和标记各种蛋白酶等方面蕴育新的突破,预计2010年纳米技术对国际GDP的贡献将超过2万亿美元。
我国纳米材料研究起步较早,基础较好,整体科研水平与先进国家相比处于同等水平,部分技术落后5年左右。目前有300多个从事纳米材料基础研究和应用的研究单位,并在纳米材料研究上取得了一批重要成果,引起了国际上的广泛关注。据英国有关权威机构提供的调查显示,我国纳米专利申请件数排名世界第三位。
国内目前已建成100多条纳米材料生产线,产品质量大都达到或接近国际水平。与发达国家相比,我国的差距一是在纳米材料制备与合成方面尚处于粗放阶段,缺乏应用目标的牵引,集成不够;二是纳米材料计量、测量和表征技术明显落后于国外,对标准试样和标准方法的建立重视不够,对表征手段的建立投资不足;三是纳米材料的基础研究、应用研究和开发研究出现脱节,纳米材料研究缺乏针对性;四是学科交叉、技术集成不够。
链接:
信息技术正在发生结构性变革
目前,信息技术正在发生结构性的变革,在信息器件向高速化、微型化、一体化和网络化发展的同时,软件和信息服务成为发展重点。大规模集成电路正快速向系统芯片发展;移动通信技术正在向第三代、第四展,将提供更优质、更快速、更安全的服务,并带来巨大的经济利益;电信网、计算机网和有线电视网三网融合趋势进一步加快,无线网络成为世界关注的重点;全球化的信息网络将像电力、电话一样为社会公众提供各种信息服务,越来越深刻地改变着人们的学习、工作和生活方式,也将对产业结构调整产生重大影响。
微电子技术、计算机技术、软件技术、通信技术、网络技术等领域的发展方兴未艾,极有可能引发新一轮产业革命。
大显神通的新材料
高性能结构材料是具有高比强度、高比刚度、耐高温、耐腐蚀、耐磨损的材料,对支撑交通运输、能源动力、电子信息、航空航天以及国家重大工程起着关键性作用。
新型功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的材料,是信息技术、生物技术、能源技术和国防建设的重要基础材料。当前国际上功能材料及其应用技术正面临新的突破,诸如信息功能材料、超导材料、生物医用材料、能源材料、生态环境材料及其材料的分子、原子设计正处于日新月异的发展之中。
信息功能材料发展的重点是磁性材料、电子陶瓷材料、压电及光电(磁)晶体、高性能封装材料等方面。超导材料的主要特征是零电阻和排磁通效应,是20世纪留给人类开发核聚变能、高效运输工具、低耗传输电能和精密探测器件的新型功能材料。
1引言
纳米科技是指在纳米尺度(1到100纳米之间)上研究物质(包括原子、分子的操纵)的特性和相互作用(主要是量子特性),以及利用这些特性的多学科交叉的科学和技术。纳米科技成果拥有科技成果的特征和纳米科技的特点。
2科技成果简介
2.1成果定义和特征
科技成果是指对某一科学技术研究为内容,通过试验研究、调查考察取得的具有一定实用价值或学术意义的结果,包括研究课题结束已取得的最后结果,研究课题虽未全部结束但已取得的可以独立应用或具有一定学术意义的阶段性成果。科技成果具有新颖性与先进性、实用性与重复性,有独立、完整的内容和存在形式,应通过一定形式予以确认等特征。
2.2科技成果转化描述
科技成果转化是指为了提高生产力水平,对科学研究与技术开发产生的具有实用价值的科技成果进行的后续试验、开发、应用、推广,直至形成新产品、新工艺、新材料,发展新产业的相关活动。从宏观上来看,科技成果转化是一个由科技供给系统、科技转化系统、科技需求系统和科技环境系统构成的大系统。在微观方面,科技成果转化一般包括实验室研究、中间试验、工业性实验、工厂化生产等诸多环节。
2.3科技成果转化三个发展阶段
科技成果产生阶段:该阶段主要从确定研究开发项目开始,到初步成果(产品)形成才基本完成。科技成果转移阶段:该阶段主要包括成果(产品)进入中试试验和工业化试验等。科技成果应用阶段;该阶段主要包括成果(产品)进入规模化生产,并进入市场等。
2.4科技成果转化基本要求
科技成果转化作为一项复杂的社会系统工程,需具备多方面条件,满足多方面要求,如科技成果自身的成熟程度、转化环境,以及相应的政策、社会服务与支持等都是重要的转化条件,是顺利转化的基本要求。以下分别作说明。
2.4.1技术成熟度
