首页 > 文章中心 > 岩土工程典型案例

岩土工程典型案例

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇岩土工程典型案例范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

岩土工程典型案例

岩土工程典型案例范文第1篇

岩土勘察技术能够通过对城市工民建项目现场所采集岩土情况的客观数据进行准确的分析和测评,对城市工民建项目工程的设计和具体施工细节提供基础依据。只有对岩土工程的勘察工作予以足够的重视,才能使城市工民建项目的质量得到保障,才能最大程度的避免工程质量问题。岩土勘察工程大致可分为初步勘察、可行性勘察和详细勘察三种。其中,初步勘察要根据具体工程初步的设计来进行;可行性勘察要根据工程方案的要求来进行;详细勘察要符合工程设计的具体要求来进行。岩土工程勘察在任务上根据不同工程的不同勘察阶段,也有着不同的具体要求,要准确并客观的反映施工场地岩土的力学性质、工程地质条件等指标的参数值,并将反映出来的具体参数与工程前期设计、施工客观条件等项目工程的现实要求相结合,完成对项目工程施工标准的测评,并及时客观的提出工程中存在的不合理问题,研讨出有针对性的、科学合理的具体措施或解决方案,保证项目工程的顺利进行。

2岩土工程勘察现有问题

1)工程目标不明确。

在我国目前现有的大多数工程建设中,岩土工程勘察普遍存在着明显的目标缺乏问题。城市工民建项目工程在建设过程中,因为缺乏明确的勘察目标,难以系统、高效、全面的解决在工程设计或施工过程中出现的各种问题。我国现阶段出台的《岩土工程勘察规范》对勘察过程做出明确规定。举例来说:在岩土工程勘察的过程中,一定要根据工程的具体情况,确定并绘制包括工程所在地地形以及坐标的全部工程地区的总平面图,以便工作人员在具体的施工过程中确定工程所在区域地面的高低平整状态,及时发现地基变形与否。然而,还是有相当大的一部分工程在岩土工程勘察前期,对应该收集的资料收集的不够具体、全面,在对具体项目工程地面高低平整状态不够了解的情况下,草草施工,埋下了很多安全隐患。

2)实施方案不合理。

岩土工程的勘察方案是岩土工程可以正常开展最基本的部分,时刻影响着城市工民建项目的工程质量和工程安全。随着科学技术的日益发展和全球化进程的逐步加深,与工程建设相关的技术水平也随之不断提高,因此,岩土工程要在勘察的管理方面加大力度,才能紧跟生产力的发展需求,满足越来越多的工程建设对岩土工程勘察的技术水平要求和质量要求。然而,在新兴企业逐渐增多、市场竞争日益激烈的今天,岩土工程勘察工作的竞争压力也越来越大,经常会出现多个勘察单位同时对一个施工项目进行工程勘察的情况。通常,施工单位为了保证将成本降到最低,会选择报价最低的勘察单位,而这些报价较低的勘察单位在技术、设备和人员等方面存在弱点,也因此报价较低。选用这些勘察单位虽然降低了成本,却会降低工程的勘察质量。

3)人员技术能力差。

岩土工程勘察质量的好坏,不仅取决于勘察过程中所用到的仪器设备的准确性和先进性,勘察人员的技术能力也是影响勘察质量的重要因素。勘察人员在进行城市工民建项目的岩土勘察过程中,如果对可能用到的勘察知识有所缺乏,或对学过的相关勘察知识不能灵活的运用,不仅无法与不同领域的勘察人员进行全方位互补的内部学习和交流,也无法系统全面的理解和掌握岩土勘察技术的现阶段状况和未来可能的发展,一旦出现比较严重的工程建设问题或面对较为复杂的工程时,就不能及时的应用相关的勘察技术予以解决。相当一部分从事岩土工程勘察的工作人员,不能在事前对工程资料有全面、系统、详细的认识,没有做到在事前对其分类和整理,以至于在施工的过程中捉襟见肘,在事后又没有做到及时的总结整理,进而表现出各方面能力比较差的缺陷。

