首页 > 文章中心 > 虚拟制造技术的定义

虚拟制造技术的定义

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇虚拟制造技术的定义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

虚拟制造技术的定义

虚拟制造技术的定义范文第1篇

随着经济的全球化和社会的信息化,市场竞争日益激烈,顾客需求日趋多样化。由于制造业产品价值链上的产品设计开发和销售服务环节变得相对重要,现代的制造企业产品的上市速度、产品质量、生产成本和售后服务成为决定企业经营成败的关键,为此产生了许多新的制造技术和制造系统,如柔性制造系统(FMS)、计算机集成制造系统(CIMS)等。今天的制造业已经成为同时对物质、信息和知识进行处理的产业。然而,这些系统仍然存在着一些问题,如:系统投资较大、周期较长,系统的效益和风险有效的评估可操作性差;不能确实有效地协调设计与制造各阶段的关系,以寻求企业整体全局最优效益。随着计算机网络和虚拟现实等先进技术的出现,虚拟制造技术应运而生,它的诞生是现代科学技术和生产技术发展的必然结果,是各种现代制造技术与系统发展的必然趋势。

二、虚拟制造的内涵

1.虚拟制造的定义。虚拟制造是实际制造过程在计算机的本质实现,即采用计算机仿真与虚拟现实技术,在计算机上实现产品开发、制造以及管理与控制等制造的本质过程,以增强制造过程各级的决策与控制能力。也就是说虚拟制造是对实际制造进行抽象、分析、综合、得到实际产品的全数字化模型,其最终目标是反作用于实际制造过程,用来指导生产实践。

虚拟制造技术可以分为三大类:一是以设计为中心的虚拟制造技术;二是以生产为中心的虚拟制造技术;三是以控制为中心的虚拟制造技术。

2.虚拟制造的技术特征。虚拟制造与实际制造相比,它具有如下主要特征:

(1)高度集成。虚拟制造中产品设计与制造过程是在虚拟的产品数字化模型中进行产品设计、制造、测试等过程,并且在虚拟的制造环境中检验其设计、加工、装配和操作。因此,易于综合运用系统工程知识、并行工程和人—机工程等多学科先进技术,实现信息集成、知识集成、串并行交错工作机制集成和人—机集成。

(2)敏捷灵活。开发的产品(部件)可存放在计算机里,既节省仓储费用,利于产品再次快速改型设计,从而大幅度缩短了生产准备周期,降低了成本,提高了产品从设计、制造到销售全过程的整体性和敏捷性。

(3)分布合作。虚拟制造通过Internet可使分布在不同地点、不同部门的不同专业人员在同一产品模型上同时工作,相互交流,实现资源共享,发挥各自特长,实现异地设计、制造,从而使产品开发以快捷、优质、低耗响应市场变化,将制造业信息化与知识化融为一体。

三、虚拟制造技术对发展我制造业的作用

1.减少资源浪费,实现绿色制造。绿色制造是一个综合考虑环境影响和资源效率的现代制造模式,其目标是使产品在从设计、制造、包装、运输、使用到报废的整个产品生命周期中,对环境的影响(负作用)最小,资源的使用效率最高。而虚拟制造技术的应用对整个制造工艺来说减少了废弃物,这要比处理工厂已经排放的废弃物大大节省开支,它将成为绿色制造的一部分。

2.规避生产要素缺乏、生产成本过高的局面。在实际生产前,在不消耗资源和能量的情况下验证产品方案。在虚拟制造环境下,工程设计人员可以直接对设计出的产品进行各项实验,检查产品各方面的技术性能等,还可以对生产的组织和进度安排进行实验,确立合理的进度表等。这样就可大大降低生产成本,减少新产品开发的投资。

3.敏捷转换产品生产,快速满足市场需求。虚拟制造是“核心”企业按市场需求决定委托加工的任务单,将设计、生产、组装的全部或部分任务外包给其他企业来完戎,而虚拟企业中的成员企业均拥有各自的优势资源、核心技术,是专业程度很高的企业,容易对产品的某一零部件进行改进和创新,能敏捷地转换不同类型产品的生产,从而快速满足市场需求。

