首页 > 文章中心 > 数据挖掘技术论文

数据挖掘技术论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数据挖掘技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

数据挖掘技术论文

数据挖掘技术论文范文第1篇

[关键词]数据挖掘客户关系管理应用步骤

根据波特的影响企业的利益相关者理论,企业有五个利益相关者,分别是客户、竞争对手、供应商、分销商和政府等其他利益相关者。其中,最重要的利益相关者就是客户。现代企业的竞争优势不仅体现在产品上,还体现在市场上,谁能获得更大的市场份额,谁就能在竞争中占据优势和主动。而对市场份额的争夺实质上是对客户的争夺,因此,企业必须完成从“产品”导向向“客户”导向的转变,对企业与客户发生的各种关系进行管理。进行有效的客户关系管理,就要通过有效的途径,从储存大量客户信息的数据仓库中经过深层分析,获得有利于商业运作,提高企业市场竞争力的有效信息。而实现这些有效性的关键技术支持就是数据挖掘,即从海量数据中挖掘出更有价值的潜在信息。正是有了数据挖掘技术的支持,才使得客户关系管理的理念和目标得以实现,满足现代电子商务时代的需求和挑战。

一、客户关系管理(CRM)

CRM是一种旨在改善企业与客户之间关系的新型管理方法。它是企业通过富有意义的交流和沟通,理解并影响客户行为,最终实现提高客户获取、客户保留、客户忠诚和客户创利的目的。它包括的主要内容有客户识别、客户关系的建立、客户保持、客户流失控制和客户挽留。通过客户关系管理能够提高企业销售收入,改善企业的服务,提高客户满意度,同时能提高员工的生产能力。

二、数据挖掘(DM)

数据挖掘(DataMining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。

常用的数据挖掘方法有:(1)关联分析。即从给定的数据集中发现频繁出现的项集模式知识。例如,某商场通过关联分析,可以找出若干个客户在本商场购买商品时,哪些商品被购置率较高,进而可以发现数据库中不同商品的联系,进而反映客户的购买习惯。(2)序列模式分析。它与关联分析相似,其目的也是为了控制挖掘出的数据间的联系。但序列模式分析的侧重点在于分析数据间的前后(因果)关系。例如,可以通过分析客户在购买A商品后,必定(或大部分情况下)随着购买B商品,来发现客户潜在的购买模式。(3)分类分析。是找出一组能够描述数据集合典型特征的模型,以便能够分类识别未知数据的归属或类别。例如,银行可以根据客户的债务水平、收入水平和工作情况,可对给定用户进行信用风险分析。(4)聚类分析。是从给定的数据集中搜索数据对象之间所存在的有价值联系。在商业上,聚类可以通过顾客数据将顾客信息分组,并对顾客的购买模式进行描述,找出他们的特征,制定针对性的营销方案。(5)孤立点分析。孤立点是数据库中与数据的一般模式不一致的数据对象,它可能是收集数据的设备出现故障、人为输入时的输入错误等。孤立点分析就是专门挖掘这些特殊信息的方法。例如,银行可以利用孤立点分析发现信用卡诈骗,电信部门可以利用孤立点分析发现电话盗用等。

三、数据挖掘在客户关系管理中的应用

1.进行客户分类

客户分类是将大量的客户分成不同的类别,在每一类别里的客户具有相似的属性,而不同类别里的客户的属性不同。数据挖掘可以帮助企业进行客户分类,针对不同类别的客户,提供个性化的服务来提高客户的满意度,提高现有客户的价值。细致而可行的客户分类对企业的经营策略有很大益处。例如,保险公司在长期的保险服务中,积累了很多的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。保险公司必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在保险种类、保险年份和保险金额上具有极高的相似性,因而形成了具有共性的客户群体。经过数据挖掘的聚类分析,可以发现他们的共性,掌握他们的保险理念,提供有针对性的服务,提高保险公司的综合服务水平,并可以降低业务服务成本,取得更高的收益。

