前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能在医疗方面的作用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:智能Agent;人工智能;中医诊疗;医案
中图分类号:R2-03 文献标识码:A 文章编号:1673-7717(2009)05-0965-03
人工智能(arificiM intelligence,AI)是当前科学技术发展中的一门前沿科学。1956年,人工智能作为新兴学科被正式提出。利用人工智能技术取得的成就已经引起人们能高度关注,有人把它与空间技术、原子能技术一起誉为20世纪的三大科学技术成就。
有学者认为人工智能是继3次工业革命之后的又一次革命,并且指出:前3次革命延长了人手的功能,把人从繁重的体力劳动中解脱出来,而人工智能则是延伸了人脑能功能。实现脑力劳动的自动化。人工智能技术在研究中取得了许多重要的成果,在机器人、自然语言理解、专家系统、图像识别、地质勘探、石油化工、军事、医疗诊断等领域应用十分广泛。
作为人工智能的关键技术成分,智能Agent技术经过十几年的理论建模,目前已开始初级应用。许多IT企业,如:微软、IBM、Oracle等都对Agent的开发投入了极大的热情,这在一定程度反映了Agent技术的广阔前景。本文搞针对智能Agent技术的起源、发展和未来前景进行初步阐述和探讨。
1 Agent概述
1.1 Agent的定义 目前学术界尚无一个公认的对Agent的定义,在国内多将其译为智能。M.Wooldridge和N.T.Jennlngs于1995年提出的:“Agent是满足特定设计需求的计算机(硬件或软件)系统,它位于特定的环境当中。具有高度的灵活性和自治性。”。这是Agent目前普遍被人们认可的定义。
1.2 Agent的特性 学术界通常认为Agent具有以下一些的特性。
自主性:Agent具有属于自身的计算资源和局部对自身行为控制的机制,能在无外界直接操纵的情况下,根据其内部状态和感知到的环境信息,决定控制自身的行为。
智能性:Agent能够从用户浏览的网页中提取出网页特征或链接信息,与知识库中的信息进行比较,将最接近的知识应用到该网页上,自动将网页中的信息抽取出来并反馈给用户,能够根据用户查询信息的行为进行判断和分析,以提高查询准确度。
适应性:智能Agent能够从用户日常的查询、浏览等行为中学习用户的兴趣点,推理用户的需求,为每个用户建立,个性化的用户框架,根据用户反馈对获取的知识和用户框架进行修正,以适应用户兴趣点的变化。
协作性:Agent可以通过某种Agent协作语言与其它Agent进行多种形式的交互,有效地与其它Agent协作工作,可以共享交流信息,实现协作式的信息查询,提高了信息查询的效率。
移动性:Agent能够在互联网上跨平台漫游,以帮助用户搜集信息,它的状态和行为都具有连续性。
安全性:Agent能够主动避免恶意的Agent对计算机环境造成破坏。
由于Agent技术具有以上诸多特性,这就决定了其在其它领域中的应用具有广阔的探索空间。医者作为诊疗过程中的主体,其认知具有经验性、灵活性、自主性、协作性等诸多特点,由此可见,Agent技术在这一方面也具有相似甚至相同的特征。在针对医者认知过程的研究中,智能Agent技术是否可以充当记录、模拟甚至传播的载体,都是值得研究者们共同探讨的课题。
2 智能Agent在医疗活动中应用可能具有广阔的前景
2.1 智能Agent信息检索系统将是医生获取知识的得力助手笔者认为,随着智能技术的发展,未来应用于医疗活动中的智能Agent,将能够根据医生的个人需要提供动态、实用、指导性强的医学信息。近年来,互联网得到了迅速的发展和广泛的应用,网络已经成为现代人获取信息和知识的重要途径。网上信息资源日益膨胀,搜索引擎只是初步解决了如何索引和查询Intemet浩瀚无垠、零乱分散的信息资源的技术难题。相对于用户希望的“花最少的时间能得到最相关的查询结果”的愿望来看,还存在很大的差距。因此对专业领域定的用户群提供专业的、量身定造的信息服务,使用户在尽可能短的时间内有效的找到最需要的信息内容是大家普遍关注的一个问题。在医学领域,我们面临着同样的尴尬:医学领域是一个时效性、交流性极强的学科范畴,往往在短时间内,临床工作者、科研人员就需要及时、准确的对应信息。网络资源虽具有纸介质媒体无法匹敌的信息资源,但分散、冗长的信息交错混杂,为科研工作增添了无谓的负担。缺乏专业、针对性强、灵敏的搜索引擎是科研人员亟需解决的问题。