4.增强企业柔性和抗市场风险能力。“虚拟制造”能按市场需求决定委托加工的任务单,当产品的市场需求减少时,可以迅速降低委托加工量,而不用承担生产过剩的风险。显然,这部分风险分散转嫁给了委托加工企业。但由于受委托方往往是专业化的加工企业,对分散转嫁的风险具有较强的应变能力,常能在短时间内改变生产加工产品内容。5.突破中小企业的规模瓶颈。虚拟企业内部交易是一种“准市场交易”,它比纯市场交易稳定,又比一体化企业内部交易灵活,集合了市场和企业的双重优势。企业通过虚拟制造有效避免或降低了在纯市场、信息不对称条件下寻求生产要素、进行交易的高成本,从而提升了产品在市场中的竞争力。企业突破传统发展模式、扩大规模、跳跃发展成为可能。

6.通过分析设计的可制造性,虚拟制造可以提高产品设计质量、减少设计缺陷、优化产品性能。

四、结论

虚拟制造技术是虚拟现实技术和计算机仿真技术在制造领域的综合发展及应用,它为制造业带来全新的概念。它既是一项先进制造技术又是一种先进制造理念,这项新兴的制造技术为制造业的发展指明了方向,减少了资源浪费,实现了绿色制造,使制造业达到了前所未有的高度集成化与优化,为先进制造技术的进一步发展提供了更广阔的空间,是现代制造业信息化过程中不可逾越的阶段。

参考文献:

[1]长城企业战略研究所课题组,制造业模式的历史演变与虚拟制造模式产生的历史背景[J].经济研究参考,2001

[2]曹岩:虚拟制造的实施研究[J].制造业自动化,1999,6

虚拟制造技术的定义范文第2篇

 

关键词:集成;系统;技术构成

一、现代集成制造系统的含义与定位

现代集成制造系统(Contemporary Integrated Manufacutring System)是计算机集成制造系统新的发展阶段,在继承计算机集成制造系统优秀成果的基础上,它不断吸收先进制造技术中相关思想的精华,从信息集成、过程集成向企业集成方向迅速发展,在先进制造技术中处于核心地位。具体地说,它将传统的制造技术与现代信息技术、管理技术、自动化技术、系统工程技术进行有机地结合,通过计算机技术使企业产品在全生命周期中有关的组织、经营、管理和技术有机集成和优化运行。在企业产品全生命周期中实现信息化、智能化、集成优化,达到产品上市快、服务好、质量优、成本低的目的,进而提高企业的柔性、健壮性和敏捷性,使企业在激烈的市场竞争中立于不败之地。

二、现代集成制造系统的技术构成

先进制造技术(AMT Advanced Manufacturing Technology)作为一个专有名词目前还没有准确的定义。通过对其内涵和特征的研究,目前共同的认识是:先进制造技术是传统制造技术不断吸收机械、电子、信息、材料、能源和现代管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活的生产,并取得理想技术经济效果的制造技术的总称。其具有如下一些特点:

1、从以技术为中心向以人为中心转变,使技术的发展更加符合人类社会的需要;

2、从强调专业化分工向模糊分工、一专多能转变,使劳动者的聪明才智能够得到充分发挥;

3、从金字塔的多层管理结构向扁平的网络化结构转变,减少层次和中间环节;

4、从传统的顺序工作方式向并行工作方式转变,缩短工作周期,提高工作质量;

5、从按照功能划分部门的固定组织形式向动态的自主管理的小组工作方式转变。

通过对先进制造技术的定义和特点的分析发现,现代集成制造系统拥有先进制造技术的绝大部分特点,只不过先进制造技术所涉及的范围要比现代集成制造系统大,现代集成制造系统在吸收计算机集成制造系统的优秀成果的基础上,继续推动并行工程、虚拟制造、敏捷制造和动态联盟的研究工作,并不断吸收先进制造技术中的成功经验和先进思想,将它们进行推广应用,由此使现代集成制造系统成为先进制造技术的核心。

(1)并行工程(CE Concurrent Engineering)并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程)的系统方法。它要求产品开发人员在一开始就考虑产品整个生命周期中从概念形成到产品报废的所有因素,包括质量、成本、进度计划和用户要求。为了达到并行的目的,必须建立高度集成的主模型,通过它来实现不同部门人员的协同工作;为了达到产品的一次设计成功,减少反复,它在许多部分应用了仿真技术;主模型的建立、局部仿真的应用等都包含在虚拟制造技术中,可以说并行工程的发展为虚拟制造技术的诞生创造了条件,虚拟制造技术将是以并行工程为基础的,并行工程的进一步发展就是虚拟制造技术。同时,并行工程是在CAD、CAM、CAPP等技术支持下,将原来分别进行的工作在时间和空间上交叉、重迭,充分利用了原有技术,并吸收了当前迅速发展的计算机技术、网络技术的优秀成果,使其成为先进制造技术的基础。

