首页 > 文章中心 > 命题逻辑的推理规则

命题逻辑的推理规则

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇命题逻辑的推理规则范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

命题逻辑的推理规则

命题逻辑的推理规则范文第1篇

(桂林电子科技大学计算机科学与工程学院,广西桂林541004)

摘要:针对离散数学课程中的数理逻辑教学,分析计算思维与数理逻辑之间的内在关系,从计算思维的角度对数理逻辑教学内容进行梳理,论述如何将“对问题进行抽象建模一形式化一自动化一分析评估”这一思维模式贯穿于教学过程中,以及如何在教学中强调计算思维的基本概念和基本方法。

关键词 :计算思维;数理逻辑;抽象;形式化;自动化

文章编号:1672-5913(2015)15-0031-05

中图分类号:G642

第一作者简介:常亮,男,教授,研究方向为知识表示与推理、形式化方法,changl@guet.edu.cn。

0 引 言

对计算思维能力的培养已经成为新一轮大学计算机课程改革的核心导向。如何从计算思维的角度重新梳理和组织计算机相关课程的教学内容,如何在教学实施中培养学生的计算思维能力,是近年来计算机教育者热烈探讨的问题。

数理逻辑是计算机专业核心基础课程离散数学中的主要教学内容,不仅为数据库原理、人工智能等专业课程提供必需的基础知识,更对培养学生的抽象思维能力和逻辑思维能力起着重要作用。

1 计算思维

计算思维运用计算机科学的基本概念来求解问题、设计系统和理解人类行为,包括一系列广泛的计算机科学的思维方法。根据卡内基·梅隆大学周以真( Jeannette M.Wing)教授的设想,一个人具备计算思维能力体现在以下几个方面:给定一个问题,能够理解其哪些方面是可以计算的;能够对计算工具或技术与需要解决的问题之间的匹配程度进行评估;能够理解计算工具和技术所具有的能力和局限性;能够将计算工具和技术用于解决新的问题;能够识别出使用新的计算方式的机会;能够在任何领域应用诸如分而治之等计算策略等。在计算思维所包含的诸多内容中,最根本的内容是抽象和自动化。

在计算机专业相关课程的教学中,为了培养学生的计算思维能力,我们认为一种有效的途径是从问题出发,抓住抽象和自动化这两个核心内容,培养学生分析问题、解决问题和对解决方案进行评估的能力。同时,我们提炼出计算机学科以及各门具体课程中涉及的基本概念和思维方法,在教学过程中有意识地强化学生对这些基本概念和思维方法的理解和掌握。

2 基于计算思维的数理逻辑数学内容组织

数理逻辑应用数学中的符号化、公理化、形式化等方法来研究人类思维规律。从广义上看,数理逻辑是数学的一个分支,包括证明论、集合论、递归论、模型论以及各种逻辑系统等5部分。我们在这里谈的是狭义的数理逻辑,即大学计算机相关专业学习的数理逻辑基础。

数理逻辑与计算机科学有着非常密切的关联。无论是在ACM和IEEE-CS联合攻关组制订的《计算教程CC2001》中,还是在中国计算机学会教育委员会和全国高等学校计算机教育研究会联合制定的《中国计算机科学与技术学科教程2002》中,数理逻辑都是计算机相关专业的核心知识单元。对于计算机相关专业来说,数理逻辑的教学内容主要是命题逻辑和一阶谓词逻辑这两个基础的逻辑系统。针对这两个逻辑系统,传统的教学大纲主要从语法、语义、等值演算、形式证明系统等4个方面安排教学。在开展教学的过程中,教师强调的主要是培养学生的抽象思维能力和逻辑思维能力。然而,从学生的角度看,这两种能力本身都是抽象的口号,处于大一或者大二阶段的学生难以将这些知识点与计算机科学联系起来,感觉不到数理逻辑在计算机科学或者将来工作中的具体应用,从而缺乏相应的学习兴趣。

数理逻辑中的许多思想都与计算思维有着异曲同工之妙;最为明显的是数理逻辑和计算思维都强调抽象及形式化。在关于离散数学课程的教学实践中,我们已经把计算思维的诸要素或多或少地渗透到包括数理逻辑在内的培养方案和教学大纲中,但尚未上升到以培养计算思维能力为导向的高度。