技术成熟度,即科技成果适应社会生产发展需要的实际水平,是科技成果转化的最根本的条件。技术成熟度特征:完全成熟的科技成果,应当是可以立即生产的;不够成熟的成果则还需再投入进行二次开发,才可能投入生产,所需要投入量越大,表示成果就越不成熟。技术不成熟原因:技术认识不同,科技投入不足,使科研条件和科研深度都较为缺乏;中试环节薄弱,中试的欠缺使得成果的先进性、适应性、配套性、可靠性达不到要求,难以实现工业化生产的需要。例如:长期以来,由于经费短缺,我国中试基地建立的数目较少。以上海为例,2005年从基础研究到中试再到产业化,投资比例为1:1.03:10.55,而较为合理的比例是1:10:100。中试的欠缺使我国科技成果的转化率低,已经成为制约我国经济持续发展的一个“瓶颈”。结论:科技成果要实现成果转化,首先要求科技成果技术成熟。因而需加大投资力度,加强中试试验研究力度,形成成熟的、可靠的科技成果,促进成果的推广。
2.4.2转化环境
转化环境主要包括转化的市场需求、政策和意识。第一,树立以市场为导向的意识。要从科研源头起与市场需求相结合,以形成产业化为根本目标,针对现有和潜在市场,开发具有市场前景的科技成果,促进科技成果的转化;要避免科学研究与市场脱节,造成成熟的技术也无法进行推广,致使大量的科技成果无法产业化。例如:美国仪器制造业对高科技成果的一项调查显示:11项首次发明的新仪器,思路100%来自用户;66项重大改进,85%来源自用户;85项小改小革,67%来自用户。结论:以市场为导向的研究,更容易促进科技成果的转化,科研人员必须始终坚持以市场需求为出发点和归宿。第二,科技发展政策。科学技术与政策的关系日益密切。科学技术的发展越来越依赖国家的支持,国家的科技投入和政策引导成为影响科技发展的重要因素。需着眼于促进经济建设、依靠科技进步机制的形成和企业技术创新主体地位的建立来制定配套政策,加强政府以科技需求为导向的行为,强化政策的激励引导作用。政策的制定要从科技成果转化大系统和全过程出发,在促进科技成果供给的政策、促进科技成果转化过程整体化的政策等方面,形成体系上的一体化,避免“头疼医头”、“捉襟见肘”,形成不合力。例如:美国是获诺贝尔自然科学奖最多的国家,一方面,美国较高的物质生活待遇吸引了高级人才;另一方面是美国适宜的科技政策和社会文化氛围,推动了科技的发展。在这个意义上说,比尔•盖茨出现在美国决不是偶然的。结论:要有激励的政策,更容易促进科技成果的转化。第三,科研成果转化意识。成果转化意识是一切成果转化活动赖以发起的内驱力,是贯穿于成果转化过程的内在动力;低科技成果转化率的一个重要原因在于科技成果转化意识的缺乏,如科技成果的价值意识、商品意识、社会科技开发意识不强。科技成果拥有者必须有强烈的转化意识,才能从主观上发挥其积极性,促进科技成果转化的进程。例如:不少科研单位和科研人员把科研成果的获得作为科研工作的最终目标,不能主动把科研成果作为商品推向社会;同时企业对购买科技成果表现冷淡,因而造成了大量的科技成果的搁置,导致科技成果转化率低。结论:科研人员具有强烈的成果转化意识,更容易促进科技成果的转化。
2.4.3宣传策略
科技成果的推广必须注重市场宣传和推广,一方面加大宣传力度,另一方面注重宣传适度。主要宣传策略如下:1.强化组织领导,健全科技宣传网络;2.明确目标责任,强化考核督查力度;3.整合科技资源,拓宽科技宣传渠道;4.加强媒体合作,搞好科技宣传;5.开展科技培训,促进成果推广;6.开展科技活动,丰富宣传形式;7.加强技术交流,建立信息平台;8.注重方式方法,宣传适度确保质量。
2.5科技成果应用现状分析
农业、工业、医药、军事、材料、电子、生物、航天等领域的科研成果,大量的成果怎么处理呢?这些都需要进行成果转化,这些新产品、新材料、新工艺,只有进行科技成果的转化才能有真正的作用,同时科技成果也有市场需求。突出表现出两个特点:一方面大量科研成果生成,一方面有巨大的市场需求。
2.5.1科技成果转化率低
我国每年有2万余项比较重大的科学技术研究成果和5千多项专利,但是其中最终转化为工业产品的成果不足5%,而欧美发达国家转化率则为45%以上。我国科学技术向生产转化的比例为10%~15%,也远低于发达国家的60%~80%。高新技术企业的产值在社会总产值的比例仅为2%,与欧美发达国家的25~30%相比,更是不可同日而语。结论:目前我国科技成果转化率低。2.5.2科技成果转化率低的原因我国科技成果转化率低的原因主要有:科技成果本身存在先天不足,成熟度低;科技成果系统配套不够;科技成果对企业缺乏吸纳和转化的动力与活力;科技成果转化缺乏资金支持,相应的风险投资基金匮乏;科技成果中介机构不健全,社会服务职能不完善;体制上产学研系统各自独立,科技与生产脱节;市场体制不成熟,法律保障不足。
3纳米科技成果及产业
3.1纳米科技成果及产业的特点