目前,信息技术和网络技术已经在科研和医疗方面得以不同程度的应用。在科研方面,世界各国建立起了大量的医学、药物数据库为研究者提供信息服务,如包含9000余种美国处方和非处方药物信息的“药物信息库”,癌症数据库Cancerlit,有关艾滋病临床、药物研制及文献的AIDSDatabases,向医患人员提供的临床实验信息数据库Clinical-Trials.gov,包括健康指南、评价和消费者指南信息的全文数据库HSTAT,补充和替代医学资源NCCAM Resource,医学文献检索系统Medline等医学信息数据网络资源,诸如此类的网络资源极大的方便了医学科研工作者。在医疗方面,许多世界发达国家都在斥巨资、投入大量人力物力建设国家卫生信息系统,英国的卫生服务信息系统、美国的卫生服务信息框架HII(Health Information Infrastructure)、加拿大的电子健康系统(e-Health)和澳大利亚的电子健康网络(Health Online),各种已经应用的医院管理信息系统HIS、RIS、和PACS等,信息技术已经在医疗管理方面发生了深刻的变化。
我国卫生信息化建设起步较晚,医院层次的电子病历研究探索刚刚起步,与真正的信息化、网络化还存在较大的差距,中医药方面的网络资源包括中医药文献数据库检索系统、中国中草药大典、中药基本信息数据库、医学数据库大全、名老中医、中华药膳等,但由于中医药理论的自然哲学特点,信息化仅仅实现了文字的超文本化和图片的数字化。
有学者指出,基于智能Agent的个性化信息检索系统是一个具有个性化智能化的多Agent信息检索系统,它以用户为中心,挖掘用户的真实意图进行WWW搜索。
2.2 多Agent是学术交流的平台 由于Agent具有协作性
的特点,可以与多个Agent进行协调合作,共同完成复杂问题的求解,而传统的医学学术交流和解决疑难问题时,多采用专家会诊讨论的方式进行。因此,二者在问题解决模式上具有相通之处,甚至,Agent技术可以实现控制和协调远程医疗系统中的信息共享和交流,在医疗活动及医疗信息资源的广度和深度上实现系统的整合。
与传统模式相比,Agent技术为领域专家,提供了更广阔、更专业的智能信息平台,真正实现了跨地区、跨医疗单位的综合问题求解及疑难医学问题探讨,对于医疗资源的进一步共享,公平分布,甚至学术交流提供了更为广阔的空间。
3 中医诊疗智能化的探索
在过去几十年中,利用人工智能技术探讨中医诊疗过程已经取得了一部分成果。自1979年关幼波肝炎诊治系统的出现,为中医诊疗与人工智能技术的结合揭开了崭新的一页。随后,陆续出现了一些旨在快速有效解决问题的医疗专家系统,但这些专家系统更注重专家诊疗经验与智能技术的结合,对于医者的认知在诊疗中的决策作用尚未进行深入探讨和挖掘。随着人工智能技术的发展,有学者尝试运用人工神经元网络的方法,在中医领域建造了第二代专家系统的外壳。发挥神经元网络的特点弥补了知识获取和深层知识推理的不足。这些研究成果虽然并未在医疗活动中得到广泛的推广和使用,但在中医诊疗智能化研究进程中有着不可磨灭的贡献。
在未来的智能Agent中医诊疗平台中,作为一种理想,是要做到人与计算机之间形成同伴关系,即关键之处、需要经验知识之处必须靠人,至于可以形式化的处理的地方则靠计算机,两者密切结合,使得在求解问题的过程中,甚至难以判断所使用的知识究竟是来自计算机的还是来自人的。这个理想将彻底改变人随机器运行方式进行思考的被动局面。笔者认为,如何建立更适合医生诊疗操作、群体交流和能激发医者灵感涌现的智能Agent平台,一方面有赖于智能技术的不断发展,另一方面,医案不妨作为理论研究模型构筑的切入点。
清代医家周学海认为:“宋以后医书,唯医案最好看,不似注释古书之多穿凿也。每部医案中,必有一生最得力处,潜心研究,最能汲取众家之所长。”现代名医恽铁樵所云:“我国汗牛充栋之医书,其真实价值不在议论而在方药,议论多空谈,药效乃事实,故造刻医案乃现在切要之图。”通过对医案的学习和研究,了解中医各名家的学术思想和临床辨证论治的特色,并对其进行归纳和总结上升为共性的诊疗规律,以便于更好的为临床服务。