3岩土工程勘察问题的解决措施

1)加强工程管理。

岩土工程勘察对城市工民建项目以内的工程建设有着非常重要的作用以及影响,因此,为了保证工程的使用安全以及质量安全,针对现行岩土工程勘察过程中出现的一些问题,需要制定科学、系统、全面的措施,以强化岩土工程勘察的管理工作,根据具体的勘察内容做出具体并且全面宏观的管理,保证岩土工程勘察在工程建设中应有的效果。比如,强化在岩土工程勘察过程中对收集到的资料的管理,对其进行系统全面的整合,以便勘察人员在具体的施工过程中,全面掌握工程现场岩土的全方面特性,减少勘察工作中不必要的工作量,提高勘察人员的工作效率与工作质量。

2)利用先进技术。

将先进的岩土勘察应用科学技术利用到具体的城市工民建项目工程建设中,既可以保证工程质量,又可以提高工程效率。举例来说:在具体的工程建设中,可以运用先进、高效的探测设备对具体工程进行操作,应用适时集处理,既可以降低成本,又可以加快工程勘察速度并保证勘察质量;还可以在获取地质界面的勘察设备中,将测试点进行加密处理,处理之后的设备可以在工程地质的勘察工作中拥有更加完善的水平,解决在原来的勘察过程中划分不够准确等问题,提高在岩土勘察过程中勘察具体数据的可信度和准确性,有利于提高工程建设在质量上的保证。

3)提高人员素质。

除了技术层面和管理层面的问题,从事岩土工程勘察工作人员的素质问题也是不容忽视的重要因素,勘察人员综合素质的好坏直接影响着最后勘察的数据的准确性,进而影响到工程质量的高低。可见,提高勘察工作人员的综合素质,也是解决岩土工程勘察问题的有效措施,可以在一定程度上提高工程建设的质量。因此,勘察单位要对从事勘察技术工作的人员进行知识更新以及技术培训,让技术人员及时了解并认识到国内外先进的相关技术与典型案例,定期组织人员进行相关方面的交流与讨论,并为勘察人员提供实践机会,让勘察人员在最短的时间内可以将新的先进技术应用到实际操作中来,可以从侧面提高工程建设的最终质量。

4结语

岩土工程典型案例范文第2篇

摘要:介绍了广东省江门市某地下车库基坑支护设计案例,详细介绍了该工程基坑支护设计及施工要点,分析了江门地区复杂基坑周边环境下典型岩土条件适宜采用的基坑设计方案和施工注意事项,以确保基坑工程的安全可靠,为江门地区基坑工程设计提供参考经验。

关键字:软土;被动区加固;复合土钉

Abstract: the article introduces the guangdong jiangmen underground garage foundation pit supporting design case, detailed introduces the foundation pit engineering design and construction points, analyzes the area around the foundation pit jiangmen complex under the environment of geotechnical conditions of the typical for the design of foundation pit construction scheme and matters needing attention, to ensure the safety and reliability of the foundation pit engineering, for jiangmen area provides reference for the design of foundation pit engineering experience.

Key words: soft soil; Passive area reinforcement; Composite soil nailing

吴远亮,女,1981年2月出生,岩土工程专业,中级职称,硕士,

朱远辉,男,1959年3月出生,岩土工程专业,高级职称,副总工,本科,

1 前言

一个优秀的基坑支护设计要做到因地制宜,根据基坑工程周围建(构)筑物对支护体系变位的适应能力,选用合理的支护形式,进行支护结构体系设计。相同的地质条件和相同的挖土深度,允许支护结构变形量的不同,满足不同变形要求的不同的支护体系的费用相差可能很大。优秀的设计,应能较好地把握支护结构安全变位量,使支护体系安全且周边建筑物不受影响,费用又小【1】。

本文通过江门市某地下车库基坑支护设计案例,详细介绍了该工程基坑支护设计及施工要点,分析了江门地区复杂基坑周边环境下典型岩土条件适宜采用的基坑设计方案和施工注意事项,以确保基坑工程的安全可靠,为江门地区基坑工程设计提供参考经验。

2 工程概况及地质条件

2.1 工程概况

东湖・君临天下住宅楼项目位于江门市体育馆南侧,设一层半地下室,钢筋混凝土框架剪力墙结构,基础拟采用钻(冲)孔桩基础。现场地内有95年左右已建建筑物基础、支护桩和部分上部结构。因此必须先对旧建筑物进行拆除。