纳米技术属于高科技领域,因此与高科技成果有着共同的特征:高风险,高投入;高额的利润前景;巨大的市场需求。纳米科技为多学科交叉领域,其应用及产业化又具有许多独特的特征:多学科交叉特性;潜在的高额利润;潜在的市场需求。
3.2纳米科技成果市场分析
纳米技术有巨大的潜在市场,它与信息技术、生物技术共同成为二十一世纪社会发展的三大支柱,也是当今世界大国争夺的战略制高点。据权威的研究报告显示,2000年纳米技术对全世界GDP的贡献为4000亿美元,预测2010年纳米技术对美国GDP的贡献将达到10000亿美元,日本纳米技术的国内市场规划也将达到273000亿日元。纳米科技的健康发展,对二十一世纪的社会和经济发展、国家安全以及人们的生活和生产方式带来巨大的影响。结论:纳米技术及产业已成为世界各国抢占的巨大市场。
3.3纳米科技成果转化现状
在纳米科技产业化方面,除了纳米粉体材料在少数几个国家初步实现规模化生产外,纳米生物材料、纳米电子器件材料、纳米医疗材料等产品仍处于开发研制阶段,要形成一定市场规模还需一段时间。目前成果以基础研究为主,纳米技术应用成果处于初期阶段,产业化效果不理想,成果转化率低。如果将纳米产品的成熟程度按中试、批量生产和规模化生产划分,其分布明显呈剧烈递减态势。研究开发和规模化生产的距离较大,大约只有5%的实验室成果最终能转化为规模化生产。
3.4纳米科技成果转化率低原因
3.4.1投入的科研经费不足
成果转化未知因素多,造成研究工作周期长、所需经费多;对科研的投入未考虑中试等应用技术研究,影响科技成果的转化。
3.4.2缺乏风险意识和市场服务意识
纳米技术产业与其它高新技术一样都存在投资风险、政策性风险,市场风险和自由竞争风险等。同时,纳米技术还存在着潜在风险。另外,科研工作者市场服务意识淡薄,缺乏主动为企业服务的意识。
3.4.3科研缺乏布局和规划
缺乏制定战略发展规划以及科研与产业的合理布局,造成低水平重复和资源浪费;重视基础性研究,轻视应用性研究,造成科研成果缺乏市场,成果难以被企业吸纳和转化。
3.4.4纳米科技成果成熟度低
在研究中,研究人员常常只注重论文,纳米科技成果论文水平很高,但产业化并不理想;注重实验室开发,没有潜心于后续的应用开发和技术支持,造成成果成熟度不够,先天不足,难以转化;大部分企业属于生产型,缺乏持续创新和应用开发能力,只能接受非常成熟的技术。
3.4.5缺乏信息沟通缺乏信息沟通,导致产学研系统各自独立,科技与生产脱节。从事纳米科技研究的人员,分属不同的行业和部门,条块分割,由于缺乏相互交流,更缺乏与一线企业的交流与合作;由于信息不畅,造成成果难以满足需求,以及成果和需求重复现象严重;企业间应用成果壁垒森严,难以推广,导致不少低水平重复,重点不突出,阻碍了整体优势的发挥。
3.4.6纳米专业人才匮乏
纳米科技由多学科交叉,因此需要具有多学科知识的复合型人才;纳米科技的迅速发展,需要大量纳米科技领域及其相关领域的人才。而中国传统分门别类教育体制培养的“专业人才”,不能适应拥有多学科知识复合型纳米研发人才的需要。因此,为推动我国纳米材料产业的发展,需要培养一批复合型纳米科研人员及纳米经营管理人才。
3.4.7知识产权意识淡薄
中国纳米技术近几年有了突破性的发展,但知识产权意识在科学界尤其是开发应用领域仍然淡薄。专利数量有所增加,但是在总量上申请的专利还是很少。在我国,申请的专利大部分是纳米粉体材料制备方面的专利,而国外的专利很多是纳米应用专利。
3.4.8行业标准和技术规范缺乏
目前纳米科技应用研究很热,市场上出现了很多“纳米商品”,然而,很多的“纳米商品”还不是真正意义上的“纳米产品”。市场上缺乏行业标准和技术规范的约束,一些人热衷于炒作纳米概念,造成初级产品过剩,浪费了社会整体资源;一些生产微米材料的企业,在其产品性能用途完全没变的情况下,贴上纳米标签,摇身一变成了纳米材料企业,误导纳米概念;一些企业在投入少量资金注册了纳米材料公司或纳米材料应用公司后,就开始在经营业绩上做文章,蓄意编造是专门从事纳米科研、生产和应用的实力企业的假象,最终达到圈资、骗政策的目的。
4纳米科技推广应用思路
针对纳米科技成果转化率低及成果推广过程中所存在的问题,促进纳米科技的推广应用,应切实做好以下工作。
4.1根据市场需求,选好研究目标
针对我国纳米科技产业化处于初级阶段,纳米科技发展资金投入不足,纳米科技产业化效果不理想等现状,在有限的资金和设施条件下,纳米科技的发展一定要从科研源头上加以调控,科研项目选题要以市场需求为导向,以形成产业化为根本目标,强调创新意识和市场服务意识,发展具有竞争力的新技术和新产品,并推进传统产业的发展,从而促进纳米科技成果更快地得到推广和应用。