在明确将培养计算思维能力作为一个新的教学目标之后,我们从计算思维的角度对数理逻辑教学内容重新进行梳理。具体来说,在计算思维的指导下,我们以问题求解作为出发点,抓住抽象和自动化这两个核心内容,按照“对问题进行抽象建模一形式化一自动化一分析评估”的主线来组织数理逻辑教学,培养学生应用计算思维分析问题和解决问题的能力。与此同时,在教学实施的过程中,尽可能地提炼出各个知识点中关于计算思维的基本概念和基本方法,把计算思维贯彻到每堂课中。

2.1 从问题出发引入数理逻辑

在传统的数理逻辑教学中,开篇的内容就是对命题进行符号化,但许多学生并不清楚为什么要进行符号化。在计算思维的引导下,我们可以通过如下两个问题来引人数理逻辑。

第一个问题是莱布尼茨创立数理逻辑时的理想:把推理过程像数学一样利用符号来描述,建立直观而又精确的思维演算,最终得出正确的结论。形象地说,当两个人遇有争论时,双方可以拿起笔说“让我们来算一下”,就可以很好地解决问题。为了实现莱布尼茨的理想,基本思路是首先引入一套符号体系,将争论的内容严格地刻画出来;其次规定一套符号变换规则,借助这些符号变换规则,将逻辑推理过程在形式上变得像代数演算一样。

第二个问题是人工智能中的知识表示和知识推理。人工智能中的符号主义学派认为,人的认知基元是符号,认知过程就是符号操作过程;知识可以用符号表示,也可以用符号进行推理,从而建立起基于知识的人类智能和机器智能的统一理论体系。基于这种思路,为了在计算机上实现智能,我们首先需要将知识用某套符号体系表示出来,然后在此基础上通过算法进行知识推理,最终实现智能决策等一系列体现智能的功能。

从上述两个问题出发,我们可以将命题逻辑和一阶谓词逻辑当作两个工具来引入。与此同时,对于这两个工具来说,应用它们来解决问题的过程又可以被分解为符号化表示和符号化推理两个阶段。因此,我们最终可以从两个维度上引入数理逻辑:一个维度是命题逻辑和谓词逻辑两个工具,另一个维度是符号化表示和符号化推理两个过程。与传统的直接介绍数理逻辑形式系统的方式相比,这种从问题出发的引入方式与计算机专业学生的思维方式即计算思维一致。

2.2 从形式化的角度组织教学内容

作为彻底的形式系统,数理逻辑为培养计算思维中的抽象思维能力提供了非常好的素材。从形式系统自身的角度来看,我们还可以将语法和语义两个内容独立出来。在此基础上,我们用表1对计算机相关专业数理逻辑部分的学习内容进行概括。

表1列出的知识点与《计算教程CC2001》《中国计算机科学与技术学科教程2002》中关于数理逻辑的知识点一致。借助这张表,可以让学生对数理逻辑部分的学习内容形成一个清晰、全面的认识。在教学过程中,每开始一个新的章节,我们都可以呈现这张表,帮助学生知道接下来的学习内容处于哪个位置,并且加深他们对计算思维中抽象和建模的印象。

需要指出的是,在广义的数理逻辑中,介绍形式演算系统时通常是指公理推理系统。公理推理系统从若干条给定的公理出发,应用系统中的推理规则推演出系统中的一系列重言式。公理推理系统可以深刻揭示逻辑系统的相关性质以及人类的思维规律,但从计算思维解决问题的角度来看,我们并不关注公理推理系统。在知识推理中,我们关注的是从任意给定的前提出发,判断能否应用推理规则推演出某个结论;我们并不要求这些前提和结论是重言式。因此,对于计算机专业的数理逻辑来说,我们关注的是自然推理系统,即构造证明法。计算思维为我们选择自然推理系统而不是公理推理系统提供了一个很好的视角。

2.3 在数理逻辑中强调自动化

表1的知识点充分体现了计算思维中抽象和对问题建模求解的思维方式,但计算思维中的自动化尚未体现出来。在学习了构造证明方法之后,学生一般会形成一个印象,认为构造证明法使用起来简单方便,与人们的直观逻辑思维一致,但使用过程中需要一定的观察能力和技巧。与之相反的是,计算思维希望能够通过算法实现问题的自动求解。