本住宅基坑平面上呈不规则形状,南北最大尺寸约75m,东西最大约85m,基坑东面为东城村,地下室边线距离村中三层小别墅的最近距离约为9m,基础为天然基础。基坑南面为江门市蓬江区国家税务局,有8层主楼及7层和4层的副楼,为灌注桩基础,地下室边线距离房屋的最近距离约为16m。东面和南面距离基坑西边为市政道路,基坑北面为体育馆,为灌注桩基础。地下二层底板面标高-7.40~-8.50m,基坑底标高为-7.90~-9.00m。基坑开挖深度为5.40~6.6m。基坑平面见图1。

图1 基坑支护平面图

2.2 工程地质条件

场地位于江门市体育馆南侧,属于山前冲淤积地貌。钻探时孔口标高为黄海高程,在+5.39m~+10.60m之间,标高变化不大。场地上覆地层为素填土(Qml)、淤泥质粉质粘土层(Qmc)和粉质粘土层(Qel),地层结构较简单。下伏基岩为(ε)混合岩【2】。

表1 场地主要土层及物理力学指标

3 基坑支护方案选取

3.1本工程主要特点和难点

本工程有以下几个特点及设计难点:

基坑东侧相邻建筑为3~4层的民居,且民居基础为天然基础,为重点保护区域。

基坑东边和南边广泛存在有2.5m~5m高的毛石挡墙,需考虑毛石挡墙的稳定性及对本基坑造成的不利影响。

3、根据现场放线确定基坑西北侧的旧地下室边线与拟建地下室边线距离较近,为了节省造价,此区域的基坑支护考虑最大限度的利用旧的支护桩,以节省造价。

3.2主要设计思路及设计方案

1、通过以上分析,本工程场地北边、西边和南边部分区域分布有淤泥,因此采用搅拌桩止水+超前支护加强型喷锚的支护形式。

2、东侧相邻建筑为天然地基民居,为重点保护区段,采用桩锚支护。

3、根据现场放线确定基坑西北侧的旧地下室边线与拟建地下室边线距离较近,根据旧地下室基坑支护设计图纸,此区域内支护设计利用旧的支护桩,并在开挖过程中在旧支护桩上做一排锚索。

图2 基坑南面剖面图

图3 基坑西北面剖面图

4 支护结构计算

4.1 超载取值

1、基坑边超载按规范取20KPa;

2、基坑东边的民居为天然基础,因此需考虑其对基坑的影响,超载取45 KPa;

3、基坑东边和南边的毛石挡墙按每米25 KPa计算。

4.2 计算结果

计算采用理正深基坑6.0PB1版本。

1、因基坑西北面我们采取利用已有灌注桩再新加一排预应力锚索的支护设计,所以此区域计算的支护桩弯矩必须在一定控制范围内,最后我们通过调整锚索的间距及位置的方法,把支护桩的弯矩控制在已有的灌注桩可承受的范围内。

2、经计算,目前的设计方案满足基坑的整体稳定性、抗倾覆稳定性及抗隆起稳定性。

5 结论

①东湖・君临天下住宅楼项目实践证明,在复杂环境下的深基坑支护设计必须具体环境具体分析。

②在城市建设日益重视地下空间的今天,本工程基坑支护方案具有一定的借鉴意义,工程经济效益和社会效益显著。

参考文献:

岩土工程典型案例范文第3篇

【关键词】天然地基 补偿基础 地基承载力设计值

“假定计算条件为条形基础,基础宽度1.50m,基础埋深1.00m,地下水位埋深0.5m。”在上海地区做过基础设计的同行们对这样一句话应该都非常熟悉。这是上海的地勘报告在给出天然地基承载力设计值时所设定的假设条件(几乎每个地勘报告的假设条件都一样)。但我们实际设计地基基础时不可能总是碰到与假设条件相同的基础,尤其设计地下车库时,基础埋深与假设条件相差甚远。因此我们就要依据实际的基础形状、尺寸和埋深计算地基承载力设计值。那么这个地基承载力设计值应该怎么计算呢?下面我就来说说我的做法,和在几个实际工程中的运用情况,以供大家探讨,希望能起到抛砖引玉的作用。

计算天然地基的承载力我们有两种方法可供选择。第一上海市工程建设规范《DGJ08-11-2010》第5.2.3条给出的土的抗剪强度指标法;第二国家标准《GB50007-2011》第5.2.4条给出的承载力修正法。现在我以馨雅名庭东地块项目为例分别以国标法和上海抗剪强度指标法计算天然地基承载力设计值来做一个比较。该项目天然地基设计参数如下表所示:

其地下车库基础底标高-6.2m,基础埋深4.5m(计算至天然地坪),基础持力层为③层淤泥质粉质粘土层,地下水埋深0.5m。按国标法计算:fa=fak+得fa=69kPa;按上海抗剪强度指标法计算:得fd=114kPa。2010版的上海市地基规范对地基承载力设计值的定义进行了些调整使其与国标规范的特征值的意义保持一致。从规范的有关条文我们可以知道上海规范的fd应该等于国标规范的fa,或者二者从数值上应该很接近。但对于我们这个实际的工程,其计算值几乎相差了一倍。那么问题出在哪里呢?

我仔细检查了每个计算步骤和每个参数的取值,确定计算过程无误。于是我又查阅了上海市地基规范的条文说明、上海的岩土工程勘察规范等。发现其中关于fd的说明中均明确的指出是针对上海地区浅层土的承载力计算,其中上海地基规范的条文说明中列举的典型工程案例更明确基础埋深为1m的条件。我想这应该是是问题的关键所在了,上海地区埋深1米左右广泛分布的基本都是②层粉质粘土层,而本工程基础持力层为③层淤泥质粘土层。上海规范所说的浅层土应该就是②层土,而对于③层土,上海规范的抗剪强度指标法也许是不适用的。为了确定自己的想法,我与勘察设计人员进行了沟通,他们也认为上海规范所说的天然地基仅适用于②层土。而国标规范明确的给出了淤泥、淤泥质土地基承载力的深度和宽度调整系数,因此采用国标规范法计算③层土的地基承载力设计值更适用。除了适用性的原因,由于地勘报告给出的地基承载力设计值进行过修正,而具体的修正方法没被说明,因此即使采用与地勘报告给出的假设条件相同的条件,采用上海规范法计算的地基承载力设计值也会与地勘报告给出的值不一致。这是因为采用上海规范法计算地基承载力设计值会将地勘设计人员考虑的修正因素清除而产生错误的结果。因此我建议无论是②层土还是③层土,当需要调整地基承载力设计值时,都应采用国标法计算。因为国标法计算既简洁,又能保留地勘设计人员对地基承载力设计值的修正因素。

补偿基础(或者叫浮基础)的理论已经提出100多年了,在工程运用上有许多经典的成功案例,近年来为大家所熟知。其基础承载力计算公式为:PG-σc-σw≤fa(其中σc为移去的土的自重压力=,σw为稳定水位的浮力=),将σc和σw的值带入,并且稍微变化既可得出:PG≤fa++,采用土层平均重度替换每层土重度得:PG≤fa++。国标规范的基础承载力计算公式为:fa=fak+(淤泥和淤泥质土时),带入的值则得:fa=fak+,考虑稳定水位水浮力则:fa=fak++。可见补偿基础的承载力与国标规范考虑稳定水位水浮力的地基承载力设计值计算公式几乎一模一样。这又从另一方面证明了采用国标规范计算淤泥和淤泥质土的承载力的适用性。

承载力计算的问题解决了,但很多工程师仍然怀疑③层土作为基础持力层的可行性,因为③层土确实很软,脚踩上去都会陷进去。这种担心其实完全没有必要。

首先从规范上来看,国标规范第7.2.1条这样写到“利用软弱土层作为持力层时,应符合下列规定:1.淤泥和淤泥质土,宜利用其上覆土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施”。可见在条件满足的情况下淤泥和淤泥质土是可以作为基础持力层的。

其次从工程经验上来讲,早在1827年出版的《蒸汽轮机》一书中J.Farey就谈到“即使地基土的稠度有如淤泥他也完全能支撑所承担的重量。因为整个建筑物就像浮在水中的船那样会浮在淤泥上面(这句话是引用人Golder添加的)。”利用补偿基础原理在软土地基上建造建筑物的也很多。如:1780年在伦敦泰晤士河畔黑袍僧桥附近极软的软基上建造的Albion工厂;60年代,日本利用补偿性基础原理在大阪湾深厚软淤上成功建成几幢30层高楼;还有奥尔巴尼电话大楼等经典的案例不胜枚举。近年来我公司设计的多个地下车库:如浦东新区新场镇20街坊1/3,1/4丘商品房二期工程的地下车库,保集美罗家园二期D4地块、罗店大型居住社区北块D1地块动迁安置房的地下车库,罗店西大型居住社区配套基地的地下车库等均采用③层淤泥质粘土层作为基础持力层。这些工程上部结构传至基础底的平均反力(包括顶板覆土重)均在40~70kPa之间,局部最大反力不超过120kPa,目前均已投入正常使用,均未发现任何犹豫基础承载力不足造成的不良影响。