4.1.1科研项目选题时应遵循的原则
创新性原则:强调科技源头创新意识;产业化原则:以产业化为根本目标,能独立形成新产品、新技术;竞争力原则:注重可提升产品竞争力的技术及材料,注重与传统产业结合;市场化原则:以市场需求为导向,加强服务意识,注重市场推广。
4.1.1.1强调科技源头创新意识
自主创新已经成为科学技术发展的战略基点和调整产业结构、转变增长方式的中心环节。十一五发展规划指出:“科学技术发展,要坚持自主创新、重点跨越、支撑发展、引领未来”。纳米科技属于高新技术领域,因而,必须强调创新意识,研究和开发具有源头创新性的新技术和新产品,形成自主知识产权的新技术和新产品,实现技术发展的跨越,实现企业资本、社会资本和知识资本的有效组合及转化增值。强调创新意识,发展纳米科技,必须以市场为导向,以产业化为根本目标,发展成熟的技术,努力提升其竞争力,吸引企业及其它投资公司的参与和投资。加强纳米科技源头创新,要以纳米电子学、纳米尺度的加工及组装技术、纳米生物和医学、纳米材料学等科学前沿的理论和方法学为重点,争取取得重大进展,获得具有自己特色的发现和发明创造,促进纳米科技的产业化。
4.1.1.2以产业化为根本目标,能独立形
成新产品、新技术选题时要以产业化为根本目标,研究方向要与产业相结合,要策划出一个行业的主体并且形成一个产业链条。开发市场前景广阔、能够独立成新产品的先进技术,吸引以纳米技术为关键生产技术的企业投资,推动纳米技术的产业化进程。围绕国家长远发展目标,将纳米技术与信息、环境、能源、生物医药及先进制造、海洋、空间等高新技术相结合,提高纳米技术在这些产业中的含量,建立以纳米技术为主旋律的一批纳米产业及产业链并形成产品、商品,为提高我国的绿色GDP做贡献。举例1:信息产业中的纳米技术以纳米阵列体系为基础的量子磁盘,1998年正式问世,存储量高达465Gb/in2,相当于现在磁盘10万个的存储量。1999年,美国惠普公司在实验室成功制造了100×100nm芯片。正像克林顿所说,利用现代的纳米技术制备的超高密度存储元器件,可以将美国国会所有的信息存储在只有方糖大小的体积内。2000年,IBM公司通过纳米技术把这种磁盘的存储量提高到1000Gb/in2,相当于100万个现在磁盘的存储量。利用纳米技术可以将动态随机存储器和电脑CPU缩小到70nm,晶体管的尺寸为100~200nm。结论:纳米技术在电子信息产业中的应用,将成为21世纪经济增长的一个主要发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌。举例2:生物医药产业中的纳米技术采用纳米超顺磁载体制作的示踪剂使核磁共振检出的癌细胞尺寸大大降低,便于早期诊断、早期治疗;利用纳米技术输送生物大分子药物,可克服其吸收差、稳定性低的缺点,实现其天然、高效等特点,显示出良好的应用前景;根据药物分子的性质设计纳米颗粒表面及内部结构,从而达到人为地设计药物的靶向目标及其释放和作用方式,明显提高药效;利用纳米技术制备支架、骨骼等植入材料,具有很好的生物相容性,并可发挥治疗效果。结论:纳米材料技术将在生物医学、药学、人类健康等领域有重大的应用。预计到2015年,纳米技术在生物医药领域中的应用,全球市场将达到2000亿元。
4.1.1.3注重发展提升产品竞争力的新技术和新材料
传统行业的发展需要纳米科技来提升其技术和产品的竞争力。传统产业是国民经济的重要组成部分,这就决定了发展纳米产业应切入传统产业,努力提升对传统产业和产品的更新换代,提高竞争力,同时调整传统产业结构,实现经济增值。纳米科技的发展需重视与传统产业相结合。纳米技术在传统产业的应用具有投入少、见效快、市场前景广阔等特点,因此,将纳米科技与传统产业结合,可以有力促进纳米科技的推广应用。加强与传统产业合作,必须以市场需求为导向,发展具有市场潜力的产品和技术,通过纳米技术显著提高传统产品的竞争力。加强与传统产业合作,从一开始,就要积极吸纳企业的参与投入,发展能显著提高传统产业和产品的新技术和新材料。举例1:纺织行业中的纳米技术纳米催化剂在化纤原料涤纶聚酯合成中的应用,将使生产效率提高5倍以上,大大降低了生产周期和成本,这项技术在化纤行业的推广可带来数十亿元的收益;利用纳米技术对各类化纤进行改性,使之具有功能性,如吸水吸湿纤维、变色纤维、芳香纤维、磁性纤维、防辐射纤维、远红外纤维,还可采用复合纺丝法来生产功能化织物;纳米功能氧化物填充到纤维中可制得各种差别化、功能化纤维,为纤维的发展带来一场健康革命,其市场规模也超过二十亿元。结论:纳米技术的应用将对纺织行业的发展起到巨大的推动作用。