实际上,在广义的数理逻辑中已经存在许多自动化证明方法,其中最为典型的是归结推理方法和基于Tableau的证明方法。为了判断能否从给定的前提推导出某个结论,我们同样可以采用归结推理方法或者基于Tableau的证明方法。具体来说,我们首先对拟证明的结论进行否定,将该否定式与所有前提一起合取起来,然后判断所得到的合取式是否为可满足公式;如果不可满足,则表明可以从给定的前提推导出结论,否则表明所考察的结论是不能得出的。换句话说,前提与结论之间是否可推导的问题被转换为公式可满足性问题来解决。

归结推理方法最早于1965年由Robinson提出,是定理证明中主流的推理方法。《计算教程CC2001》和《中国计算机科学与技术学科教程2002》都将其列为人工智能课程的一个重要知识点。由于许多学校都是将人工智能作为选修课来开设,因此许多学生都没有机会接触和学习。实际上,在数理逻辑的教学实践中,只需要很少的课时就可以把归结推理方法讲授清楚。具体来说,在讲授完构造证明法中的归谬法之后,只需要补充介绍归结原理这一条推理规则就可以了,最多只花费半个课时。当我们用简洁的算法把归结推理方法描述清楚,让学生直观感受到机械化的证明过程之后,学生对计算思维就有了更进一步的认识和掌握。在有条件的情况下,还可以让学生上机实现命题逻辑的归结推理算法。

基于Tableau的证明方法出现的时间早于归结推理方法,最初在1955年就被Beth和Hintikka分别独立提出,之后Smullyan在其1968年出版的著作中进行了规范描述。Tableau方法的基本思想是通过构造公式的模型来判断公式的可满足性。虽然Tableau方法使用的推理规则不只一条,但每条推理规则都直观地体现了逻辑联结词的语义定义。Tableau方法在早期没有受到太多关注,但最近十多年来,随着描述逻辑成为了知识表示和知识推理领域的研究热点,在描述逻辑推理中发挥出优异性能的Tableau方法得到了越来越多的关注。鉴于此,在讲授完构造证明法和归结推理方法之后,我们也向学生简单描述了Tableau方法,引导学有余力并且对学术前沿感兴趣的学生在课后自学。

2.4 在分析评估中强化计算思维

在讲授数理逻辑的过程中,我们还可以从许多知识点提炼出计算思维的内容,把计算思维贯彻到每个具体的教学内容中。我们列举体现计算思维的4个典型内容进行探讨。

首先,命题公式和谓词公式的语法定义为计算思维中的递归方法提供了经典案例。实际上,除了公式的语法定义外,数理逻辑中在对语义的定义、对语法与语义之间关系的研究、对算法正确性的证明、对算法复杂度的分析等各项内容中都用到了递归。由于课时的限制,我们不能在数理逻辑教学中对其展开,但可以点出这个情况,让将来可能继续攻读硕士或博士学位的学生留下一个印象。

其次,当我们讲授了用归结推理方法或者Tableau方法进行自动推理和问题求解之后,从计算思维的角度看,一个很自然的想法是想知道这种解决方法的求解效率。因此,我们可以对命题逻辑中推理算法的复杂度进行分析。由于我们已经把归结推理方法通过非常简洁的算法呈现在学生面前,因此只需要进行简单的口头分析就可以得出最坏情况下的算法复杂度,让学生知道命题逻辑的公式可满足性问题是NP问题。到此为止,在对命题逻辑进行讲授的过程中,我们引导学生完成了“对问题进行抽象建模一形式化一自动化一分析评估”的完整流程。如果在后继课程中再反复重现这个流程,将可以把这种思维模式固化到学生大脑中,使得计算思维成为他们日后解决新问题的有效工具。

第三,在讲授完命题逻辑之后,我们可以用著名的苏格拉底三段论作为例子来引入谓词逻辑。首先我们用命题逻辑对“所有的人都是会死的”“苏格拉底是人”“苏格拉底会死的”进行符号化,然后展示在命题逻辑下无法从两个前提推导出后面的结论,从而说明命题逻辑在表达能力上的局限,进而阐述引入一阶谓词逻辑的原因和思路。从计算思维的角度看,这个过程体现了如何选择合适的表示方式来陈述一个问题,以及如何确定对问题进行抽象和建模的粒度,此外,这个例子还让学生直观感受到了计算工具所具有的能力和局限性。