综上所述,上海地区的③层土虽然是高压缩性的软土,但作为一种补偿基础来使用,作为一些纯地下车库的基础持力层是完全能满足使用要求的。而其承载力计算采用国标规范的承载力修正法更加准确适用。

参考文献

【1】韩选江,补偿基础设计应用的予力作用原理,基建优化,南京,2005

【2】梅国雄,周峰,黄广龙,宰金珉,补偿基础沉降机理分析,岩土工程学报,南京,2006

【3】GB 50007-2011 建筑地基基础设计规范,北京,中国建筑工业出版社,2011

岩土工程典型案例范文第4篇

关键词: 隧道开挖;支护结构;有限元分析;

中图分类号:U455文献标识码: A

Abstract:Through summarizing the research status of the tunnel construction at home and abroad, this paper expounds the elastoplasticity analysis of the supporting structure, emphatically discusses the stability analysis of the supporting structure research based on the theory of finite element in the tunnel construction.By the use of finite element software to simulate the tunnel construction, monitor the displacement of soil and supporting structure, combine with the monitoring results of the construction, to provide a reference for tunnel construction, so as to improve the efficiency and safety of the construction, in this respect, there are many worthy research directions in the future.

Key words: tunnel excavation; Supporting structure; The finite element analysis;

一、 引言

近年来越来越多的大城市通过建造地下隧道来缓解地面上的交通压力,特别是在以软土地基为主的上海。上海人口密集度高,为了缓解交通压力,方便出行,上海的地铁建设速度非常快,此外黄浦江将上海划分为浦东和浦西两块,为了方便两片地区的交通运输,江底隧道也逐渐增多,隧道施工的要求与复杂性也在不断提升。

城市地下隧道施工,和一系列城市中的建筑工程一样,大部分会出现一些施工问题。例如噪声,环境污染,由于降水而出现地下水位下降和地表下沉,隧道冒顶等等一系列问题。而隧道施工最常发生的事故是塌方,每次塌方,轻则造成财产缺失,重则导致数人甚至数十人死亡,并伴随巨大财产损失,尤其是复杂地质条件下的隧道施工,是隧道施工的重大危险源。例如2010年08月02日,深圳地铁宝安中心站,工地风井基坑土方开挖至12米深时,支撑脱落,维护结构发生变形,导致坑外土体涌入基坑,发生塌方事故。所幸塌方在夜间,所以并没有造成人员伤亡,但是造成了巨大的经济损失,延长了工期也为周围的居民带来了不便。这些问题全部是关系到城市人群居住的环境以及安全问题。

在城市建设中如果想要避免这些问题可能带来的灾害,可以结合其它相关案例的报告,通过施工前模拟,分析施工方案中的应力,应变,用所得到模拟数据,来指导施工方案的设计与进行,从而避免在施工过程中可能遇到的问题。

隧道施工中的问题已受到了许多人的关注,随着中国交通建设不断加强,在不同的地质条件中开挖隧道也积累了一定的经验与成果,本文将总结一些国内外基于不同方法对隧道施工所进行的研究,特别是在隧道施工中利用弹塑性原理所进行的相关研究,在此基础上着重探讨了分布施工,及基于有限元理论分析支护结构的研究现状,展望未来隧道施工中支护结构的弹塑性分析所值得研究的方向。