然而,医案方面的书籍众多,这为临床工作者在面临疑难问题求解是造成了很大的困难,传统方式的研读多是从名家医案入手,从中获得宝贵的诊疗经验,在临床上实践,根据病人病情的变化用心思索,调整治疗方案。经过不断的学习、实践和思索,实现经验积累,同时也在诊疗过程也是形成新的医案资料的过程。用计算机和专家系统整理古籍医案工作已经开展了多年,在取得成果的同时,也存在错检、漏检、统计结果呆板,功能不全等问题。如何能从医案人手,发挥计算机技术在医案整理中数据完整,记忆准确的长处;发挥智能Agent技术在构建人机界面时对诊疗思维的启发性和使用的便捷性;发挥医者在诊疗过程的主动性。有待于进一步探索。
如果时光倒流500年,你会如何对当时的人们述说今日的世界?在那个时代,哥白尼刚刚发表日心论,伽利略还在比萨斜塔抛掷铁球,吴承恩还在用毛笔写着《西游记》。如果你对他们说:“嘿,老兄,我对着手上的这个‘黑色方块’说句话,它不仅能让你看到太阳系长什么样,告诉你什么是重力加速度,还能直接把唐僧要去西天取的经下载给你看。”他们可能会觉得你要么是神仙,要么是神经。
AI从诞生到现在已经有60年的时间,期间经历两轮起落,呈阶梯式进化,走到今天进入第三个黄金期。如果按照其智能水平划分,今天的人工智能尚处在狭义智能向广义智能进阶的阶段,还是一名不折不扣的“少年”,未来拥有无限的可能和巨大的上升空间。
AI是一门交叉的学科:人工智能由不同的技术领域组成,如机器学习、语言识别、图像识别、自然语言处理等。而同时,它也是一门交叉学科,属于自然科学和社会科学的交叉,涉及到哲学和认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论等学科。因此人工智能领域的技术壁垒是比较高的,并且会涉及到多学科协作的问题,对任何公司来说,想做好人工智能将是一门大工程。未来不大可能出现一个公司能包揽整个人工智能产业每一个部分的工作,更可能的模式将是一个公司专注于一个相对细分的领域,通过模块化协作的形式实现人工智能领域的不同应用。
进化史呈阶梯状,以阶段突破式为成长模式:人工智能的发展经历了两次黄金和低谷期,
现在正经历着第三个黄金期。1956年,麦卡赛、明斯基、罗切斯特和申农等年轻科学家在达特茅斯一起聚会,并首次提出了“人工智能”这一术语,标志着人工智能的诞生。第二年,由 Rosenblatt 提出 Perceptron 感知机,标志着第一款神经网络诞生。1970年,因为计算能力没能突破完成大规模数据训练,人工智能的第一个黄金期到此结束。
后直到1982年德普霍尔德神经网络的提出,人工智能进入第二个黄金期,之后BP算法的出现使大规模神经网络训练成为可能,人工智能的发展又一次进入。1990年,因为人工智能计算机和DARPA没能实现,政府撤资,人工智能又一次进入低估。2006年,随着“深度学习”神经网络取得突破性进展,人工智能又一次进入黄金时期。
AI将由狭义智能向广义智能进化,虽然人工智能的诞生已经有60年的时间但如果把它比喻成一个人的话,当前的他应该还未成年。按照人工智能的“智能”程度,可以将其分成狭义智能、广义智能、超级智能三个大的发展阶段,现阶段的图像与语音识别水平标志着人类已经基本实现狭义智能,正在向广义智能的阶段迈进。
狭义智能:即当前的技术已经实现的智能水平,包括计算智能与感知智能两个子阶段,计算智能指的机器开始具备计算与传递信息的功能,感知智能指机器开始具备“眼睛”和“耳朵”,即具备图像识别与语音识别的能力,并能以此为判断采取一些行动。
广义智能:指的是机器开始具备认知能力,能像人类一样获取信息后主动思考并主动采取行动。在这个阶段,机器可以全面辅助或代替人类工作。
超级智能:这个阶段的机器几乎在所有领域都比人类聪明,包括科学创新、通识和社交技能等。这个阶段目前离我们还比较遥远,到时候人类的文明进步和跨越或许将有赖于机器,而机器人意识的伦理问题也许将在这个阶段成为主要问题。
推荐引擎及协同过滤可以分析更多的数据
智能助手并不只局限于Siri等手机语音助手。微软率先在win10 系统中加入个人智能助理Cortana,标志着个人PC端智能助理的出现;图灵机器人以云服务的方式进入海尔智能家居、博世mySPIN车载系统,预示着多场景人工智能解决方案的潮流。初步实现人机交互的智能助手系统,已经被应用于智能客服、聊天机器人、家用机器人、微信管理平台、车载系统、智能家居系统、智能手机助理等多个软硬件领域。