(2)虚拟制造(VM Virtual Manufacturing)虚拟制造利用信息技术、仿真技术、计算机技术对现实制造活动中的人、物、信息及制造过程进行全面的仿真,以发现制造中可能出现的问题,在产品实际生产前就采取预防措施,从而使产品一次性制造成功,达到降低成本、缩短产品开发周期,增强产品竞争力的目的。

(3)敏捷制造(AM Agile Manufacturing)敏捷制造是以竞争力和信誉度为基础的,选择合作者组成虚拟公司,分工合作,为同一目标共同努力来增强整体竞争能力,对用户需求作出快速反应,以满足用户的需要。为了达到快速应变能力,虚拟企业的建立是关键技术,其核心是虚拟制造技术,即敏捷制造是以虚拟制造技术为基础的。敏捷制造是现代集成制造系统从信息集成发展到企业集成的必由之路,它的发展水平代表了现代集成制造系统的发展水平,是现代集成制造系统的发展方向。

(4)绿色制造(GM Green Manufacturing)绿色制造是一个综合考虑环境影响和资源效率的现代制造模式,其目标是使产品从设计、制造、包装、运输、使用到报废的整个产品生命周期中,对环境的影响(负作用)最小,资源的使用效率最高。绿色制造的提出是人们日益重视环境保护的必然选择,发展不能以环境污染为代价。国际制造业的实践表明,通过改进整个制造工艺来减少废弃物,要比处理工厂处理已经排放的废弃物大大节省开支。绿色制造的实现可以通过计算机仿真来达到目的,即它是虚拟制造的一部分。从可持续发展战略的观点看,绿色制造是必然选择,它将成为现代集成制造系统的一个重要的组成部分。

从以上的分析中我们可以看到:各种先进制造技术是相互关联、彼此交叉的,在先进制造技术的含义下,现代集成制造系统成为它的核心,并随着先进制造技术的不断发展而发展。

参考文献

[1]李伯虎等.现代集成制造系统的发展与863/CIMS主题的实施策略.CIMS,1998,(10).

虚拟制造技术的定义范文第3篇

关键词: 虚拟现实 汽车工业 产品设计

1.引言

虚拟现实技术,是近年发展起来的高级计算机技术,是建立在计算机图形学、仿真学、并行技术、人工智能、多媒体技术及高性能计算机系统等技术基础之上的。目前世界上对虚拟现实还没有一个确切的定义,不同的人对其有不同的理解,比较有代表性的定义有下列三种[1]:

(1)虚拟现实,英文名称Virtual Reality,简称VR,是一种可以创造和体验虚拟世界的计算机系统。这里所说的虚拟世界是指所有虚拟环境或给定仿真对象的全体。而“虚拟环境”一般是指用计算机生成的有立体感的图形,它可以是一特定现实环境的表现,也可以是纯粹虚构的世界。

(2)虚拟现实是使人可以通过计算机看见、操作极端复杂的数据并与之交互的一种方式。

(3)虚拟现实是一种媒介,它具有三维合成环境,人们可以按自己的意愿,从任选视点实时地在其中连续而自由地探测、考察和体验。

Virtual Reality一词最早是由美国VPL公司的创建人之一Jaron Lanier于20世纪80年代初正式提出来的。他认为,与传统的“人―机界面”相比,虚拟现实技术具有质的飞跃。传统的“人―机界面”是将用户和计算机视为两个独立的实体,将界面视为信息交换的媒介,用户将要求或指令输入计算机内,计算机将信息或动作反馈出来。而虚拟现实技术则将用户和计算机视为一个整体,通过各种直观的工具将信息可视化,用户直接置身于这种三维信息空间中自由地操作和控制各种信息,从而成为信息的主人。

2.虚拟现实技术在汽车工业中的应用

2.1在虚拟设计中的应用。

基于虚拟设计技术的对象是产品的结构和性能,从产品设计、分析、模拟、评测出发,对客户所需求的产品性能和成本进行优化,它的对象是产品本身[2]。

近几年来,CAID技术为企业在新产品开发过程中提供了有力的支持,但目前在虚拟设计中通常使用软件组合来完成产品设计过程。例如复杂曲面的产品造型,多采用Rhino和Pro/Engineer,而产品的渲染则采用3DMAX或LightWAVE,其实质并没有把设计人员从二维鼠标与键盘上解放出来,设计人员也并没有真正参与到虚拟产品设计中来,在某种角度上限制了设计人员的积极性与创造性的发挥。