二、 国内外研究现状

2.1 隧道施工研究现状

世界上最早的人工交通隧道一直存有争议,不过大多数都偏向于是中国的汉中石门[1],由此可见,中国的隧道建设起源已久。我国对于隧道的研究从未停止过,在过去的20多年中更是突飞猛进,在2002年的国际隧道研讨会暨公路建设技术交流大会上,中国工程院院士王梦恕认为中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[2]。近十年的发展与研究证明了这一观点,随着中国的城市化建设不断深入,隧道的发展越来越快,与其相关的研究也在不断的扩大和深入,研究方法也在不断的更新与提高,例如王红峡等人[3]研究了不良地质条件下隧洞施工技术。申玉生等人对大跨度铁路隧道(洞口段跨度20m左右)施工过程的塑性区发展规律进行了深入的有限元数值分析。分析在隧道不同施工工序中塑性区的分布形态,通过大跨度隧道塑性区的分析,指出在施工过程中的围岩应力危险区域,指明围岩支护及监控量测的重点和难点,为大跨度隧道的施工提出警示信息[4]。

国外的隧道研究更多的是比较偏向于工程管理,当然由于许多发达国家的城市化水平非常的高,作为城市建设中交通建设的重要一环,其在隧道施工方面的研究也处于很高的水平。Molinero[5]等人利用数值模拟,研究了隧道施工中水文地质条件对隧道推进的影响,类似的Meschke, G[6]等人基于有限元方法来仿真隧道开挖过程中的相关因素,研究了在饱和软土中隧道的推进问题。而Wu, Jian-Hong[7]等人实验所得的不对称垂直压力和地表沉陷,表明不连续变形分析方法可以应用于模拟复杂的不连续岩体隧道应力和地表沉陷。

此外,一些学者对隧道稳定性问题[8],隧道衬砌结构[9-10],隧道支护体[11],隧道开挖的地质灾害[12],隧道开挖时损失土体产生负载对沉降,土体应力分布的影响[13]等与隧道安全性紧密相连的问题都做了一定的探索。根据大量工程实践和工程试验,发生在支护完成前的隧道工程破坏约占总破坏事件的80 %;而衬砌完成后的隧道工程破坏事件则极少。因而,隧道工程施工过程中寻求防止支护过程中完成前的破坏防治措施是首要任务,而对已完成了支护施作的隧道工程破坏,采取诊断、加固、防止也尤为重要[14]。

2.2 分布施工的研究现状

隧道工程的施工环境是在岩土体内部,所以施工过程中不可避免地会对周围的岩土体产生一定扰动,引起隧道周边岩土体发生移动和变形。国内外很多研究表明,在隧道施工中,如果注意开挖方式的选择,都会一定程度上降低成本,加快施工进度,随着我国隧道建设的不断开展,分步施工的研究也在不断深入[15-20],而在软土地基的隧道开挖过程中这一方法也是得到了利用,例如针对某工程典型的软土地基深基坑土方开挖的施工难点,提出了解决该问题的“分步、分区、分层”措施方法[21],同时也对施工技术进行了一些探讨[22],而李玉岐等人研究了基坑分步开挖诱发的渗流对作用在地下墙上的水压力、土压力及侧压力的影响.研究表明,随着基坑每步开挖后坑内外水头的减小,使得主动区作用在地下墙上的侧压力越来越大,而被动区作用在地下墙上的侧压力越来越小,因而对地下墙的稳定是不利的;快速施工则可以提高基坑工程的安全性[23]。因此,在基坑开挖过程中,实行“分层、分块、平衡、对称、限时”的土方开挖方法,严禁超挖,充分利用基坑开挖具有时空效应的规律,严格控制基坑变形,确保基坑工程的安全[24]。

2.3 基于有限元理论分析支护结构的研究现状

有限元分析的基本概念是用较简单的问题代替复杂问题后再求解,将函数定义在简单几何形状的单元域上,将复杂边界条件分割成单边界,这是有限元法优于其他近似方法的原因之一[25],Shahin, H.M等人利用有限元分析方法,在一个新开发的圆形隧道设备中用有限元分析弹塑性的本构模型,得出在相同体积的情况下,由于隧道开挖,表面土体的沉降和隧道周围土压力明显影响隧道中的下部土体各点相对于表土的位移[26]。随着计算机技术的发展,有限元方法渐渐越来越多的被用于各种结构,工程施工的实验模拟,例如韦立德[27-29]等人利用有限元方法对三维锚杆进行了一定的研究,得出了较为精确的锚杆变形应力规律。