2.进行客户识别和保留

(1)在CRM中,首先应识别潜在客户,然后将他们转化为客户

这时可以采用DM中的分类方法。首先是通过对数据库中各数据进行分析,从而建立一个描述已知数据集类别或概念的模型,然后对每一个测试样本,用其已知的类别与学习所获模型的预测类别做比较,如果一个学习所获模型的准确率经测试被认可,就可以用这个模型对未来对象进行分类。例如,图书发行公司利用顾客邮件地址数据库,给潜在顾客发送用于促销的新书宣传册。该数据库内容有客户情况的描述,包括年龄、收入、职业、阅读偏好、订购习惯、购书资金、计划等属性的描述,顾客被分类为“是”或“否”会成为购买书籍的顾客。当新顾客的信息被输入到数据库中时,就对该新顾客的购买倾向进行分类,以决定是否给该顾客发送相应书籍的宣传手册。

(2)在客户保留中的应用

客户识别是获取新客户的过程,而客户保留则是留住老顾客、防止客户流失的过程。对企业来说,获取一个新顾客的成本要比保留一个老顾客的成本高。在保留客户的过程中,非常重要的一个工作就是要找出顾客流失的原因。例如,某专科学校的招生人数在逐渐减少,那么就要找出减少的原因,经过广泛的搜集信息,发现原因在于本学校对技能培训不够重视,学生只能学到书本知识,没有实际的技能,在就业市场上找工作很难。针对这种情况,学校应果断的抽取资金,购买先进的、有针对性的实验实训设备,同时修改教学计划,加大实验实训课时和考核力度,培训相关专业的教师。

(3)对客户忠诚度进行分析

客户的忠诚意味着客户不断地购买公司的产品或服务。数据挖掘在客户忠诚度分析中主要是对客户持久性、牢固性和稳定性进行分析。比如大型超市通过会员的消费信息,如最近一次消费、消费频率、消费金额三个指标对数据进行分析,可以预测出顾客忠诚度的变化,据此对价格、商品的种类以及销售策略加以调整和更新,以便留住老顾客,吸引新顾客。

(4)对客户盈利能力分析和预测

对于一个企业而言,如果不知道客户的价值,就很难做出合适的市场策略。不同的客户对于企业而言,其价值是不同的。研究表明,一个企业的80%的利润是由只占客户总数的20%的客户创造的,这部分客户就是有价值的优质客户。为了弄清谁才是有价值的客户,就需要按照客户的创利能力来划分客户,进而改进客户关系管理。数据挖掘技术可以用来分析和预测不同市场活动情况下客户盈利能力的变化,帮助企业制定合适的市场策略。商业银行一般会利用数据挖掘技术对客户的资料进行分析,找出对提高企业盈利能力最重要的客户,进而进行针对性的服务和营销。

(5)交叉销售和增量销售

交叉销售是促使客户购买尚未使用的产品和服务的营销手段,目的是可以拓宽企业和客户间的关系。增量销售是促使客户将现有产品和服务升级的销售活动,目的在于增强企业和客户的关系。这两种销售都是建立在双赢的基础上的,客户因得到更多更好符合其需求的服务而获益,公司也因销售增长而获益。数据挖掘可以采用关联性模型或预测性模型来预测什么时间会发生什么事件,判断哪些客户对交叉销售和增量销售很有意向,以达到交叉销售和增量销售的目的。例如,保险公司的交叉营销策略:保险公司对已经购买某险种的客户推荐其它保险产品和服务。这种策略成功的关键是要确保推销的保险险种是用户所感兴趣的,否则会造成用户的反感。

四、客户关系管理应用数据挖掘的步骤

1.需求分析

只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对现有资源如已有的历史数据进行评估,确定是否能够通过数据挖掘技术来解决用户的需求,然后将进一步确定数据挖掘的目标和制定数据挖掘的计划。

2.建立数据库

这是数据挖掘中非常重要也非常复杂的一步。首先,要进行数据收集和集成,其次,要对数据进行描述和整合。数据主要有四个方面的来源:客户信息、客户行为、生产系统和其他相关数据。这些数据通过抽取、转换和装载,形成数据仓库,并通过OLAP和报表,将客户的整体行为结果分析等数据传递给数据库用户。