垂直类网站及社交平台可以借助智能助手系统打造高专业度的“在线专家”以提升平台价值;企业可以借助以“语义识别”为基础的智能助手系统,打造智能客服,效率远高于传统的以“关键词对应”为技术支持的客服系统。
推荐引擎,是主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。挖掘用户的喜好和需求,主动向用户推荐其感兴趣或者需要的对象。传统推荐引擎通常利用用户在平台上的历史记录进行推荐,效率低、匹配度不高。目前随着大数据和深度学习技术的推进,推荐引擎及协同过滤可以分析更多的数据,乃至全网数据,并模拟用户的需求,真正达到按需推荐。全球最大的正版流媒体音乐服务平台Spotify也利用卷积神经网络参与建设其音乐推荐引擎;谷歌也提出利用深度学习方法来学习标签进行推荐建设。出品纸牌屋的全球最大在线影片租赁公司Netflix 也利用深度学习网络分析客户消费的大数据,还计划构建一个在AWS云上的以GPU为基础的神经网络。
“餐厅推荐引擎”Nara,便是一个利用AI技术的推荐引擎。在上线之初,Nara 就取得了400万美元的投资。Nara 的数据库中有超过100000家餐厅的信息,并利用特有的“Nara神经网络”,学习使用者的偏好,最终达到“电脑帮你点餐”的目的。
而今年3月22日,国内AI领军企业阿里巴巴旗下的阿里云数加启动“个性化推荐”引擎对外公测,该引擎用于帮助创业者可以快速获得媲美淘宝天猫的个性化服务能力。阿里云数加上的推荐引擎能够以更低的成本完成开发,节省程序量达到90%,推荐引擎的搭建时间将由几个月缩短到几天。
对于不了解算法的人,只能实现标签规则类的推荐,但如果要做成机械化、类似协同过滤的算法,创业公司需要配置大量的算法工程师,人力成本很高。现在用了数加的推荐引擎,商家只需要做数据的ETL加工,推荐的结果集、训练集都不用处理,只需要调整参加即可得到推荐结果。
AI带给人们新的视觉???
医疗:为健康诊断和药品研发插上高飞的翅膀
健康诊断有望迎来新纪元,海量的病历数据和医学界的新研究成果,单靠人工很难及时筛选并利用,而引入人工智能技术将充分发挥这些信息的价值。例如著名的个人健康管理产品公司Welltok将 IBM的Watson功能融入旗下产品 CafeWell Concierge APP中,借助 Watson 的认知计算能力理解人类语言,实现与用户沟通的能力,从大量数据中进行分析并为用户提供健康管理相关的答案和建议,实现健康管理、慢病恢复训练、健康食谱等功能,这一领域的良好前景使 Wellltok公司近年的融资额连创新高。另外,2015年IBM斥资10亿美元收购医疗影像与临床系统提供商Merge,将研究如何实现 Watson的“辨读”医学影像功能。此外,AI 还可以从医疗中心获得的健康数据,通过大数据分析,实现根据分析患者行为来制定个性化治疗方案的功能。
智能家居:天花板尚远,AI有望成为核心
行业天花板尚远,增速有望保持在 50%左右, 《钢铁侠》中的“Jarvis”作为智能管家,除了起到钢铁侠的小秘书的作用,还帮主人打理着日常生活,向我们展示了一个理想中的智能家居系统。虽然我们目前可能离那个无所不能的智能管家还很遥远,但智能家居对我们生活的变革确实已经开始了。根据《2012-2020 年中国智能家居市场发展趋势及投资机会分析报告》的预测,我国智能家居市场在 2016年将达到605.7亿的规模,同比增长50.15%,到2020年市场规模将达到3294亿,年均增速将保持在50%左右,具备充足的向上延伸空间。而智能家居想达到“Jarvis”般的终极效果,必然需要引入AI技术,实现家居的感应式控制甚至自我学习能力。
AI有望成为智能家居的核心,实现家居自我学习与控制。按照智能家居的发展进度,大致可以分为四个阶段:手机控制、多控制结合、感应式控制、系统自我学习。当前的发展水平还处在手机控制向多控制结合的过度阶段。而从多控制结合向感应式控制甚至自我学习阶段进化时,AI将发挥主要功能。到今天为止,家居的实体功能已经较为全面,未来的发展重点可能在于如何使之升级改造,实现家居的自我行为及协作,因此未来AI在智能家居领域的应用有望成为其核心价值。AI对智能家居的重构可以深入到方方面面,包括:控制主机、照明系统、影音系统、环境监控、防盗监控、门窗控制、能源管理、空调系统、花草浇灌、宠物看管等等。