现代生产中产品的虚拟设计和开发就是建立虚拟样机。以借助虚拟现实技术建立的三维汽车为例,在对汽车进行设计时,设计人员在具有全交互性的设计环境中,利用头盔显示器、具有触觉反馈功能的数据手套、操纵杆、三维位置跟踪器等装置,将视觉、听觉、触觉与虚拟概念产品模型相连,不仅可以进行虚拟的合作,产生一种身临其境的感觉,还可以实时地对整个虚拟产品(Virtual Product)设计过程进行检查、评估,实地解决设计中的决策问题,使设计思想得到综合。在交互性的虚拟环境快速成型设备上,设计人员对虚拟产品设计模型的直接设计,提高了设计人员积极性与创造性的发挥。

2.2在虚拟制造中的应用。

虚拟现实技术是虚拟制造系统的基础和灵魂,虚拟制造系统是由多学科知识形成的综合系统,是利用计算机支持技术对需要进行生产和制造的产品进行全面建模和仿真,它能够仿真非实际生产的材料或产品,同时得出有关它们的信息。

虚拟制造系统(Virtual manufacturing system)由虚拟信息系统(Virtual information system)和虚拟物理系统(Virtual physical system)组成。虚拟信息系统也叫虚拟逻辑系统,主要是用来模拟处理设计、管理、计划调度等制造活动中的信息;而虚拟物理系统是计算机对实际的加工车间,包括机床、材料、工人等进行建模,并在此模型的基础上进行仿真实际制造系统的制造过程。

虚拟物理制造系统中的信息和实际的制造系统相一致,它是虚拟制造系统的关键。虚拟制造技术的应用范围涉及产品的整个生命周期,它可以在生产设备、工装和模具,甚至样车的设计之前,很容易地对生产系统和工艺过程进行建模、修改、分析及优化。在汽车柔性生产系统(FMS)、计算机集成制造系统(CMIS)的设计和应用中,就广泛运用了虚拟现实技术。

虚拟设计与虚拟制造都是围绕着产品而展开的活动,是一个彼此相互联系有机整体。虚拟模型相互关系如图1所示。

2.3在虚拟试验中的应用。

虚拟试验技术作为汽车虚拟制造技术的一个关键环节,在汽车空气动力学及汽车被动安全性研究中正得到越来越广泛的应用,汽车被动安全性研究包括车身抗撞性研究、碰撞生物力学研究以及乘员约束系统和内饰件的研究。

虚拟试验方法的核心是有限元法和多刚体动力学的数值方法,它通过一定的前后处理程序和数据转换模板,以CAD文件为输入,在计算机中模拟出与实际试验一样的环境。通过计算,得到试验报告。

设计师设计出的新型汽车是否合理,往往需要经过碰撞、风洞等测试加以检验。最初检验新型汽车性能的方法是:先在一辆样车上放置木偶,加速后让它与墙壁碰撞,然后,再检测车身与木偶的受损程度,由此断定碰撞过程中车与人的受力情形。这种方法,不仅存在着严重的误差,而且需先把样车做出来,费事费力。而采用虚拟试验方法,则只需先用木材、黏土或陶土做一辆汽车模型,在风洞中测定其空气动力学数据,再把模型扫描进虚拟环境系统,把它放大成与真车一样的大小。通过虚拟环境系统模拟撞车,可以精确地把木偶的手或脚的受力情况反映出来,采用这个系统,可以减少约一半的设计费用及时间。

3.虚拟现实技术在汽车工业中的前景展望

多媒体技术软硬件飞速发展,特别是虚拟现实技术与多媒体技术有机结合,加快了设计人员从键盘和鼠标上解脱下来的速度,使虚拟设计技术在新产品开发应用方面也得到提升。虽然目前汽车工业应用虚拟现实技术进行产品开发、制造、试验目前处于起步阶段,主要应用于概念车和车身内外模型的开发,另外在汽车装配中亦有少量使用,但我们相信,随着传感器与信息环境的交互技术等虚拟现实技术不断发展和完善,它必将引起汽车行业各个领域的革命性变化。