3.选择合适的数据挖掘工具

如果从上一步的分析中发现,所要解决的问题能用数据挖掘比较好地完成,那么需要做的第三步就是选择合适的数据挖掘技术与方法。将所要解决的问题转化成一系列数据挖掘的任务。数据挖掘主要有五种任务:分类,估值预测,关联规则,聚集,描述。前三种属于直接的数据挖掘。在直接数据挖掘中,目标是应用可得到的数据建立模型,用其它可得到的数据来描述感兴趣的变量。后两种属于间接数据挖掘。在间接数据挖掘中,没有单一的目标变量,目标是在所有变量中发现某些联系。

4.建立模型

建立模型是选择合适的方法和算法对数据进行分析,得到一个数据挖掘模型的过程。一个好的模型没必要与已有数据完全相符,但模型对未来的数据应有较好的预测。需要仔细考察不同的模型以判断哪个模型对所需解决的问题最有用。如决策树模型、聚类模型都是分类模型,它们将一个事件或对象归类。回归是通过具有已知值的变量来预测其它变量的值。时间序列是用变量过去的值来预测未来的值。这一步是数据挖掘的核心环节。建立模型是一个反复进行的过程,它需要不断地改进或更换算法以寻找对目标分析作用最明显的模型,最后得到一个最合理、最适用的模型。

5.模型评估

为了验证模型的有效性、可信性和可用性,从而选择最优的模型,需要对模型进行评估。我们可以将数据中的一部分用于模型评估,来测试模型的准确性,模型是否容易被理解模型的运行速度、输入结果的速度、实现代价、复杂度等。模型的建立和检验是一个反复的过程,通过这个阶段阶段的工作,能使数据以用户能理解的方式出现,直至找到最优或较优的模型。

6.部署和应用

将数据挖掘的知识归档和报告给需要的群体,根据数据挖掘发现的知识采取必要的行动,以及消除与先前知识可能存在的冲突,并将挖掘的知识应用于应用系统。在模型的应用过程中,也需要不断地对模型进行评估和检验,并做出适当的调整,以使模型适应不断变化的环境。

参考文献:

[1]罗纳德.S.史威福特.客户关系管理[M].杨东龙译.北京:中国经济出版社,2002

[2]马刚:客户关系管理[M]大连:东北财经大学出版社,2008

[3]朱美珍:以数据挖掘提升客户关系管理[J].高科技产业技术与创新管理,2006,(27)

[4]顾桂芳何世友:数据挖掘在客户关系管理中的应用研究[J].企业管理,2007,(7)

数据挖掘技术论文范文第2篇

要了解web数据挖掘技术,首先就必须要了解数据挖掘技术。数据挖掘是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。它的表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。Web数据挖掘是一种综合的技术,它主要是使用数据挖掘技术在互联网挖掘各种有用的、有趣的、隐藏起来的信息或者是有用的模式。与传统的数据挖掘相比,web数据挖掘所挖掘的信息更加的海量,这些信息具有异构和分布广的特点。对于服务器上的日志与用户信息的挖掘仍然属于传统的数据挖掘。Web数据挖掘由于web的逻辑结构其所挖掘到的模式有可能是关于web内容的,也有可能是关于web结构的。同时有些数据挖掘技术也不能直接运用到web数据挖掘中。Web数据挖掘的研究范围十分广泛,它的研究主要包括了数据库技术、信息获取技术、统计学、神经网络等。Web数据挖掘根据所处理的对象可以分为三类:web文档的内容挖掘、web文档的结构挖掘、web使用的挖掘。Web文档的内容挖掘指的是从web文档及对其的描述内容中获取到有用的信息,即是对web上大量的各种文档集合的内容进行处理,例如摘要、分类、聚类、关联分析等。同时内容挖掘还可以对各种多媒体信息进行挖掘。Web上的内容摘要是用简洁的语言和方式对文档的内容进行描述和解释,让用户在不用浏览全文的情况下就可以对全文的内容和文章写作的目的有一个总体的了解。文章写作的目的有一个总体的了解。而web内容挖掘的这种方式非常有用,例如应用到检索结果的显示中。Web分类则指的是根据已经确定好的类别,为每一个获得的web文档确定一个大类。聚类则是指的在没有确定类别之前,将相似度高的文档归为一类。关联分析指的是从文档集合中找出不同语词之间的具有的关系。Web文档的结构挖掘指的是从互联网的整体结构和网页之间的相互链接以及网页本身的结构中获取有用的信息和知识。目前为止针对结构的挖掘主要还是链式结构模式。对于web结构的挖掘主要源于对引文的分析,引文分析的主要内容就是通过对网页的链接数和被连接数以及对象的分析来建立一个链接结构模式,这种模式可以用来对网页进行归类,同时还可以获取网页之间的相似度和关联度等信息。