无人驾驶:政策渐萌芽,AI决定可靠性
优点多、动机足、政策渐萌芽。据麦肯锡的调查显示,如果能解放驾驶员的双手,一辆无人驾驶汽车内的乘客通过移动互联网使用数字媒体服务的时间多一分钟,每年全球数字媒体业务产生的利润将增加 50亿欧元。此外,由于自动泊车无须为乘客下车预留开门空间,使得停车位空间可缩减至少15%。
如果无人驾驶汽车以及ADAS系统能够将事故发生率降低90%,即可挽回全美每年的损失约1千900亿美金。可以说诸多的优点使得无人驾驶技术的研发动机还是相当充分的,因此未来无人驾驶推行的力度应该还会保持在一个比较高的水平。美国勒克斯研究公司曾预计无人驾驶汽车的市场规模在2030年将达到870亿美元。
到目前为止,各国政府对于无人驾驶技术在政策上的支持正逐步放开,美国政府在年初刚刚宣布了40亿美元的资助计划;英国目前已经不需要获得额外批准和履约保证即可进行实际道路的无人驾驶汽车测试;而德国也在去年宣布将计划设立无人驾驶汽车测试路段,供安装有驾驶辅助系统或全自动驾驶系统车辆行驶;欧盟总部正在就如何修改现行有关驾驶的法律法规从而支持自动驾驶的发展展开讨论和研究工作;日本也提出要在2020年之前实现自动驾驶汽车方面的立法,并将自动驾驶作为 2016年9月七国集团交通部长会议的议题。
“无人汽车大脑”AI的智能程度决定了无人驾驶的可靠性。由于无人驾驶完全交由汽车的内置程序负责,因此AI就是无人汽车的大脑,而测距仪、雷达、传感器、GPS等。设备都是AI的“眼睛”。AI的智能程度直接决定了无人驾驶汽车在不同的路况、不同的天气、甚至一些探测设备出现故障的突况下能否及时做出正确的判断并灵活调整行驶策略,最终决定了无人驾驶汽车当前最亟待突破的可靠性。
NVIDIA 在2016年的 CES大会上了“Drive PX 2”车载计算机,以及一套与之搭配的具有学习功能的自动驾驶系统。该系统的亮点在于“自我学习”,通过让车辆自行分析路面状况,而不是在数据库中寻找预先储存的策略实现自动驾驶,系统背后连接着名为NVIDIA DIGITS的深度学习训练平台,最终连接到NVIDIA DRIVENET神经网络,为车辆的自我学习和完善提供支持。并且由于它是通过判断物体的行进轨迹而不是物体本身去计算路径,因此在驾驶时受天气影响较小。
AI 成必争之地
目前全球AI主战场依旧在欧美。Venture Scanner的统计显示,根据从事 AI相关业务的公司数量来看,目前全球 AI的主战场还是集中在北美和西欧地区。美国数量最多,达到450家左右的水平。而中国从事相关业务的公司数量还比较少,和俄罗斯、澳洲、部分欧洲国家及非洲南部国家水平接近,相比起欧美国家的AI公司数量,还有很大的提高空间。
Google:投资未来的人工智能帝国
建立Alphabet帝国,具备品牌背书效应。2015年,谷歌成立母公司 Alphabet, 搜索、广告、地图、App、Youtube、安卓以及与之相关的技术基础部门”仍属于谷歌,而Calico、Nest、Google Fiber、Google Venture、Google Capital 及 Google X 都将独立出来,成为 Alphabet 旗下的独立公司。通过建立 Alphabet集团,谷歌将不同业务的研发独立出来,以子公司的形式进行业务开展,保留在Google这个品牌下的基本都是原有的传统强势业务。
而其它公司负责在各自的领域“打头阵”,一旦业务研发成功,母公司连带着google这个品牌都可以受益,而如果研发失败,也不会公司的品牌造成多大的不良影响,建立了良好的品牌背书效应。将机器学习技术应用到所有产品之中,我们不难发现,谷歌近年几乎将人工智能渗透到了旗下的各类产品中,可谓是全线铺开。正应了谷歌 CEO的那句话:“我们将小心谨慎地将机器学习技术应用到我们所有的产品之中。”根据当前Alphabet 的集团架构,我们将涉及到AI应用的子公司情况以及相应的业务开展情况罗列如下:
Nest:从事智能家居生态系统建设。2014 年谷歌以32亿美元收购 Nest。Nest 生产智能恒温器,它能够学习用户的行为习惯,并且根据他们的喜好去调节温度。同时,Nest 也提供火警探测器和家庭安全摄像头等智能家居。