3.1敏捷制造/虚拟工厂。

虚拟现实技术将广泛应用于汽车工业,主要是以美国工业界提出的一个敏捷制造/虚拟企业为契机的。1991年,美国里海大学受美国国防部委托,组织编写了《21世纪制造企业的战略》的报告。在报告中,首次提出了敏捷制造(Agile manufacture)和虚拟企业(virtual enterprise)的概念。他们认为敏捷(agility)是一种能使企业在无法预测、持续变化的市场环境中保持并不断提高竞争力的能力。

该报告设想到2010年建立美国汽车(USM)公司,实现汽车工业的敏捷制造/虚拟工厂,主要达到以下目的标:

(1)每辆USM公司的汽车都按用户要求制造,每辆USM公司的汽车从定货起3天内交货。USM汽车在整个生命周期内有责任使用户满意,并且这种汽车能重新改造,使用寿命长。

(2)用户可以利用USM公司的图表、虚拟设计软件设计自己所需的汽车,并了解其售价、运行费用等。

(3)用户初步选定车型后,可进行模拟试验,通过模拟试验或重选或提出意见,满意后办理订货手续。

(4)USM公司工厂按年产6万辆设计,同一条生产线上可装配其所有型号的变型车,数量不限。

(5)在世界各地建厂,6个月内投产。

(6)4个月提出一种新车型。

(7)设计与制造能力匹配,产品设计与工艺设计同时进行,对全车设计与制造工艺进行虚拟设计和仿真。

(8)设计通过后,有计算机选择所有制造设备,并投入生产。

未来敏捷制造/虚拟企业的模式将表现为由计算机网络控制的多个柔性制造单元组成的分布式自动制造与虚拟制造系统。

3.2对并行工程的促进。

不断发展的CAD、CAM、CAS(计算机辅助造型)、CAT(计算机辅助试验)、CAE(计算机辅助工程分析)等各个领域渗入虚拟现实技术,并形成一个具有集成性、并行工程的网络。各个虚拟现实工作室工作人员,可以在不同的地点、不同时间、不同场合进行虚拟现实对话,在进行产品设计的同时,虚拟现实技术有能力提供大量的数字化三维模型,对分析、研究、建立生产装配线、工艺流程、原材料品种和消耗、工厂费用和成本等,通过检测,最终选定一套最佳的工厂设计方案[3]。

同时,企业领导、工程技术人员、经销商、供应商等,还可在该虚拟现实环境中,共同探讨各种产品的性能与市场前景,以便生产出用户满意的汽车产品,并且有关产品的供货合同、设计、生产、试验、储运等问题,都可以一并解决。

3.3供、销商介入汽车生产。

以前,每当设计新车型时,经常会因一些技术参数的更改而与零部件供应商进行反复沟通与协商,而这些沟通与协商几乎都是以邮件、传真等方式进行的,很不方便。但在虚拟现实技术的环境中,主机厂工程技术人员设计新车型时,可要求主要零部件供应商将拟采用的零部件数据以CAD及CAS的方式输入主机厂的数据库,并让它们进入主机厂的开发网络,当主机厂修改设计方案时,与之配套的零部件也将实时进行修改,不必与供应商反复沟通与协商。

4.结语

目前,虚拟现实技术正渗入到汽车工业的各个领域,它不仅为汽车设计开发人员创造了更为宽松自由的工作环境,而且从根本上动摇了一些曾被视为经典的汽车产品设计开发理论和指导原则。虚拟现实技术已经被普遍认为是下一代产品设计的主要技术,它的推广和应用将使汽车工业的思维模式、开发方式、部件供应、组织形式、市场竞争等方面产生全方位的创新和变革。在虚拟现实技术的未来发展中,虚拟汽车和真实汽车之间的界线将会变得越来越模糊。

参考文献:

[1]李怡,李树涛.虚拟工业设计[M].北京:电子工业出版社,2003,6.