最后,在讲授完一阶谓词逻辑的推理之后,我们可以介绍一阶谓词逻辑的局限,即一阶谓词逻辑是半可判定的,一阶谓词逻辑的归结推理算法不一定终止。从计算思维的角度看,这个结论给了我们一个很好的例子,可以引导学生分析哪些问题是可计算的,哪些问题是不可计算的。在此基础上,我们进一步阐述逻辑系统的表达能力与推理能力之间存在的矛盾关系:一阶谓词逻辑在表达能力上远远超过命题逻辑,但其推理能力仅仅为半可判定;命题逻辑可判定,但描述能力不强。从计算思维的角度看,此时我们可以引入“折中”这个概念,训练学生在解决问题的过程中抓住主要矛盾,忽略次要矛盾。更进一步地,我们向学生简单介绍目前作为知识表示和知识推理领域的研究热点的描述逻辑:早期的描述逻辑通常被看做一阶谓词逻辑的子语言,在表达能力上远远超过命题逻辑,但在推理能力上保持了可判定性。这些补充内容既能让学生接触到学科前沿,又能帮助学生深刻理解如何根据问题的主要矛盾来选择合适的工具。

3 结语

总的来说,数理逻辑很好地诠释了计算思维并为其提供了生动的案例。将数理逻辑的教学与计算思维培养结合起来,一方面可以从计算思维的角度重新审视和组织数理逻辑的课堂教学,取得更好的教学效果;另一方面能加强对计算思维能力的培养,使学生能够更好地应用计算思维来解决问题。

计算思维的培养不是通过一两门课程的教学就能解决的问题,而是应该贯穿于所有的专业课程教学中。要实现这个目标,要求授课教师不仅仅照本宣科以教会学生课本上的知识为目的,而要能够从计算思维的高度来看待所讲授的课程,对所讲授的课程中含有的计算思维基本概念、方法和思想不断进行提炼,从计算思维的角度对课程进行重新梳理和建设。进行教学改革的目标是要更好地培养学生的计算思维能力,在实施教学改革的过程中,授课教师的计算思维能力也得到不断的提升和加强。

参考文献:

[1]教育部高等学校大学计算机课程教学指导委员会.计算思维教学改革宣言[J].中国大学教学,2013(7): 7-10.

[2]李廉,以计算思维培养为导向深化大学计算机课程改革[J].中国大学教学,2013(4): 7-11.

[3]常亮,徐周波,古天龙,等,离散数学教学中的计算思维培养[J].计算机教育,2011(14): 90-94.

[4]丁金凤,李英梅,徐建山,等.基于计算思维的程序设计类课程教学实践[J].计算机教育,2012(15): 65-68.

[5]周虹,傅向华,王志强,等.基于计算思维的计算机图形学教学改革[J]计算机教育,2013(5): 55-58.

[6]李文生,吴舜歆.面向计算思维能力培养的程序设计课程[J]计算机教育,2014(3): 57-60.

命题逻辑的推理规则范文第2篇

关键词:概率逻辑;泛逻辑;柔性化

中图分类号:TP18 文献标识码:A文章编号:1009-3044(2007)06-11707-03

1 引言

基于模型的不确定推理在语义上把不确定性看成一种状态或可能世界的子集。长期以来,概率论的有关理论和方法都被用作度量不确定性的重要手段[1,2],因为它不仅有完善的理论,而且还为不确定性的合成与传递提供了现成的公式。但是概率论所要求的大量统计数据难以获得,因而纯概率方法的使用受到限制。为了适应专家系统性能的不断提高,研究者不得不放弃问题求解的逻辑完备性,对专家的启发式知识给出相对精确的度量。

而逻辑的长处在于知识表示上,其主要目的就是推理,将概率与逻辑有机结合,实现逻辑框架内的概率逻辑不确定推理,能够推动人工智能基础理论的发展。目前概率逻辑的研究多是基于两个可能世界子集,但也有研究者考虑在三个可能世界子集上进行研究。