Web使用的挖掘一般情况下指的是对web日志的挖掘。其挖掘的对象是用户与互联网交互过程中所抽取出来的各种信息,例如访问记录、用户名、用户注册信息以及用户所进行的操作等。在这一方面的研究已经比较成熟,同时也有很多较为成熟的产品例如NETPERCERPION公司的Netpercerptions,Accrue公司的AccrueInsight和AccrueHitList等都是技术较为成熟的产品。

二、Web数据挖掘技术的工作流程

Web数据挖掘技术的主要工作流程可以分为以下几个步骤:第一步,确立目标样本,这一步是用户选取目标文本,以此来作为提取用户的特征信息;第二步,提取特征信息,这一步就是根据第一步得到的目标样本的词频分布,从现有的统计词典中获取所要挖掘的目标的特征向量,并计算出其相应的权值;第三步,从网络上获取信息,这一步是利用通过搜索引擎站点选择采集站点,然后通过Robot程序采集静态的web页面,最后再获取这些被访问站点的网络数据库中的动态信息,然后生成www资源库索引;第四步,进行信息特征匹配,通过提取源信息的特征向量,去和目标样本的特征向量进行匹配,最后将符合阈值条件的信息返回个用户。

三、Web数据挖掘技术在高校数字图书馆中的应用

1、为开发网络信息资源提供了工具

数字图书馆需要的是一种可以有效的将信息进行组织管理,同时还能够对信息进行深层的加工管理,提供多层次的、智能化的信息服务和全方位的知识服务,提供经过加工、分析综合等处理的高附加值的信息产品和知识产品的工具。目前许多高校数字图书馆的查询手段还只局限于一些基本的数据操作,对数据只能进行初步的加工,不具有从这些数据中归纳出所隐含的有用信息的功能,也使得这些信息不为人知,从而得不到更好的使用,这些都是对网络信息资源的一种浪费。而通过web数据挖掘技术科研有效的解决这一问题。这种技术可以用于挖掘文档的隐含的有用的内容,或者可以在其他工具搜索的基础上进一步进行处理,得到更为有用和精确的信息。通过web数据挖掘技术科研对数字图书关注中的信息进行更加有效地整合。

2、为以用户为中心的服务提供帮助

通过浏览器访问数字图书馆后,可被记载下来的数据有两类,一类是用户信息,另一类是用户访问记录。其中用户信息包括了用户名,用户访问IP地址,用户的职业、年龄、爱好等。用户名师用户登录图书馆时输入,用户访问IP地址通过程序获得,其他的信息都是用户在注册时所填写的,访问记录则是在用户登录时所记录的,也是由程序获得。对这些用户信息进行分析可以更加有效的了解用户的需求通过分析服务器中用户请求失败的数据,结合聚集算法,可以发现信息资源的缺漏,从而指导对信息资源采集的改进,让高校数字图书馆的信息资源体系建设的更加合理。对数字图书馆系统的在线调查、留言簿、荐书条等的数据进行收集整理,并使之转化为标准的结构化数据库,然后在通过数据挖掘,皆可以发现用户所感兴趣的模式,同时还可以预先发现用户群体兴趣的变迁,调整馆藏方向,提前做好信息资源的采集计划。通过web数据挖掘,可以对用户的信息需求和行为规律进行总结,从而为优化网络站点的结构提供参考,还可以适当各种资源的配置更加的合理,让用户可以用更少的时间找到自己所需要的资源。例如可以通过路径分析模式采掘捕捉确定用户频繁浏览访问的路径,调整站点结构,并在适当处加上广告或荐书条。