举例2:建材行业中的纳米技术纳米技术在建材领域的应用:利用纳米材料的自洁功能可开发的抗菌防霉涂料、PPR供水管;利用纳米材料具有的导电功能可开发的导电涂料;利用纳米材料屏蔽紫外线的功能大大提高PVC塑钢门窗的抗老化变形性能;利用纳米材料可大大提高塑料管材的强度等。另外,纳米抗菌不锈钢塑料复合管、纳米抗菌PPR管是在管材内层塑料中添加纳米级抗菌材料,经共挤出而制成具有抗菌、卫生自洁功能的管材。仅以PVC塑钢门窗为例,近几年我国每年城乡工业和民用建筑的建造量平均约12亿平方米,需要门窗3亿平方米,年需塑钢门窗约3000万平方米,年需硬PVC异型材约30万吨。结论:纳米材料在建材中具有广阔的市场应用前景和巨大的经济、社会效应。
4.1.1.4以市场需求为导向,加强服务意识,注重市场推广
以市场成熟代替技术成熟是发展纳米技术的最佳方式。改变传统的“技术导向”为“市场导向”,始终坚持以市场需求为出发点和归宿,以市场需求为拉动机制,着重推动具有应用前景的新技术和新产品的开发,注重对传统产业的改造和提升,提升产品的竞争力,推动纳米科技的产业化。着重发展有重大影响的方向与领域,注重纳米技术与各个行业的交叉融合,使纳米技术和产品能服务于各个行业。注重纳米技术的市场推广,加强纳米科技与各个行业领域间的交叉融合,加强科研成果和企业及投资商之间的交流合作,建立信息交流平台,创建科研成果转化的渠道,为纳米科技发展提供有力服务和支持。
4.2注重技术集成,实现自主创新
“创新”是科技发展的生命力所在。对于纳米科技的发展,需加强新技术和新产品的原始性创新,提升产品和技术的竞争能力。同时在重视原始性创新的基础上,更应该注重具有重大应用价值的集成创新,通过对集成要素的优势整合,提升集成整体的竞争能力,实现更大的市场价值。
4.2.1技术集成创新有利于形成市场竞争力
长期以来,人们比较注重单项技术继发展,这是技术开发初级阶段的必然过程。但从科技与经济结合的内在要求来看,单项技术的研究开发,因为缺乏与其它相关技术的衔接,在当前很难形成有市场竞争力的产品或新兴产业,这就造成我国每年所取得的数万项科技成果最终束之高阁,削弱了我国科技创新的基础。
4.2.2技术集成创新将提高产业核心竞争力
核心竞争力的形成,不仅仅是一个创新过程,更是一个组织过程,使各种单项和分散的相关技术成果得到集成,其创新性以及由此确立的企业竞争优势和国家科技创新能力在价值上远远超过单项技术的突破。加强技术集成创新,是企业实现自主创新的新思考,也是企业获得竞争优势、适应知识经济发展的关键。
4.2.3纳米技术的集成主要内容
4.2.3.1纳米科技成果的集成
将分散的技术集中,形成一个可达目标功能的技术体系,即组合应用性技术成果,也称为技术捆绑或技术整合。纳米科技成果的集成应注意以下几点:注重主题的策划,选好技术与成果,实现目标显示度。(1)注重主题的策划以市场需求为导向,关注市场需求的多样化,强化产品的竞争意识;以纳米技术或产品为关键要素,解决需求中的重大问题,具有行业导向性与共性;拓展解决方案的丰富性,注重外部资源的易取性;强化研发时间的迅捷性,凸显研发质量的配比性。(2)选好技术与成果始终坚持把市场需求作为出发点和归宿点,选择具有市场前景的技术和成果,选择具有竞争优势的纳米材料或技术为关键技术要素,具有前景的技术与成果,注重其成熟度和可靠性。同时加大中试研究力度、中试研究领域和资金投入,注重集成要素中技术和成果的协调与融合,优势互补,使集成整体具有新的价值。(3)实现目标显示度注重目标功能的实现,不仅要实现各项集成要素的功能目标,还应实现集成系统的整体功能目标。集成要素和集成系统的功能定量指标应具有竞争性,以实现其产品的显示度,有利于产品的推广。
4.2.3.2注重技术集成创新
(1)从纳米科技发展到产业链上的集成协作在产业链的衔接上,由于纳米技术的跨学科性,急需将努力的方向由“单打独斗”转向“集成协作”。实验和技术上存在局限性,而研究的广泛和复杂,造成设施难以完备;技术的成熟度不够;研究成本高和周期长,造成产业化难度大。因此,仅依靠某一个工业部门或者研究机构,将无法加快推动纳米科技的应用和产业化的步伐。结论:要实现和促进纳米技术的产业化发展,需要采用合理的产业化与投融资模式,推动纳米技术产业链的全方位发展。这就是所谓的为了构筑我国纳米产业发展的大战略,也是目前国内众多研究机构、企业正在的探索大联合的适当途径。(2)纳米科技发展产业链上的集成协作方式第一,建立国家级研究开发平台,充分发挥国家级研究开发平台的作用,推动各研究部门之间的交流合作,实现软硬件资源共享,避免重复建设。