Nilsson基于概率分布的最大熵原则提出的一种表示不确定推理的概率逻辑模型[3],该模型的概率逻辑空间可用一个四元组(?祝,?赘,?装,P)来表示。其中,?祝是经典逻辑中的命题集,?赘是?祝的相容真值指派域,?装是?祝上的概率逻辑真值分布,P是?赘上的一个概率分布。它们之间的关系可用矩阵表示为?装=VP,该矩阵表示形式实际上是一个非线性方程组。Nilsson概率逻辑的研究是基于两个可能世界子集,齐桂林将Nilsson的概率逻辑进行了扩展,其概率逻辑的研究是基于三个可能世界子集[4]。虽然还有许多研究者提出其它类型的概率逻辑,但是概率逻辑关系刚性化的问题依然没有得到很好的解决。

2 概率逻辑及其局限

在基于σ代数的标准概率论中,概率是定义在标准概率空间(?赘,B,P)上的。其中?赘是样本空间,B是随机事件的命题集,P是?赘上的一个概率分布。对于任意一个事件a∈B,规定一个实数,记作P(a),如果P(・)满足以下三条公理,那么就称P(a)为事件a的概率。

公理1非负性:P(a)≥0

公理2规范性:P(W)=1

公理3可列可加性:如果ai∧aj是逻辑假(i,j=1,2,…),则P(a1∨a2∨…)=P(a1)+P(a2)+……

在这个公理系统下,先验概率函数的基本性质包括:

条件概率是一个二元函数,在常见的概率逻辑模型中,它是通过两个先验概率函数的商的形式给出的:

P(a|b)=P(a∧b)/P(b)当P(b)≠0

且P(a|b)=1当P(b)=0

概率逻辑系统一般都是给出了与经典逻辑对应的三个独立算子?劭、∧、∨,但对经典逻辑中的蕴涵算子却未明确定义,而是通过条件概率来处理的。从泛逻辑学的角度分析命题概率逻辑算子的定义,可以发现他们存在以下主要问题[5,6]:

(1)所有概率逻辑算子均未考虑广义相关性的影响,仅是广义相关系数h=0.75时的一种特例,他们所表示的概率逻辑关系都是刚性化的。实际上,这些算子都可能会受到广义相关性的影响,都应该存在着广义相关性下的关系柔性;

(2)条件概率P(a|b)的定义仅在h=0.75时成立,即要求a与b独立相关,否则其运算模型会出现偏差;

(3)条件概率P(a|b)在P(b)>0时,其值仅与aùb、b有关,只要P(a|b)与P(b)的比值不变,a的变化不会影响条件概率P(a|b)的值,这显然是不合理的;

(4)条件概率P(a|b)不应该是一个常数,但在推理中却往往被看作是一个常数,这就隐含了一个前提条件,即当a与b变化时,P(a|b)和P(b)必须等比例变化,否则会出现问题;

(5)条件概率的表示与逻辑表示不一致,在概率空间中无法给出一种与P(a|b)相一致的P(ab)的定义,即无法进行条件推理。我们知道,二值逻辑的逻辑蕴涵是一个重要的推理规则,但在概率逻辑中,却不能用P(ab)对P(a|b)进行度量。事实上,可以证明P(ab) 3P(a|b),其中的等号当且仅当P(b)=1或P(a|b)=1时才成立。

上述问题的存在严重影响了概率逻辑的应用,分析这些问题的原因,可以发现其中大多数都与广义相关性有关,因此解决上述问题的一个重要途径是在概率命题逻辑中引入广义相关性的概念,根据泛逻辑学的相关规则,来弥补上述缺陷。

3 概率逻辑关系柔性化的方法

泛逻辑学提出了目前所有存在的各类逻辑的共同特征,同时提供了一个逻辑生成器[7],通过运用各种规则,可以构造出满足某种需要的具体逻辑,泛逻辑学的开放性就在于其逻辑体系允许有新的逻辑体系加入其中,必要时允许对其体系结构进行扩充和完善,其基础就是泛命题连接词的生成规则。在泛逻辑学中,k=0.5属零级不确定性问题,因此可用其零级N/T/S泛数完整簇来构造柔性的概率逻辑算子函数。