3、web数据挖掘技术在图书馆采访工作中的应用

在图书馆的工作中有一步十分的重要,这就是采访工作,采访工作的做的好坏程度会直接的对图书馆的服务质量产生影响。通常情况图书馆的工作人员会根据图书馆的性质、服务对象及其任务来决定采访的内容。但是这种采访局限性很大,很多时候会受采访人员的主观意识的影响,同时这种方式也会显得死板不灵活。很多时候会出现应该购进的文献没有买,不应该买的文献却买了很多等与读者的需求不符的现象。这些现象的产生都是因为缺乏对读者需求的了解和分析。要解决这些问题就必须对读者的需求进行全面的了解和分析,而web数据挖掘则为解决该问题提供了一种较好的方法。通过对各种日志文件和采访时获得的数据进行分析,可以很清楚的得到读者需要的是什么样的书籍、不需要的又是什么样的书籍,从而为采购提供各种科学合理的分析报告和预测报告。根据对分析还能帮组图书馆管理人员确定各种所需书籍的比例,从而确定哪些文献应该及时的进行补充,哪些文献应该进行剔除,对馆藏机构进行优化,真正的为高校里的师生提供所需要的文献和资料。

4、使用web数据挖掘技术提供个性化服务

传统的信息检索工具在友好型、可理解性、交互性方面都存在着很大的缺陷。通常情况下都只是将各种查询结果毫无逻辑的简单的进行罗列,用户很难从其中获取自己需要的信息,通过数据挖掘,可以对图书馆网站上的在线调查、留言簿、读者调查表等数据进行收集整理,对不需要的冗余信息进行剔除。通过分析可以获知用户所喜好的浏览模式是哪种,他们常访问的网站的路径是什么,他们对图书馆中的那些资源比较有兴趣。然后再根据用户的普遍需求与每个人的个性需求,建立起相应的规则,从而帮助网站设计人员对网站进行设计和优化,使得这些信息检索变得更加的个性化、智能化,并根据每个用户的偏好等特征将检索到的信息排列处理,使得读者可以用最快的速度获得想要检索的文献信息。通过web数据挖掘技术可以对用户的特征信息进行总结,将那些从没有发出过信息的潜在用户进行归类,同时还可以免费的为他们提供各种他们所感兴趣的信息和资料,把这些潜在的用户转变为正式的用户使用web数据挖掘可以对用户的检索日志进行分析,从而得知用户所感兴趣的内容、他们的研究方向,并根据这些内容为用户指定个性化服务的内容,为用户提供各种他们所感兴趣的各种信息。

数据挖掘技术论文范文第3篇

计算机动态取证技术是利用计算机将取证技术、防火墙技术以及入侵检测技术有效的结合起来,可以在海量的信息数据中,对取证需要的数据进行提取,这项技术可以提供实时、智能性数据分析,可以保证数据系统的安全性以及保密性,还可以准确的找到相关信息并对其进行保存。计算机动态取证可以全面的获取数据信息,而且可以掌握不法分析犯罪的动机以及手法,有利于提高案件侦破的概率。计算机动态取证具有较高的安全性,其可以采取有效的措施对黑客入侵进行拦截,对非法入侵进行牵制,从而保证信息数据保存的安全性。

2计算机动态取证技术

2.1采集有效数据

数据采集是动态取证重要的环节之一,只有做好数据采集工作,才能保证取证的质量以及完整性,在当前网络患者下,为了保证数据库中数据的充足性,需要提高数据采集的效率。在网络数据获取时,需要注意三点内容,首先,要保证数据的完整性,在采集的过程中,不能对数据进行修改或者破坏;其次,数据采集系统不能受到网络流量的影响;最后,数据采集获取的过程中,要具有较高的透明度,要保证被检测的网络不会受到外界因素的影响。

2.2数据存储

动态取证技术是公安部门应用比较多的技术,与NIDS技术相比,其不但可以对特殊文字以及词汇进行摘录,还可以对数据进行完整性记录,通过对数据模块的分析,可以追查到相关内容。利用动态取证技术,可以将需要的报文完整的保存起来,还可以对网络流量进行详细的记录,可以确保系统不会丢失文件,另外,当系统遭到黑客的入侵或者破坏后,动态取证技术还可以进行实时恢复,所以,这项技术具有一定防御以及反击作用。在应用动态取证技术时,需要保证系统存储空间的容量。