第二,建立产业孵化基地。“科研-孵化-企业”一条龙式的产业化模式,有利于推动科研成果产业化,因此,在有条件的地方应建立纳米科技孵化基地。第三,加强产学研的合作。积极推进产学研一体化的进程,把研究、开发和应用过程的各个阶段建成一个系统,使之紧密衔接、相互交替,保证从科研到生产整个过程的连续性,从而使科研单位前期的研究、开发优势与企业工业化生产优势融为一体,促进科技成果的转化。(3)各领域科学研究人员间的协作从目前情况看,我国从事纳米科技的研究人员,分属不同的行业、部门,彼此之间信息沟通不畅,研究人员之间也缺乏必要的交流,致使研究力量大大分散,而且各地研究所重复研究、重复建设严重。纳米科技属于多学科交叉的前沿研究领域,要动员和组织信息、物理、化学、生物、医药、材料等学科的专家参与纳米科技的研究开发,抓好多学科在纳米科技方面的集成。结论:纳米科技的多学科交叉特性必然要求加强各领域科学人员之间的协作。
4.2.3.3纳米科技推广注重技术集成创新的应用案例分析
应用1:“以应用纳米技术打造新世纪康居商住楼”思路(1)为了贯彻《国家中长期科学和技术发展规划纲要(2006-2020年)》以及“十一五”规划中的要求,促进生态人居环境和绿色建筑的发展,提出集成整合最先进的纳米技术研究成果,积极推动健康、环保的生态建筑技术的应用与推广。为打造康居示范工程提供有力的技术支持和保障,致力于搭建三大公共技术平台,即居住环境健康性和安全性公共技术平台;建筑物与居家用品节能和环保性公共技术平台;资源综合利用公共技术平台。(2)应用纳米技术打造新世纪康居商住楼,可以体现在环保、健康、节能等方面的优势上。具体应用可以包括外墙涂料、内墙涂料、变色玻璃、地毯地板门、厨房、家用电器、卫生洁具、床上用品、窗帘、玩具及衣物等。(3)面向生态人居环境和绿色建筑的发展的需要、面向《国家中长期科学和技术发展规划纲要(2006-2020年)》以及“十一五”规划中的要求,新世纪康居楼的打造将对该行业及人们生活产生很大影响,将形成一个完整的产业链条,引导该行业的发展。以纳米材料或技术为关键技术要素,具有竞争优势;选择具有很好市场前景的纳米改性内外墙涂料、纳米改性纺织品、纳米改性陶瓷、应用纳米技术的太阳能电池等技术和产品,打造一个健康、环保、节能的居住环境,具有竞争优势。另外,选择的纳米改性内外墙涂料、纳米改性纺织品、纳米改性陶瓷等成果技术成熟度较好。应用2:“建立应用于汽车产业的纳米技术产品产业链”思路(1)纳米技术在汽车产业中的应用,可以包括纳米材料改性内饰件、纳米结构超强钢板、纳米结构铝材料、高耐腐纳米水性汽车涂料、纳米隔热涂料、纳米材料改性高性能轮胎、高强度胶黏剂、纳米汽车油、纳米汽车燃油添加剂、纳米传感器、汽车动力应用纳米新型太阳能电池、纳米汽车尾气催化净化材料等。(2)面向十一五规划的“建设环境友好型,资源节约型社会”,面向中国巨大的汽车产业市场,中国汽车产业发展在近几年速度迅猛,是世界上最大最有潜力的市场。选择具有很好市场前景的纳米改性内饰件、纳米改性涂料、纳米改性高性能金属材料、高强度胶黏剂、纳米汽车尾气催化净化材料、纳米汽车燃油添加剂及汽车动力应用纳米新型太阳能电池等技术和产品,具有竞争优势。纳米技术在汽车上的广泛应用,将降低汽车各部件磨损、降低汽车消耗、减少汽车使用成本,还能消除汽车尾气污染,改善排放。可以预见,纳米技术在汽车产业的应用将对该行业及人们生活产生很大影响,将形成一个完整的产业链条,引导该行业的发展。应用3:纳米科技与新兴行业、支撑行业及国家重大工程挂钩纳米科技与新兴行业、支撑行业及国家重大工程的挂钩可以吸引国家或地方政府等的财政拨款,同时可以吸引公司和企业的投资和参与。纳米科技在新兴行业、支撑行业及重大工程中等各领域中的渗透,将加快纳米科技的产业化;纳米科技在新兴行业、支撑行业及重大工程中的应用,将提升这些行业的技术含量,增加其竞争优势,推动其发展;同时对其产业结构的调整、经济增长方式的改变具有深远的影响。例如:纳米技术及应用国家工程研究中心以产学研结合的方式,组织上海城建集团、上海高校和科研院所利用纳米技术和其它技术集成解决道路隧道内的废气治理问题,这是纳米科技在城市市政工程中的重要应用,该项目已列入国家支撑计划。结论:通过集成技术、产学研合作等方式与新兴行业、支撑行业及国家重大工程挂钩,容易吸引投资,促进纳米技术与其它技术和产业的融合,从而促进纳米技术的发展。
4.3树立诚信市场理念
4.3.1纳米科技要健康跨越发展必须树立诚信意识