与此同时支护结构的基坑监测监控技术在许多工程得到了应用[30-35],通过有限元模拟的方法,对要进行开挖的隧道基坑进行模拟[36-41],预测土体的变形,预报出危险点,以便在施工过程中采取相应的措施,Nagel, Felix 等人基于有限元方法用数值模拟模型,分析盾构开挖隧道过程,实验证明,由不同隧道推进过程中的参数可以预测隧道的地面变形和应力,地下水条件等[42]。在复杂地质条件中开挖隧道,即使是有良好的地质调查,但因为当地的岩体结构,其不确定性还是存在的,对于这样的工程,一个可靠的预测,对选择适当的开挖方式和支护方法显得非常重要[43]。用有限元的方法,模拟施工,其优点是在施工前就可以模拟各种开挖、支护方式的可行性及其优劣,因而可以节省大量的成本。但是在实际应用中,一定要建立合适的模型,划分适当的网格,输入正确的参数。只有这样,计算模拟得出的结果才具有可靠性[44-46]。

近年来,Mohr-Coulomb模型不断被完善改进[47],大量的试验和工程实践已证实,Mohr-Coulomb 强度理论能较好地描述岩土材料的强度特性和破坏行为,在岩土工程领域得到了广泛的应用[48]。在众多利用Mohr-Coulomb模型的软件中,ABAQUS最有代表性,利用非线性有限元软件ABAQUS提供的二次开发功能,可以实现统一强度理论本构模型的嵌入,以及采用该模型进行隧道开挖三维数值分析。结果表明:在ABAQUS中增加统一强度理论本构模型[49-51],丰富了材料单元库,提高了计算精度和效率,而且,通过算例验证和隧道开挖模拟,说明在岩土工程中,考虑材料的主应力效应,可以充分利用材料强度,指导工程实践,节省造价[52]。

Pedro Alves Costa等人还利用p-q-θ临界状态模型用有限元法对软土地基开挖过程中,对支撑前后的应力进行了分析,对比模拟结果与实验结果一致[53]。而利用有限元软件ABAQUS建立模型,结合Mohr-Coulomb强度理论模拟在软土地基的隧道施工中,基坑的分步开挖,监测所布置支撑的应力,位移变化,为施工提供理论依据,为类似的工程提供参考,在现阶段这一方法有待进一步的探讨与研究。

三、 总结

基于上述研究现状,可以发现隧道开挖的研究一直是围绕着施工方法,岩土与结构的相互作用展开的,根据施工场地的水文地质条件确定施工方法,然后由施工过程中土体与结构的相互影响关系来确定所要采取的支护结构。众多的研究表明,选取合理的施工方法,通过对施工过程的模拟,监测施工过程中土体应力的变化,监测支护结构的位移应力,进行有效的支护结构布置,不仅可以保证安全性,而且可以大大的提高施工速度,节省成本,提高经济效应。

施工方法的选取,与隧道开挖所处的场地的地质条件密不可分,可以说,什么样的场地都有其最适合的施工方法。软土地基是上海特殊的地质条件,它是由天然含水量大、压缩性高、承载能力低的淤泥沉积物及少量腐殖质所组成的土,指的是滨海、湖沼、谷地、河滩沉积的天然含水量高、孔隙比大、压缩性高、抗剪强度低的细粒土。它具有天然含水量高、天 然孔隙比大、压缩性高、抗剪强度低、固结系数小、固结时间长、 灵敏度高、扰动性大、透水性差、土层层状分布复杂、各层之间物理力学性质相差较大等特点。因此在软土地基中开挖隧道相比较其他一般性的地质条件来讲,增加了不小的难度。

随着有限元方法的不断推广,人们将这种方法应用到隧道施工的模拟中,结合不同的强度理论,可以近似的得到一些相关的参数,为隧道施工提供了参考依据,而随着计算机的发展,有限元模拟软件的开发,强度理论的进一步完善,使得这一方法应用起来更加的方便,如今有限元分析方法已经成为了隧道工程模拟的利器。

四、 展望

虽然国内外在对于软土地基中的隧道施工进行了一些研究,但是隧道基坑分步开挖过程中支护结构由于施工阶段土体应力变化而产生的位移应力的问题,目前只有很少的一些案例可供参考,而具体到软土地基中基坑开挖工程中,开挖新的基坑对已经开挖结束支撑结构布置完成的基坑支护结构的影响还没有相关的研究成果。

综上所诉,不良地质条件下隧道工程的建设还有进一步提高的空间。利用有限元软件,模拟隧道施工,监测土体、支护结构的位移变化,研究新开挖基坑对于临近开挖完毕基坑的影响,用得到的相关数据和参数与实际结果进行比较,可以为支护结构的布置提出依据,使支护结构的布置更加安全,更加合理经济。

【参考文献】

[1] 邓沛. 陕西汉中石门非世界上最早的人工交通隧道[J]. 文史知识,1996,06:127.