2.3数据分析

数据分析是动态取证中一项关键的环节,通过分析可以辨识不良入侵,是保证数据库安全的有效措施。在网络还原或者重建的过程中,利用数据分析技术还可以将损失降到最低。网络数据分析有两种方式,一种是基本分析,另一种是深入分析,如果取证问题比较简单,则利用基本分析方法就可以解决,但是如果取证比较复杂,并且要求比较高,则必须进行深入数据分析。深入分析需要对重组网络数据以及来源进行分析,还需要对数据间的关联性进行分析,通过数据分析还可以还原与模拟网络事件现场。动态取证技术也具有一定缺点,在取证的过程中存在漏报或者误报的情况。

3数据挖掘技术在动态取证系统中的应用

基于数据挖掘的计算机动态取证技术,与传统的动态取证技术相比,有着较大的优势,其可以对海量收集的数据进行实时取证分析,而且准确性比较高,其具有关联分析的特点,可以对与案件有关的信息或者电子证据进行快速的查找。这一过程需要利用数据分析模块,在对数据进行分析时,需要对犯罪证据进行筛选,动态分析最大的优点是可以对实时数据进行获取,在黑客对原始数据进行篡改或者删除时,这项技术可以对这些犯罪过程详细的记录下来。基于数据挖掘的动态取证技术具有高效性以及可扩展性,利用数据挖掘技术,可以对海量的、不完全或者模糊的数据进行潜在价值的分析。基于数据挖掘的计算机动态取证技术主要有:

3.1关联分析

关联分析是基于数据挖掘的计算机动态取证技术一大特征,利用关联规则,可以对相关数据进行深层挖掘,通过关联分析可以掌握犯罪行为的关联性特征,这些特征有些已经经过了预处理,所以,相关工作这需要做好审查以及审计工作,要通过相关规则对用户犯罪特征以及规律进行总结。为了保证数据动态取证的安全性,需要在系统中设置加密软件,还要将入侵信息反馈到检测系统中,这样可以提高数据分析的效率,还可以实现实时动态取证。

3.2分类分析

分类分析就是通过对分析示例数据库中的相关数据进行分析,准确描述出每个类别的特征,建立分析模型,挖掘出分类的规则,将其它数据库中的记录传送到分类规则中,在动态取证系统的数据采集模块收集了用户或程序足够数据后,在取证的数据分析阶段,应用分类的相关规则来判断用户或程序是否非法。应用分类样品数据来训练数据分析器的学习,还预测一些未知的数据是否具有犯罪证据。

4结语

数据挖掘技术论文范文第4篇

关键词:数据挖掘 客户关系管理 企业发展

企业管理中客户关系的管理必不可少,并且良好的管理有利于企业发展,有利于企业获取更大的财富,有利于企业实现自己的价值,所以保障对企业客户关系的管理。数据挖掘技术就是一个可以帮助企业对客户关系进行有效的管理的工具。

一、数据挖掘和客户关系管理含义

数据挖掘技术(Data Mining可以简称为DM),简单来说,就是一种把隐藏在大型数据库或者数据仓库中所需要的有用信息提取出来的新技术,这是一个对数据库进行研究的非常有价值的领域。数据挖掘技术可以帮助用户从数据库中准确的提取出有用的商业信息,为用户在进行决策时提供重要的支持。

客户关系管理(Customer Relationship Management可以简称为CRM),也有人称之为“顾客关系管理”,关于客户关系管理的定义,目前有两种说法:一,最早的Gartner Group定义为一种商业策略,就是把客户进行分类,并依据分类情况来对企业的资源进行有效的组织,进而企业的业务流程实施以及经营活动都要以客户为核心来进行,以此来提高企业的盈利能力以及客户满意度,取得最大利润;二、是由CRMguru.com给出的定义,客户关系管理就是一个在企业的营销、销售以及服务的业务范围内,把企业现有的客户以及潜在客户,还有业务伙伴多渠道进行管理的过程,或者说技术。