(1)基空间的变换

概率逻辑的真值空间是[0,1],没有无定义形式,也没有附加条件。它的真值空间与泛逻辑学的标准基空间一致,故不需要作空间变换。

(2)拓序规则

对于概率逻辑不需要进行拓序规则。

(3)生成元规则

模型只能在k=0.5、h=0.5的理想世界里处理现实世界中的实际问题,必须先用生成元把它变化到理想世界,经过基模型处理后,再变换到现实世界中。将生成元完整簇(generator complete cluster)作用到各种生成基上,就得到了基空间[0,1]上的各种命题连接词的运算模型。

由于x∈[0,1],k=0.5,表明没有误差,h∈[0.5,1]是相生相关,满足相容定律:

T(x,y,h,k)+S(x,y,h,k)=x+y

因此生成元完整簇采用受广义相关性系数h对命题之间关系影响的T性生成元完整簇或S性生成元完整簇;

当k=0.5,h≠0.5时,所有二元泛逻辑运算都要偏离它的中心运算模型,因此需要在基模型的基础上用特殊的广义相关性修正函数完整簇ψ(x,h)来双向修正其影响,修正的基本思想是:

设m(X)=x,m(Y)=y,m(Z)=z是没有误差的模糊测度,L(x,y,0.5,h)是某一命题连接词的基模型,则

ψ(L(x,y,0.5,h),h)=L(ψ(x,0.5,h),ψ(y,0.5,h),0.5)

L(x,y,0.5,h)=ψ-1(L(ψ(x,0.5,h),ψ(y,0.5,h),0.5,h),0.5,h)

其中ψ(x,0.5,h)簇是泛逻辑中各种二元运算模型的零级生成元完整簇。

生成元完整簇不同,基模型的表达式形式也不同,但它们联合生成的零级泛逻辑运算模型是等价的。所以我们仅讨论由零级N/T完整簇构造的概率逻辑算子,用中心与运算基模型max(0,x+y-1)确定T性生成元完整簇F(x, h),生成零级与运算模型,利用中心非运算和零级与运算模型直接定义其他零级二元运算模型。

指数型N性生成元完整簇为:

用于修正受广义相关性h影响的指数型零级T性生成元完整簇:

F(x,h)=xmm=(3-4h)/(4h(1-h)),h∈[0,1]

(4)生成基规则

每个命题连接词都有自己的生成基,它是在[0,1]内,在命题的真值没有误差k=0.5,且命题之间的相关性是最大相斥时h=0.5,该命题连接词的运算模型,称为基模型(base model)。如下所示:

泛非运算基模型N(x,0.5)=N1=1-x

泛与运算基模型T(x,y,0.5,0.5)=T1=max(0,x+y-1)

(5)生成概率逻辑算子

由于概率逻辑在k=0.5,h∈[0.5,1]时,n=1,因此有:

N性生成元: ?椎(x,0.5)=x

零级T性生成元完整簇:F(x,h)=xm即F-1(x,h)=x1/m

所以纯指数模型为:

1)非运算模型 N(x,k)=N(x,0.5)=1-x=N1

2)与运算模型

T(x,y,h,k)=T(x,y,h,0.5)=F-1(max(F(0,h,0.5),F(x,h,0.5)+F(y,h,0.5)-1),h,0.5)=(max(0,xm+ym-1))1/m

3)或运算模型

s(x,y,h,k)=S(x,y,h,0.5)=N(T(N(x,0.5)),N(y,0.5),h,0.5),0.5)=N(F-1(max(F(0,h,0.5),F(x,h,0.5)+F(y,h,0.5)-1),h,0.5),0.5)=1-(max(0,(1-x)m+(1-y)m-1))1/m

4)蕴涵运算模型

I(x,y,h,k)=max(z|y≥T(x,z,h,0.5))=F-1(min1+F(0,h,0.5),1-F(x,h,0.5)+F(y,h,0.5)),h,0.5)=(min(1,1-xm+ym))1/m

5)等价运算模型

Q(x,y,h,k)=T(l(x,y,h,0.5),l(y,x,h,0.5),h,0.5)=F-1(1±|F(x,h,0.5)-F(y,h,0.5)|,h,0.5)=(1±|xm-ym|) 1/m(h>0.75为+,否则为-)