诚信的本质首先是经济规律,其次才表现为伦理性质。诚信不足,败事有余。市场经济就是信用经济,信用是现代市场经济的基石,没有诚信,就没有秩序,市场经济和社会道德就会陷入混乱之中。目前纳米科技应用研究很热,市场上出现了鱼目混珠的现象,虚假的“纳米商品”,纳米概念的炒作,严重扰乱了纳米市场的秩序,误导人们对纳米的认识,损害了纳米科技的形象,严重阻碍了纳米科技的产业化发展。结论:纳米科技要健康跨越发展必须树立诚信意识,诚信的市场经济理念。
4.3.2如何树立诚信意识
加强诚信意识培养;健全市场竞争机制,让诚信成为人们自觉遵奉的客观经济规律;强化监督,建立相互补充、相互制约的诚信监督体系;加快建立信用体系,规范信息传递和披露机制,发展资信评估行业;强化法制建设,为诚信规范提供坚实的法制保障。
4.4制定适合纳米政策纳米科技的应用推广,需要制定适
合纳米科技发展的政策,保障纳米科技的可持续发展。
4.4.1制定发展规划,实施专项行动
第一,坚持“有所为,有所不为”的方针,制定纳米科技的发展战略,制定我国纳米科技发展的近期、中长期规划,对纳米技术的基础研究进行整体规划,制定国家纳米科技产业的发展规划,集中力量,重点突破。第二,根据市场要求,依托现有产业的优势和基础,确定重点发展的产业及产品,引导产业结构调整。第三,按照市场需求,集中优势力量研究、开发具有自主知识产权、市场潜力大、技术可行的项目和对未来有重大影响的关键领域,突出特色。
4.4.2建立创新体系,强化专利保护意识
组建全新机制的实体性创新平台,建立以企业为主、产学研结合的纳米科技创新体系。强调纳米科技的原始创新,注重技术创新、管理创新、制度创新的有机结合,在原始创新基础上,同时注重集成创新,强化专利保护意识,提高知识产权保护在企业发展中的重要作用。另外,建立和健全纳米技术成果产权保护制度,优先资助拥有自主知识产权的专利成果的产业化。
4.4.3重视人才培养,加强技术交流
制定人才优惠政策,鼓励人才流动竞争,努力创造人尽其才、才尽其用的良好环境。建立培养和吸引纳米科技人才的政策,培养高质量的纳米技术人才和领军人物,引进国外具有真才实学的优秀人才。加强国内外科研单位及企业之间关于纳米技术的信息交流,建设开放式的国家纳米技术信息交流平台,加强国际交流和合作,扩大国际影响。
4.4.4加快基地建设,吸引多元投资
鼓励科研单位、高等院校与生产企业共建纳米技术创新基地、开放式研究开发中心等,改善基础设施条件,对共性关键技术进行联合攻关,建立以企业为主体,产学研结合的纳米技术创新体系,加速纳米技术的研究开发与产业化步伐。重视以政府政策资金为导向,建立多元投资融资体系,吸引风险投资及民间投资,使其大规模地介入纳米技术产业并与科技界融合。同时,鼓励纳米科技型企业在资本市场上融资,加速纳米成果的转化和产业推进。4.4.5完善行业标准,规范技术市场重视标准意识,根据纳米技术产品的性质、用途,参照国际标准,制定我国纳米技术行业的产品标准,建立权威性的国家纳米产品质量检测中心,使纳米产品的生产和销售有章可循。尽快制定出台相关的政策法规,规范纳米市场,避免纳米技术及应用研究重复建设和过度竞争。
4.4.6加强科普宣传,倡导科学道德
重视纳米技术的普及工作,加强对纳米科技的科普教育,使大众对纳米科技有正确的科学认识,避免过分炒作和误导。重视纳米科技相关学科的建设工作,保障我国纳米科技的可持续发展。
5纳米科技成果介绍
纳米技术及应用国家工程研究中心积极整合社会资源,积极推动纳米技术成果的转化。
5.1应用在环境领域的纳米材料和技术
成果1:用于汽车尾气催化净化处理的介孔基催化材料成果简介:孔道内担载贵金属Pt/Rh/Pd的氧化锆基(氧化锆/氧化铈)复合纳米介孔催化剂。该催化剂采用具有自主知识产权的涂覆工艺,成功负载于金属载体表面,经检测,排放性能及催化剂老化性能达到并优于欧IV标准(GB18352.3)。技术特点与优势:特殊的介孔结构,高比表面积;贵金属用量低,热稳定性好;优良催化活性和稳定性;抗老化性好。产业化前景:2007年我国汽车产量达到900万辆,并逐年递增。同时,我国将面临新车必须全部加装净化器的局面,该项目具有极其广阔的市场前景,其经济、社会和环境效益十分巨大。成果2:光催化净化室内空气应用技术光催化室内净化技术现状:不能有效地去除室内空气中;危害性很大的细微颗粒物;催化剂活性组分易流失;微孔容易被颗粒物堵塞,致使催化剂失活。技术创新:将高流速高效率静电除尘与光催化净化室内空气两相单元技术有机的结合。技术内容:包括性能好低成本的金属泡沫网状载体的制备技术、光催化净化活性组份在金属泡沫载体上负载技术、净化室内空气污染物一体化新技术、金属泡沫网状物负载光催化材料、室内光催化净化器。