Google X:谷歌各类创新技术的“孵化池”。Google X开展的与AI有关的项目有:无人驾驶汽车、Project Wing 无人机送货项目、对抗帕金森氏症的 Liftware“反抖”汤匙、用于疾病预警和健康监控的可穿戴设备、Project Titan 太阳能无人机项目、以及 Replicant 团队负责的机器人项目等。
Verily:从事生命科学业务,即原来的 Google Life Science。代表产品有可以收集佩戴者体温和血液酒精含量等生物数据的智能隐形眼镜,以及监控血液中纳米粒子的智能腕表。
DeepMind:深度学习算法公司。2014年谷歌以4亿美元收购了DeepMind。
社会医疗保险是一种“低水平,广覆盖”的保障,其最高“赔付金额”是当地上年社会平均工资的倍左右,在全国大多数地区为~万元,而重大疾病医疗费用一般高达万元以上,两者之间存在较大缺口。
商业医疗保险的空间
建立完善的医疗保障体系已经是当务之急,从目前来看,利用商业医疗保险建立一个没有漏洞的多层次的医疗保障体系是一个合理的选择。就险种类别来看,目前上公众急需的医疗保险、老年护理保险,属于健康险的范畴,而目前我国还没有一家专业的商业健康保险公司,健康险也只是作为寿险的附属业务。尽管如此,我国近年来的健康险增长依然迅速,年度我国健康险保费达到亿元,占人身险总保费的;年健康险保费达到亿元,占人身险总保费的。这一成绩较之成熟市场的到有较大距离,但较上年增长,远远高于同期的人身险保费增长率。在七月召开的中国保险行业协会健康保险工作部成立大会暨第一次工作会议上,专家们认为,由于国家基本医疗保险覆盖面不足,保障程度相对不高,为商业保险公司发展健康保险留下了巨大的发展空间。较为谨慎的预测是,到年前后,我国健康保险的市场规模在亿元左右,而较为乐观的估计是在亿元左右。这一切表明中国健康险市场充满巨大的潜力。
商业保险公司的“苦水”
市场潜力巨大,老百姓又急需,这种两全其美的事情,为什么得不到保险公司的热烈响应呢?实际上,商业保险公司有其商业上的苦衷,多种因素制约了业务的顺利开展。
赔付率居高不下
长期以来,各保险公司开办的医疗保险都处于收赔相抵,甚至收不足赔的状况,个别地方的赔付率甚至高达,这使保险公司的利润微乎其微,不少公司对大力发展医疗保险的热情不高。
管理难度较大
保险公司与医疗机构的合作关系难以建立,加上医疗制度的不完善,透明度不高,保险公司难以对医疗费用进行控制。保户中存在着不少逆选择投保的,而且一些道德风险和索赔欺诈风险大量存在,使保险公司难以拓展市场。
经营管理方法不先进
在美国普遍使用的风险管理技术,如复杂的费率厘定、承保选择、次优要求、大案管理、非比例再保险保护等,在我国还鲜为人知。
专业化程度低
一方面,我国目前还没有一家专业的商业健康保险公司,国内保险公司把健康险作为寿险的附属,极大地影响健康险的经营战略决策。另一方面,人才匮乏。医疗保险对保险人员的医学知识要求较高,在核保、理赔、精算等方面都需要专业性较强的人才,而保险公司这方面的专业人才缺乏,影响了医疗保险业务的推广。
适合健康险业务的系统缺乏
品种单调,个性化、多元化程度差。当前,公众急需的是纯粹的医疗保险、老年护理保险等,而市场上没有老年护理保险,而一些险种又是以附加险形式随主险开展且以统保形式承保的,难以满足人们的需求;国际上成熟的商业健康险市场一般包含四大类产品:医疗费用给付类、失能收入损失补偿类、长期护理保障类和疾病给付类。我国虽已有多种健康险产品,但主要集中在第一类上,而且都是一年一保的短期产品。
症结所在
健康险的症结在于风险控制难度大、专业技术要求高。
第一,从管理上说,健康险对案件的管理不是结果管理,而是过程管理。它保障的不是“疾病发生”,而是“就医事件”。“就医事件”是一个完整的过程,它包括疾病发生、就医、治疗、痊愈及出院等步骤,每一个步骤不同的处理方式决定了案件结果的不同。这决定了医疗保险在精算、风险控制、核保理赔、医疗协调管理等各方面均不同于寿险和意外险。其次从协调管理上说,在我国商业保险公司、社会保障部门、被保险人和医疗服务提供者构成了健康保险的四方关系,在这四方关系中,医疗服务提供者对发生就医的被保险人的住院时间长短、治疗方案、是否发生医疗费用及发生多少医疗费用等起着重要作用,社会保障部门与商业保险公司在统一标准、信息共享方面有较强的合作需求。因此加强协调管理对合理施治和合理用药方面的管理有着突出重要的意义。