二、数据挖掘在客户关系管理中的应用

随着社会经济的不断发展,市场竞争力也在逐步的增大,商家想要获得最好的利益,就必须对市场的变化迅速的做出反应,能够引起市场变化的重要因素就是客户需求的变化,也就是说,企业必须集中注意力,观察客户需求的每一变化,并把这些资料收集在一起,作为企业发展的宝贵资源进行管理。在企业管理客户信息的过程中,就需要应用到了数据挖掘技术。

数据挖掘技术在客户关系管理中的应用过程中,主要方法有:神经网络法、遗传算法、决策树法、粗糙决算法以及可视化技术、K—最近邻技术等,每个公司的客户关系不同、需求也不同,所以要用到的方法也不同。

数据挖掘技术主要应用于客户关系管理中的这几个方面:(1)挖掘新客户,数据挖掘技术可以对现有的客户信息和市场环境进行统计总结以及归纳,准确的确定潜在客户以及市场目标。因为数据挖掘技术具有统计、聚类和关联的作用,比如说,数据挖掘技术在数据库中发现了这样一个信息“某客户在购买A商品之后,过了一段时间又购买了B商品,最后还购买了C商品”那么数据挖掘技术就会通过次序关联,把这个信息形成“A—B—C”的行为模式。(2)可以保持优质客户。现在社会竞争相当激烈,企业客户更是企业发展的重要因素,优质客户对每个企业来说就更加的重要。数据挖掘技术可以对数据库中的流失客户信息进行分析,并且对流失客户的特征进行准确的描述,然后利用关联、近邻的方式对整个数据库中的消费客户信息进行分析,分析出容易流失的客户,随后就需要采取相应的措施来减少这些客户的流失,尤其是那些可能流失的优质客户,更要采取有力的措施来进行挽留。(3)可以提升客户价值。目前提升现有客户的价值的方式有两个:一是提供特色服务或者产品;二是销售新产品或者服务。想要准确的提升客户价值,就需要数据挖掘技术的帮助了,他可以把之前的客户信息研究分析,并依据新产品或者服务的特征,发现和客户的已购买产品之间的关联,因而准确的找到具有最大购买趋势的客户。

三、加强客户关系管理中数据挖掘的意义

应用数据挖掘技术对客户关系进行管理,可以有效的提高企业的核心竞争力,现代社会的激烈竞争,也就是对客户的竞争,数据挖掘技术对企业的客户关系进行详细的分析,并为企业提供有价值的商业信息,为企业的重大决策提供了重要的参考依据,进而有力的提高了企业的核心竞争力;可以有力的增强企业的执行力,利用信息技术对客户关系进行管理,降低成本,并简化执行任务,有效的实现了资源共享,大力的提高了企业的自动化水平,企业职工的执行能力也进一步得到了提高,也就是增强了企业的执行力[3];可以为企业的下一步战略发展提供帮助,数据挖掘技术对现今的市场环境进行分析,可以预测到每个业务的发展状态,以及每个业务与发生过的商业行为之间的关系,有了这些信息,可以准确的制定企业未来的发展战略,并且可以制定与市场环境相适应的营销策略。

综上所述,目前数据挖掘技术是企业进行客户关系管理的最有效的工具,准确的掌握了客户信息,就是准确的把握了市场需求,可以为企业制定完全适应于市场的发展方向。数据挖掘技术的关键作用就是找出潜在客户,保留忠诚客户,并利用企业有限的资源,对这些客户提供最好的服务,促进企业的不断发展。

参考文献:

[1]张荣耀.基于数据挖掘的客户关系管理研究[D].武汉理工大学, 硕士学位论文,2004,11

数据挖掘技术论文范文第5篇

文献标识码:A

计算机领域新技术应用使各行业生成、收集和存储了大量数据。大量信息数据给社会带来方便也带来大堆问题:信息过量,难以消化;信息真假难以辨识;信息安全难以保证;信息形式不一致而难以统一处理。一般数据库系统可高效实现数据录入、查询与统计等功能,却无法发现数据存在的关系和规则。如何辨析信息和如何不被信息淹没已经成为现实问题。一、数据挖掘直面数据丰富而知识匮乏的挑战