6)条件概率运算模型

P(a|b)=P(a∧b)/P(b)=(max(0,xm+ym-1))1/m/y

可以看出,概率逻辑算子实际上等同于:通过泛逻辑在广义自相关系数k=0.5,广义相关系数h∈[0.5,1]的情况下,生成的一组具体的运算模型。

特别地,当k=0.5,h=0.75时,根据生成元完整簇的定义,有F(x,h)=1-lnx,F-1(x,h)=exp(1-x),为概率算子对:

概率非运算N(x,k)=N(x,0.5)=1-x=N1

概率与运算T(x,y,h,k)=T(x,y,0.75,0.5)=T2=xy

概率或运算S(x,y,h,k)=S(x,y,0.75,0.5)=S2=x+y-xy

概率蕴涵运算I(x,y,h,k)=I(x,y,0.75,0.5)=I2=min(1,y/x)

概率等价运算Q(x,y,h,k)=Q(x,y,0.75,0.5)=Q2=min(x/y,y/x)

条件概率运算 P(a|b)=P(a∧b)/P(b)=x*y/y=x(满足独立性公式)

由此可以看出,泛逻辑学的生成器,可以根据实际的需要,生成算子簇。当所研究命题的广义自相关性和广义相关性给出后,就可以根据生成元规则和生成基规则,生成具体的算子。因此命题泛逻辑的开放性,能够统一大部分的算子模型,使得我们更加清楚的认识到逻辑规律。

4 结束语

泛逻辑学研究的最终目标是建立一个具有最大包容性的抽象逻辑学,它的内核是数理逻辑,各种柔性逻辑都是它的一个特例。通过在泛逻辑学框架内对概率逻辑及其局限性的分析,我们发现逻辑关系刚性化是以往概率逻辑研究中所忽视的一个问题。根据泛逻辑学的生成器,并结合概率逻辑实际研究的真值空间,基于零级N/T范数完整簇构造的概率逻辑算子,初步研究表明,新概率逻辑是能够避免以往概率逻辑的局限性。

参考文献:

[1]石纯一等.人工智能原理[M].北京:清华大学出版社,1993:82-145.

[2]陆汝钤.人工智能(下册)[M].北京:科学出版社,1996:552-574.

[3]Nilsson N J. Probability logic[J]. Artificial Intelligence ,1986, 28,71-87.

[4]Guilin Qi. Probabilistic Inference on Three-Valued Logic[J].Berlin,RSFDGrC,2003,LNAI 2539:690-693.

[5]王万森,何华灿.基于泛逻辑学的柔性命题逻辑研究[J].小型微型计算机系统.2004.Vol.25 No.12:2116-2119.

[6]王万森,何华灿.基于泛逻辑学的逻辑关系柔性化研究[J].软件学报.2005.Vol.16 No.5:754-760.

[7]何华灿等著.泛逻辑学原理[M].北京:科学出版社,2001.

命题逻辑的推理规则范文第3篇

[关键词]人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理

的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:

·效率和资源有限的推理;

·感知;

·做计划和计划再认;

·关于他人的知识和信念的推理;

·各认知主体之间相互的知识;

·自然语言理解;

·知识表示;

·常识的精确处理;

·对不确定性的处理,容错推理;

·关于时间和因果性的推理;

·解释或说明;

·对归纳概括以及概念的学习。[①]

21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。

我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

1.常识推理中的某些弗协调、非单调和容错性因素

AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]

“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。

在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:

?(Aù?A)

Aù?AB

A(?AB)

(A??A)B

(A??A)?B

A??A

(?Aù(AúB))B

(AB)(?B?A)

若以C0为经典逻辑,则系列C0,C1,C2,…Cn,…Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]

非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。

2.归纳以及其他不确定性推理

人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。

首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④]有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤]这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。

再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。

3.广义内涵逻辑

经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能”、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。

大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。

在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的:

晨星必然是晨星,

晨星就是暮星,

所以,晨星必然是暮星。

这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。

一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义如下:一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如€,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥]

在各种内涵逻辑中,认识论逻辑(epistemiclogic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要著作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。

4.对自然语言的逻辑研究

对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。

自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦]

美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则:

(1)数量准则:在交际过程中给出的信息量要适中。

a.给出所要求的信息量;

b.给出的信息量不要多于所要求的信息量。

(2)质量准则:力求讲真话。

a.不说你认为假的东西,。

b.不说你缺少适当证据的东西。

(3)关联准则:说话要与已定的交际目的相关联。

(4)方式准则:说话要意思明确,表达清晰。

a.避免晦涩生僻的表达方式;

b.避免有歧义的表达方式;

c.说话要简洁;

d.说话要有顺序性。[⑧]

后来对这些原则提出了不和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是:

(i)S说了p;

(ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则;

(iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q;

(iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q;

(v)S无法阻止听话人H考虑q;

(vi)因此,S意图让H考虑q,并在说p时意味着q。

试举二例:

(1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。”

命题逻辑的推理规则范文第4篇

实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理

的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:

·效率和资源有限的推理;

·感知;

·做计划和计划再认;

·关于他人的知识和信念的推理;

·各认知主体之间相互的知识;

·自然语言理解;

·知识表示;

·常识的精确处理;

·对不确定性的处理,容错推理;

·关于时间和因果性的推理;

·解释或说明;

·对归纳概括以及概念的学习。[①]

21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。

我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

1.常识推理中的某些弗协调、非单调和容错性因素

AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]

“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除

或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。

在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:

?(Aù?A)

Aù?AB

A(?AB)

(A??A)B

(A??A)?B

A??A

(?Aù(AúB))B

(AB)(?B?A)

若以C0为经典逻辑,则系列C0,C1,C2,…Cn,…Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]

非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。

2.归纳以及其他不确定性推理

人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。

首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④]有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤]这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。

再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。

3.广义内涵逻辑

经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能”

、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。

大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。

在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的:

晨星必然是晨星,

晨星就是暮星,

所以,晨星必然是暮星。

这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。

一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义如下:一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如€,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥]

在各种内涵逻辑中,认识论逻辑(epistemiclogic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要著作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。

4.对自然语言的逻辑研究

对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论

,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。

自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦]

美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则:

(1)数量准则:在交际过程中给出的信息量要适中。

a.给出所要求的信息量;

b.给出的信息量不要多于所要求的信息量。

(2)质量准则:力求讲真话。

a.不说你认为假的东西,。

b.不说你缺少适当证据的东西。

(3)关联准则:说话要与已定的交际目的相关联。

(4)方式准则:说话要意思明确,表达清晰。

a.避免晦涩生僻的表达方式;

b.避免有歧义的表达方式;

c.说话要简洁;

d.说话要有顺序性。[⑧]

后来对这些原则提出了不和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是:

(i)S说了p;

(ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则;

(iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q;

(iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q;

(v)S无法阻止听话人H考虑q;

(vi)因此,S意图让H考虑q,并在说p时意味着q。

试举二例:

(1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。”

(2)某教授写信推荐他的学生任某项哲学方面的工作,信中写到:“亲爱的先生:我的学生c的英语很好,并且准时上我的课。”根据量的准则,应该提供所需要的信息量;作为教授,他对自己的学生的情况显然十分熟悉,也可以提供所需要的信息量,但他有意违反量的准则,在信中只用一句话来介绍学生的情况,任用人一旦接到这封信,自然明白:教授认为c不宜从事这项哲学工作。

并且,语用涵义还具有如下5个特点:(i)可取消性:在给原话语附加上某些话语之后,它原有的语用涵义可被取消。在例(1)中,若b在说“前面拐角处有一个修车铺”之后又补上一句:“不过它这时已经关门了”,则原有的语用涵义“你可从那里得到汽油”就被取消了。(ii)不可分离性:如果某话语在特定的语境中产生了语用涵义,则无论采用什么样的同义结构,该含义始终存在,因为它所依附的是话语的内容,而不是话语的形式。(iii)可推导性,前面已说明这一点。(iv)非规约性:语用涵义不能单独从话语本身推出来,除要考虑交际合作原则之类的语用规则之外,也需要假定通常的逻辑推理规则,并需要把上文语句、交际双方所共有的背景知识作为附加前提考虑在内。(v)不确定性:同一句话语在不同的语境中可以产生不同的语用涵义。显然,确定某个话语的语用涵义是一个极其复杂的过程,需要综合和分析、归纳和演绎的统一应用,因此具有一定的或然性。研究如何迅速有效地把握自然语言表达式在具体语境中的语用涵义,这正是自然语言逻辑所要完成的任务之一,它将在21世纪取得进展。