第二,从风险控制上说,寿险的基础是建立在大数法则上,依赖于“死亡事件”,而死亡是投保人或是被保险人较难人为控制的事件,是一种纯粹风险。而对健康保险来说,其经营的是就医事件和医疗费用风险,被保险人可能在医疗服务提供方的配合下,“无病看病、小病大看”。因此其道德风险要比寿险和意外险严重且不可控。其次,同传统寿险相比,对被保险人的风险控制更为复杂。传统寿险通常将被保险人的健康状况及家族病史作为核保的重点,而对于健康险来说,被保险人保障水平、保险信用记录、过度利用倾向、收入水平、职业情况以及定点医疗机构行医记录等信息也是风险评估的重要部分。
第三,从费率厘定上说,人寿保险主要考虑死亡率、费用率和利率,健康险所要考虑的不仅是疾病的发生率、就医率和住院天数,更要考虑各地的经济发展状况、医疗消费水平、区域及城乡差异、投保团体的情况、医疗环境和诊疗技术的变化等因素。由于医疗保险受免责期、等待期和免赔额的影响,其责任发生带有一定的滞后性,在未到期责任准备金和未决赔款准备金的计提上又不同于财产保险和意外伤害保险。
智能化系统解决之道
健康险这些独有的特性决定了传统的业务系统将很难满足健康险业务的发展,因此,一套能解决业务难点、满足其特殊业务需求的智能化系统就成为了解决问题的关键。因为一套好的健康险智能化系统应具备有效的过程管理、强大的数据交换功能、全方位的风险控制和先进的人工智能技术,并且具有良好的扩展性。
智能化系统通过科学地监控疾病发生、就医、治疗、痊愈及出院整个“就医事件”,从而实现有效的过程管理。由于健康险业务的复杂性、频繁性和实时发生性,需要有效的过程管控系统,单纯的业务流程管理将不能适应医疗保险业务发展和风险管控的需要。传统的业务系统通常只能进行事后型的管理,即就医事件结束后,被保险人持医疗费用帐单进行索赔时,业务系统才开始进行处理。在这种情况下要对就医事件进行审核困难明显加大,常常导致保险欺诈,由于对某些不合理的医疗费用的发生未进行事先控制,导致理赔时出现纠纷。通过过程管理,能够有效地消除保险人、被保险人及医疗机构三者间的信息不对称,使得保险人可以及时获得被保险人的诊疗信息,并可在就医事件出现不合理的情况下及时介入,防止不合理费用的发生。通过过程管理,结束了医疗费用的高低基本受控于医疗机构的情况,加强了保险人对医疗费用的控制力,极大地降低不合理医疗费用的发生率。
智能化系统可同医疗服务提供者、社保机构进行同步异步数据交换,能够及时地获取各种信息,如:被保险人的医疗信息、药品、诊疗项目、服务项目列表及给付比例等基础数据。通过数据交换,为过程管理及风险监控提供了必要的数据,为保险公司协调管理社会保障部门、医疗服务提供者和被保险人提供了有力的支持,同时减少了工作人员的录入量,增强了业务处理的自动化程度,使工作效率得到了极大的提高。
智能化系统拥有科学的风险评估体系。由于健康险业务的复杂性,在对被保险人进行核保时必须全方位的评估被保险人的风险,如:被保险人保障水平、保险信用记录、过度利用倾向、收入水平、职业情况以及定点医疗机构行医记录等。通过科学地风险评估体系能够准确全面地揭示被保险人的风险,为核保提供重要的参考信息,避免了被保险人逆向选择等风险,从而减少了保险公司的损失。
智能化系能够有效协调保险人、被保险人和医疗服务提供者三方关系,并能对就医事件的整个过程进行监控,及时发现被保险人“无病看病、小病大看”,医院过度提供医疗服务等风险。通过先进的人工智能判断技术,增强了业务处理自动化的能力,可减轻核保、核赔业务人员的工作压力,降低商业医疗保险费用;也可以提高工作效率。
智能化系统建成后,经过一定时期的运行,将积累大量的业务数据,通过数据挖掘技术,可从大量的数据集合中有效发现有价值的商业信息,同时因为有了足够的样本数据,从而为健康险的费率厘定提供重要依据。通过对业务数据进行数据挖掘,保险公司将逐步建立起自身的核心竞争力,智能化系统积累的经验将成为其他公司唯一无法赶超的“信息壁垒”。
由于各地医疗服务水平、基本医疗保障、疾病发生率等存在一定的差别,因此不能按照同一种模式对各地的健康险业务进行统一的管理,智能化系统能对于不同类型的医疗服务、不同发展水平的地区,采取有针对性的管控,使得保险公司可以根据当地的具体情况,顺利开展业务,扩大市场,提高了管理效率,节约成本。
在处理健康险业务时,不仅数据量大,而且还需要综合不同类型的数据,例如:在理赔时,除需要知道被保险人的自身信息外,还需要知道就医医院,使用的药品明细等信息。智能化系统能处理健康险大量数据要求,协调各种业务数据,从而提高了工作效率。