产业化前景:目前我国城镇装修过的房屋中80%存在甲醛超标问题。净化室内装修污染的市场规模达100亿元,并正以每年30%的速度增长,据预测2008年将达到200亿元的市场规模。5.2应用在能源领域的纳米材料和技术成果3:镍氢(MH/Ni)动力电池与镍锌动力电池技术内容:镍氢动力电池技术;锌镍动力电池技术;在电极中添加纳米添加剂;提高电池的循环寿命;提高电池的安全性。应用范围:电动工具、割草机械、玩具模型、电动自行车、电动摩托车等。技术成果:《动力镍氢电池用纳米材料测试技术》项目被上海市高新技术成果转化服务中心项目认定办公室认定为上海市高新技术成果转化项目。这意味着该中心又一项纳米科技成果将走向市场。产业化前景:随着WTO的加入,对动力电池的需求逐年增加。目前国内市场对镍氢动力电池的年需求量在数千万节以上,也将在上千亿的一次电池市场中占据一席之地。
5.3应用在生物医药领域的纳米材料和技术成果
4:超临界粉碎技术成果简介:超临界粉碎技术,采用超临界流体,通过改变压力快速改变溶液的饱和度,使溶质瞬时成核、获粒度均匀、超微细纳米级、无污染高纯度产品。通过此药物微细化技术,实现中药的微纳米化,促进药物的溶解性,提高药物的生物利用度。成果内容:水飞蓟素微纳米颗粒,超临界流体增强溶液分散技术(SEDS),粒径尺寸介于50~300nm,纳米化后的药物在水中溶解速率得到显著改善。谷甾醇纳米颗粒,气溶胶溶液萃取系统(ASES)技术,粒径介于50~300nm,ASES处理后样品结晶度降低;化学结构没有明显改变。产业化前景:超临界微纳米加工产品:如纳米水飞蓟素、植物甾醇可应用于相关药物或油类产品,按1%的附加值计算,相关药物或油品的产值达100亿,该产品产值可达1亿元。成果5:用于腹腔淋巴靶向治疗的纳米给药系统成果简介:以安全无毒的聚脂类生物降解聚合物为纳米粒的骨架材料,用改良的乳化-液中干燥法制备载药纳米粒(NP)。腹腔化疗方式治疗卵巢癌,克服了紫杉醇游离药物渗透性差、易过敏等缺点,并能实现产业化。技术特点和优势:解决了材料的安全性,采用经FDA批准载体材料;制备工艺可实现产业化,粒径及其分布可控制、重现性好,包裹率高,生产工艺条件不苛刻。产业化前景:全球卵巢癌每年新增病人19.2万,死亡人数为11.4万,其死亡率占妇科恶性肿瘤之首。建成应用示范点,年创产值可达1000万元。成果6:基于纳米生物探针的微流控阵列蛋白质芯片成果简介:该芯片是一种纳米生物技术与微生物芯片技术的集成产物。通过纳米生物自组装技术将靶蛋白配体组装在纳米粒子界面上,构成纳米生物探针,可以特异性地与各种生物样品(血清、细胞培养液等)中的靶蛋白结合,并最终被捕获在微流控阵列的特定检测区域,通过纳米粒子所发出的光学信号实现对多种靶蛋白的高特异高灵敏的同步多元分析。技术特点和优势:高灵敏、高分辨和低噪音;可以实现多种生物分子的同步检测;具有在分析模式和使用便捷性上的多种优势。产业化前景:主要应用领域有蛋白质的结构功能研究、医学诊断和医疗、新药开发、生物工业、低样品消耗和快速的芯片反应器系统,以及特定用途的专家系统。
5.4应用在电子信息领域的纳米材
料和技术成果7:CMP后清洗剂成果简介:采用表面活性剂的分子设计技术,利用表面活性剂的协同效应,研制了一系列高性能CMP后清洗剂。技术特点和优势:由表面活性剂、高性能功能性清洗助剂组成的水基清洗剂。适合抛光后高精度表面的超精密清洗。清洗效率高、对工件腐蚀小、残留少等。技术现状:用于硬盘清洗的清洗剂已得到世界最大硬盘基片生产商“深科技”的认可,指标达到国际先进水平。硅片清洗剂已在国内企业得到初步应用。产业化前景:可广泛用于计算机硬盘、硅片、玻璃基片等表面的超精密清洗。系一次性使用,因而电子行业的清洗剂具有巨大的市场。CMP后清洗剂利润丰厚,以每年销售1千吨计,利润在1000万元以上。成果8:高性能纳米粒子抛光液成果简介:化学机械抛光技术(CMP)是迄今几乎唯一可以达到全局平面化的超精加工技术,纳米粒子抛光液是CMP技术的关键要素。通过解决纳米粒子改性分散技术、纳米粒子抛光液的配伍与精制技术、原子级抛光工艺技术等关键技术,成功制备出一系列含有纳米磨粒的纳米粒子抛光液。纳米粒子抛光液由纳米粒子研磨剂、功能性助剂、溶剂组成。技术特点和优势:在计算机硬盘基片的抛光中可以达到表面粗糙度(Ra)小于0.5;数字光盘母盘玻璃基片抛光中表面粗糙度达到4.68;均达到国际先进水平。产业化前景:纳米抛光液市场广阔,用于高精加工的纳米抛光液为消耗品,系一次性使用,不可循环使用以免影响抛光质量,因而抛光液市场容量较大。