虚拟制造技术的定义范文第4篇

关键词:高效能计算;系统软件;虚拟化

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2015)06-0228-02

随着信息技术的飞速发展,计算机技术更新日新月异,传统的维性能时代已渐渐远去,大规模高效能计算已经成为未来信息技术发展的必然趋势。高效能计算体系是由美国国防部在2002年首先提出的以大规模高效能计算作为未来计算机发展的主导力量。高效能子最早是在经济学中出现的,它的含义是以较少的投入量在较短的时间内极大地创造出更多的价值,实现各方效益的最大化。在计算机领域,大规模高效能计算则主要是指在尽短的时间内以最小的设备投入、资金投入和人力投入完成复杂的、超量的有效计算。我国863计划也将高效能计算作为高端计算体系的重要研究对象。大规模高效能计算在体系软件方面主要的体现可分为以下几点:1)高效能。计算机的计算性能是由硬件的性能、大规模高效能体系的软件以及应用程序共同决定的;2)低成本。尽可能地降低建设、运行和维护的费用是实现大规模高效能计算的重要条件之一;3)可靠性。计算机运行的可靠性一直是困扰高效能计算技术领域发展的重要因素之一,所以研制和开发出性能可靠的具有大规模高效能运算能力的计算机实现云计算的重要前提。通过设计和开发具有管理计算机运行功能的系统软件是未来高效能计算发展的必然趋势;4)易用性。大规模高效能计算机需要以系统软件作为运行平台,能够为用户提供能高效、方便的程序设计和运行环境实现计算机的易用性是系统软件的重要所在;5)数据的安全性。大规模高效能计算是集诸多数据库为基础,以系统的云计算为核心的应用平台,数据的安全性是整个体系正常运行的重要保证。本文对大规模高效能计算的系统软件进行技术探讨。

1 高效能计算技术

大规模高效能计算技术渗透于现代生活的各个方面,涉及现代科学技术的诸多领域,包括航空航天、现代通信、天气预测、交通管理、工程机械、现代建筑、土木工程、资源勘探、海洋研究、深空探测等。自从1946年2月15日世界第一台电子计算机问世到计算能力达以亿次衡量的超级计算机的应用,计算机的发展得到了长足的进步,计算机的应用也有传统意义上的单纯的计算到在工业和农业领域大规模的广泛运用,整个发展过程经历了一次又一次的技术变革。现代计算机的广泛运用与系统软件的日益更新密不可分。

2 系统软件的技术探讨

2.1系统软件的功耗管理

功耗在物理上定义为功率的损耗,指的是仪器、设备、元器件等的输入功率和输出功率之间的差值。功耗问题不仅在我们的日常家用用电设备中经常出现,而且在现今的各类型的高效能计算机中也普遍存在。对于百万亿次和千万亿次以上的高性能计算机,它们通常都含有大量的结点,功耗问题与系统性能的极速提升和功耗密度的增长是成正比例增长的,这不仅为现在日益紧缺的用电资源背道而驰,也严重地制约了高性能计算机的发展。

计算机系统软件的功耗管理包含峰值功耗和能效两个方面。大规模高效能计算的基本要求是尽可能地控制峰值功耗。通过系统软件的开发与应用有效地调配大规模系统中的存在的大规模的空闲活跃节点,对节点进行管理和分类,建立以节点分类为基础的功耗管理模式,尽量降低采样和控制的规模。以系统软件为背景动态调整空闲节点睡眠模式、基于设备内部时钟保持正常运行状态的设备掉电模式和基于基于设备内部时钟停止运行状态的设备掉电模式。

2.2用户环境的虚拟化

虚拟化是指通过虚拟化技术将一台计算机虚拟成多台逻辑计算机的一种手段。在一台计算机上能够同时运行多个逻辑计算机,而且每个逻辑计算机也可同时运行不同的操作系统,并且它们的应用程序都可以在相互独立的空间内正常的运行而彼此之间不受影响,从而显著提高计算机的计算能力和工作效率。虚拟化使用软件的方法能够重新的定义划分IT资源,能够实现IT资源更有效地完成动态的分配,灵活的调度,跨域共享,显著地提高IT资源利用率,使IT资源能够真正地成为服务现实大众的社会基础设施,能够更好地服务于各行各业中灵活多变的应用需求。

作为网格系统中的一个重要的计算资源,未来的高效能计算机

更需要一个能够适应网格环境的编程模型和计算模式以及开发运行和系统管理等的优良环境。

2.3 虚拟化环境中的功耗管理

传统的功耗管理可通过对系统的硬件设施和软件程序进行升级和改造就能达到显著地降低功耗的目的。与现实生活中传统的功耗管理不同的是虚拟化环境中的功耗管理不能直接地去控制硬件设施,这是由于用户操作系统对整个系统的执行状态和行为完全未知。整个系统的执行行为不被客户操作系统了解,硬件不可直接被控制;如果硬件状态被虚拟机直接进行改变,就会影响其他虚拟机在同一硬件平台上的运行,隔离特征是虚拟机破坏最基本的特征。在虚拟化实现层研究系统功耗的管理是面向虚拟机环境的功耗管理技术主要集中的领域,而提供给虚拟机内用户的设施极其缺乏,实现系统功耗的优化只能依靠已有的功耗管理技术来实现。