智能化系统实现了数据大集中,能够处理日益显著的人口流动问题,真正支持商业医疗保险产品“全国联保”,实现“风险控制到人”。由于能更好地提供个性化的服务,从而提高了客户的满意度。从管理角度而言,数据集中充分体现了公司总部的监管作用,实现业务数据的实时收集,汇总和查询,同时允许各分支公司在统一管理下的部分个性化。
此外,智能化系统必须具备良好的扩展性,由于健康险业务在中国发展得非常迅速,新的需求、保险产品、业务规则不断出现,具备良好扩展性的系统可通过很少的调整,甚至是不作任何的调整就可以处理新的业务,从而极大地节省了保险公司的运营成本。
案例:
太平洋补充医疗保险方案
全国基本医疗保险办法实施后,城镇职工的基本医疗得到了保障。但是,由于基本医疗保险只能解决参保人员的基本医疗需求,而不能解决劳动者患重大疾病超过封顶线以上的医疗费用负风险;加之参保人员的住院费用是按比例报销,职工个人负担部分较重。因此,为化解参保人员患重大疾病的大额医疗风险,减轻其住院费用负担,太保寿险在全国一些地区相继推出了补充医疗保险。
有效监管面临挑战
太平洋保险寿险总公司希望用一套健康险业务系统来统一管理全国各分支公司的补充医疗保险业务。目前的情况是大部分的分支公司通过人工方式进行核赔理算,带来的问题是显而易见的,由于缺少自动化导致工作效率低,容易出错,客户从报案到得到理赔等待的时间长,客户满意度差。而有些分支公司使用简单的系统进行业务处理,这些系统只针对当地的业务而开发,因此可扩展性差,无法满足业务发展的要求,而且数据共享的难度大。由于各地健康险业务“各自为营”,导致总公司无法直接取得业务数据,因此很难进行有效的监管。
与此同时,要开发一套统一的、集中式的健康险业务系统面临诸多挑战。首先,业务存在地区差异。由于各地医疗服务水平、基本医疗保障、疾病发生率等存在一定的差别,太保各分支公司在开展健康险业务时必须要结合当地的实际情况,这使得各地协议书的内容存在一定的区别,因此系统必须有足够的灵活度以覆盖绝大部分的健康险业务。其次,各类基础数据没有统一标准。例如,针对同一种药品,各地的命名可能是不同的,因此没有一套标准来规范诸如药品、疾病、诊疗项目、服务项目等基础数据,导致数据交换无法进行。最后,建立数据接口存在客观条件的限制。目前,同医院建立数据接口由于客观条件限制,无法实现。而同社保间的数据接口,由于各地社保的数据格式不一致,因此系统必须能处理各种不同的数据格式。
集中式解决方案
该系统是一套采用结构的集中式系统,所有的数据都存放在太保寿险总公司,从而很好地解决了数据集中的问题,提高了管理效率。
该系统最大的四个特色是灵活的责任管理、标准化的医疗字典、强大的数据交互和复杂的业务逻辑。首先在本系统中通过责任管理,可以方便地设置、修改保险责任,并可针对保险责任设置对应理算公式。在新建保单时,可以灵活选择与之相匹配的理算公式。其次,系统建立了标准化的医疗字典,包括:药品、疾病、诊疗项目、服务项目、医院信息、社保机构。根据太保健康险业务的实际情况,疾病使用编码。药品以上海市卫生局系统标准代码为基础,编码时将药品分为化学药品及中成药两大类,化学药品以药品用途分类为主,中成药按药理作用进行分类;所有药品,以一物一码为原则。诊疗项目、服务项目则使用太保提供的编码。通过同各地的数据建立对应关系,实现了数据的交换。第三,系统同社保间建立了数据接口,方便地导入被保险人的医疗费用信息。通过其它的数据接口,实现批量导入客户信息及药品、疾病等基础数据。实现了对被保险人医疗费用的监控,大大降低了工作人员的录入量。最后,系统可处理复杂的业务逻辑,在案件内部的逻辑关系中,可实现在一个案件下的多次报案,多次立案,多次理算,多次给付。在协议书同保单的关系中,可实现一份协议书下对应多个保单,而每份保单又可对应一个投保人及多个被保险人。
此外系统记录被保险人从报案、回访、立案、资料处理、调查、理算到赔付的所有信息,实现了对被保险人就医事件的监控。
理算时,系统根据一定的规则自动计算进入保险责任的理算金额,并根据影响理算的各种因素,如:基本医疗部分的理赔情况、免赔额等,自动计算出理算结果。降低了错误的概率,极大提高了工作效率。
为了能适应各类核赔流程,系统使用强大而灵活的工作流,通过设置核赔规则,实现自动核赔流程。
客户收益