面对信息社会带来的“数据丰富而知识匮乏”的现实挑战,数据挖掘(Data Mining,DM)和知识发现(Knowledge Discovery,KD)技术应运而生,伴随计算机新技术和新理论的出现而发展,在电信与银行,生物及大型超市等领域运用效果显著。数据挖掘有时又称作数据库知识发现(KDD),此术语出现于1989年,从数据集识别有效与新颖的,潜在有用的,最终可理解的模式过程。KDD过程常指多阶段处理,包括数据准备与模式搜索,知识评价及反复修改求精;该过程要有智能性和自动性。有效性指发现新数据仍保持可信度,新颖性要求模式应是新的,潜在有用性指发现的知识将来有效用,最终可理解性要求发现模式能被用户所理解,几项综合在一起称为数据的科学性豍。

数据挖掘的界定。数据挖掘是从存放在数据库与数据仓库或其它存储信息库中的海量数据挖掘有趣知识过程。一般的定义是:数据挖掘是从大量、不完全、有噪声、模糊、随机的数据中抽取隐含其中,事先不为人所知、潜在、有效、新颖、有用和最终可理解知识的过程。研究人工智能学术人员和计算机技术专家通常所说数据挖掘名称各异但实质一样。自然世界数据以多种多样形式存放,除最常见数字与字符等类型,还有许多复杂数据。复杂类型数据挖掘包括:空间数据挖掘和多媒体数据挖掘,时序数据挖掘和文本数据挖掘,Web数据挖掘与流数据挖掘等。数据挖掘与传统数学统计分析有区别,数据挖掘在没有明确假设前提下自动建立方程,可采用不同类型如文本、声音、图片等的数据挖掘兴趣模式;统计数据分析工具侧重被动分析,需建立方程或模型来与假设吻合,最终面对数字化数据;数据挖掘是主动发现型与预测型数据分析工具,分析重点在于预测未来未知潜在情况并解释原因。二、软件工程的产生与数据实用性

软件工程概念源自软件危机,20世纪60年代末的“软件危机”这个词语频繁出现计算机软件领域,泛指计算机软件开发和维护所遇到的系列严重问题。在软件开发和维护过程中的软件危机表现为软件需求的增长得不到满足,软件开发成本和进度无法控制,软件质量难保证,软件维护程度非常低,软件成本不断提高,软件开发生产率赶不上计算机硬件发展和各种应用需求增长等。软件危机产生的宏观原因是软件日益深入社会生活,软件需求增长速度超过软件生产率提高,具体软件工程任务的许多困难来源于软件工程所面临任务和其他工程之间各种差异以及软件和其他工业产品的差异,即特殊性。软件开发和维护过程存在的问题,与计算机软件本身特点有关,软件开发过程进度很难衡量,软件质量难以评价,管理和控制软件开发过程困难等。计算机软件专家认真研究解决软件危机方法,逐步形成软件工程概念,开辟工程学新领域即软件工程学。软件工程用工程、科学和数学原理与方法研制与维护计算机软件有关技术及管理的方法。

软件工程针对数据的处理具有系统的规范的系列办法。1993年IEEE(电气和电子工程师学会)给软件工程综合定义为:将系统化、规范和可度量的方法应用于软件开发、测试、运行和维护全过程,即将工程化应用于软件数据等设计中。软件工程包括方法、工具和过程三个要素,方法是完成软件工程项目技术手段;工具支持软件开发、管理与文档生成;过程支持软件开发各个环节控制与管理。软件工程的发展伴随计算机与数据等相关技术的发展而进步。三、软件工程的知识库应用数据挖掘技术

蕴含数据的特殊软件的生命周期也是一个极其复杂演变过程,各个阶段都会产生大量软件数据。在设计文档与程序源代码,交流历史与Bug报告,软件运行日志等方面产生的大量数据,必然存在着对软件开发和维护具有重要价值的信息。如能充分利用数据挖掘技术发现这些数据隐藏的知识,可提高开发效率并避免错误,增强软件系统运行稳定性和可信性。利用数据挖掘技术处理软件产生大量数据想法在上世纪70年代就出现,但直到最近软件数据挖掘领域才受到越来越多学者关注豏。软件工程国际会议出现关于软件数据挖掘研究工作组,许多数据挖掘会议与期刊陆续出现多篇高质量与软件工程相关学术论文,软件数据挖掘已成为越来越关注热点的研究领域。