2.4虚拟化技术在高效能计算领域中的应用前景

虚拟化在大规模高效能计算领域的应用还处于初级阶段,但一些典型的应用系统已经如雨后春笋般地开始出现,如粒子探测器仿真系统已用于高能物理的仿真实验,综合实验环境仿真系统被用来进行Botnet 研究,起落架协同仿真系统被用于复杂产品仿真等。

现代工业生产中,真实产品的制造是依靠虚拟制造的动态模拟的。虚拟制造是一种软件技术,这种软件技术是在计算机上通过模拟大规模复杂产品制造而发展起来的。具有建模和仿真环境是虚拟制造的典型特征,它在产品生产、工艺设计、调度计划、后勤安排、财会管理、市场采购等过程为产品提供了一个集成的制造环境,能够预测产品的功能和制造系统的工作状态是虚拟制造在真实产品的制造活动广泛地被推广和应用的重要基础。信息技术、仿真技术和虚拟现实技术是虚拟制造作为一种新的制造技术的重要支持。集中管理和共享资源是虚拟化技术常常采用的一种用来提高资源的利用率和实现资源的自动满足需求的方法。

虚拟化在虚拟制造中具有广阔的应用前景。现代工业中的汽车制造、飞机设计制造、国防建设、航空航天、电力交通等重要领域都有广泛的应用。在今后的发展中,迈向虚拟化、网络化、数字化、集成化、协同化方向的发展趋势是虚拟制造在建模与仿真技术发展的方向,它为研究虚拟化高效能仿真系统提供了广阔的发展和应用前景, 与此同时,虚拟化技术扩展和丰富了网络化建模与仿真技术的内涵和应用。

3 大规模高效能计算之体系软件未来发展

从高性能计算转变成高效能服务是未来高效能计算发展的必然趋势,而制约高效能计算技术发展的瓶颈是缺乏一种适合于高效能计算资源所需要的自然特性的计算环境,所以引入新的高效能计算资源管理方法势在必行。高效能计算系统中能够运用虚拟化技术,不仅使高效能计算资源管理的方式,访问的方式和使用方式的到有效改变,而且使整个计算系统中的资源利用率得到显著地提升,继而使从计算系统的效能从整体上得到提升。面对大规模高效能计算出现的问题,大规模计算系统的效能的而研究可以从系统软件的角度进行研究,兼顾功耗管理中常出现的多个目标,设计合理的解决功耗管理问题的方案,实现系统软件完成大规模高效能计算。通过虚拟化管理实现传统物理功耗管理机制与虚拟化功耗管理机制完全的有机兼容,为大规模高效能计算之体系软件未来的发展开辟新的方向。

参考文献:

[1] 刘勇鹏. 大规模高效能计算的系统软件关键技术研究[D]. 长沙:国防科学技术大学, 2012.

[2] 陈小军, 张Z. 面向高效能计算的虚拟化技术研究综述[J]. 系统仿真学报, 2012, 24(4):741-747.

虚拟制造技术的定义范文第5篇

关键词:机械制造;数控技术;应用;发展方向

0引言

传统的机械制造业无法实现灵活快速的生产[1]。数控加工技术由于其良好的柔性以及对良好的适应能力已经越来越受到重视[2]。随着我国综合实力地不断提升,科技领域的发展也步入了崭新的阶段,数控技术不管是在应用功效方面或是技术工作效率等层面上都较之前发生了显著地变化,大大提高了产品质量。因此,开展数控技术在机械制造业中应用的探究,以使其有效性得以最大限度的发挥出来。

1我国机械制造业的发展现状

我国的机械制造业也已经形成了一定的规模,国内的机械制造业获得了非常大的成就,可是相比较于世界的先进水平,依旧面临比较大的差距[3]。高精度的机床难以实现发展的需要,特别是在数控机床的产量上、技术水平上都明显地滞后于国际先进水平。因此应该大力发展先进数控技术,从而实现机械制造能力的提升[3]。

2数控技术的定义与特点

数控技术指的是在机械加工制造的过程中,利用手工或计算机CAM软件编写的程序对设备运行轨迹进行控制从而实现产品加工的一种技术[3,4]。数控技术具有控制自动化、高精度、高效率和成本低等特点,使其取代或改进传统机械制造和加工设备,提高了机械制造和加工精度,降低了相应成本[3,4]。使得机械制造和加工行业得到极大发展,同时也促进相应配套设备的开发利用和生产方式的改变,增大了机械制造和加工的实际应用范围。

3机械制造中数控技术发挥的优势

3.1实现虚拟制造

在数控技术的众多领域中,虚拟制造技术是其中应用较为广泛的一种技术。虚拟制造技术也被称作“拟实制造”技术,它的工作原理是借助一些高科技技术的结合比如信息技术、仿真技术等[5],对现实活动中的信息以及相关人物进行模拟,对机械制造的整个阶段进行仿真,采取多种方式对制造过程中存在的问题进行暴露,进而采取行之有效的方式加以预防,提高产品的生产效率。随着科技地不断发展,数控装备的网络化很大的满足生产线、制造企业对信息集成的需求,为机械制造行业地发展起到一定的推动作用。

3.2提升机械制造的精度与效率

在机械制造过程中,借助计算机数控技术地应用,一方面可尽可能地缩短机械制造时间,优化机械制造的工艺流程,另一方面还可通过计算机对生产阶段进行有效控制,实现对机械制造加工整个阶段的自动化控制[5]。通过工艺过程的集成,操作人员只需一次装卡即可完成某一零件的全部加工环节,装卡次数的减少,大大增强了加工的精确度,生产效率也得到了显著地提升。此外,通过计算机数控技术地有效应用,也为企业节省成本支出。

3.3优化机械制造机床的控制能力

在机械制造领域中,通过数控技术地有效应用,可对加工工序进行优化控制,同时可通过代码来实现对机床的控制[5]。此外,机械制造中运用数控技术,提高了装置的集成度,无需过多地零部件,即可进行生产,大大节省材料,而且所需要的接线量也较少,能够有效避免事故发生现象,方便维修保养工作的开展。

4数控技术在机械制造中的应用

(1)在航天工业中的应用。在国内发展航天事业的过程中,传统意义上的机械制造已经难以跟航天制造工业的现代化发展要求相符合,相比较于传统意义上的机械制造加工业,在切割铝合金和铝材质上,数控技术可以实现更加理想的控制成效。另外,在航天航空工业当中应用数控技术,可以提高小部件材质的加工深度,从而节省应用的资源,防止浪费能源资源, 最终实现能源资源应用效率的提升。(2)在汽车工业中的应用。数控技术汽车零部件加工生产线集高柔性和高效率为一体,加快了产品的更新换代的速度。这种高速柔性的生产线能使产品实现多品种和中小批量的生产,建线投入比较少,生产的效率却相当于组合机床的自动线。(3)在煤矿机械中的应用。煤矿资源是人们日常生活与生产的重要资源,为了提高煤矿资源的开采率,需要高质量、高标准的煤矿机械设备。煤矿机械开采效率的提升需要提高其自动化水平及控制水平,通过引入数控技术,使煤矿机械具有高质量、高标准以及高效率的优质,并且运用数控技术将现有的煤矿机械设备进行相应的改进,还能够使煤矿机械生产设备的性能提升,以保证煤矿资源的顺利开采[5]。

5数控技术的未来发展方向

(1)高速化和高精度。数控加工技术中三维曲面加工,通过64位CPU实现CAD/CAM技术,一定程度简化操作指令,使编程更加简单,设计更加人性化。另外,在此过程中还广泛运用了“零传动”直线电机技术,在数控技术的优化下把直线电动机的劣势转化成了优势。(2)多功能化。数控机床在当前机械制造业中,很多时候都能达到一机多用的功能,科学合理的执行数控加工的动作,实现较多冗余的合理配置,保障设备能实现最高的利用效率。

6结束语

随着机械制造和材料学的发展,数控技术在机械制造的应用前景越来越广泛,产品需求的多样化也给数控技术提出了新的要求。通过机械制造行业对数控技术的投入和严格要求,在提升其技术性能、及工作效率的基础上,着重推动机械制造业产品的质量和效率,提升整体技术含量,促使我国机械制造业达到国际化工业技术标准,促进机械制造长远稳定的发展。

参考文献:

[1]胡俊,王宇晗,吴祖育等.数控技术的现状和发展趋势[J].机械工程师,2015(03):5-7.

[2]刘波.浅谈机械加工工艺和技术[J].2014重庆市铸造年会论文集,99-100.

[3]袁正辉.数控技术在机械制造中的应用研究[J].技术与市场,2017,24(01):63,65.

[4]张武.数控技术在机械制造中的应用现状和发展趋势研究[J].装备制造技术,2017(02):260-261.