[2] 王梦恕. 中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J]. 铁道标准设计,2003,01:1-4+0.

[3] 王红峡,李留柱. 不良地质条件隧洞施工技术[J]. 水科学与工程技术,2010,02:62-64.

[4] 申玉生,高波. 大跨度铁路车站隧道施工过程弹塑性有限元数值分析[J]. 铁道标准设计,2007,S1:45-47.

[5] Molinero, Jorge (E.T.S. Ingenieros De Caminos, Canales Y Puertos, Universidad De A Coruña, Campus De Elviña S/n, 15192 A Corunna, Spain); Samper, Javier; Juanes, Rubén.Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks[J].Engineering Geology.2002,v 64, n 4, p 369-386.

[6] Meschke, G. (Inst. for Structural Mechanics, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany); Nagel, F.; Stascheit, putational simulation of mechanized tunneling as part of an integrated decision support platform[J].International Journal of Geomechanics. 2012,1,v 11, n 6, p 519-528.

[7] Wu, Jian-Hong (School of Civil Engineering, Kyoto University, Kyoto 606-8501, Japan); Ohnishi, Y.; Nishiyama, S. Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA)[J].International Journal of Rock Mechanics and Mining Sciences .2004,7,v 41, n 5, p 731-743.

[8] 黄阜. 隧道围岩塌落机理与锚杆支护结构的上限分析研究[D].中南大学,2012.

[9] 张素磊. 隧道衬砌结构健康诊断及技术状况评定研究[D].北京交通大学,2012.

[10] Naimi, M. (SNC-LAVALIN Inc., 455 boul. René Lévesque, Montréal, QC, Canada).Analysis of a 1.8 km tunnel in East-West Algerian Corridor for stabilisation during construction[C].Proceedings, Annual Conference - Canadian Society for Civil Engineering.2012, v 1, p 775-783.

[11] 贾剑青. 复杂条件下隧道支护体时效可靠性及风险管理研究[D].重庆大学,2006.

[12] 黄润秋,王贤能,唐胜传,王士天. 深埋长隧道工程开挖的主要地质灾害问题研究[J]. 地质灾害与环境保护,1997,01:51-69.

[13] Sanzeni, A. (University of Brescia, DICATA, Brescia, Italy); Zinelli, L.; Colleselli, F.Source: Estimated settlements during the Brescia Metrobus tunnel excavation[C].Numerical Methods in Geotechnical Engineering - Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering.2010,p 773-778.

[14] 肖龙鸽. 隧道工程破坏一般规律及预防措施概述[J]. 隧道建设,2004,05:75-77.

[15] 姜振福. 大跨径隧道软弱围岩环形台阶分步开挖施工技术[J]. 四川建筑,2009,05:167-168.

[16] 刁志刚,李春剑. 大断面隧道在上软下硬地层中施工方法研究[A]. 中国土木工程学会隧道及地下工程会、中国岩石力学与工程学会地下工程与地下空间分会、台湾隧道协会.第六届海峡两岸隧道与地下工程学术及技术研讨会论文集[C].中国土木工程学会隧道及地下工程分会、中国岩石力学与工程学会地下工程与地下空间分会、台湾隧道协会:,2007:4.

[17] 赵刚,孙海萍. 浅谈盖挖法在上海软土基坑中的应用[J]. 城市道桥与防洪,2007,07:130-133+205.

[18] 李兵. 亚粘土地层大断面隧道台阶七步开挖方法的适应性研究[D].中南大学,2009.

[19] 余元全. 黄土连拱隧道台阶法开挖关键技术研究[D].重庆交通大学,2012.

[20] 陈小俊. 某工程软土地基深基坑开挖施工技术[J]. 施工技术,2008,09:4-7.

[21] 吴行忠. 关于软土地基深基坑开挖施工技术的探讨[J]. 黑龙江科技信息,2010,15:285.

[22] 张秀良. 影响软岩隧道台阶法施工安全的关键因素[J]. 现代隧道技术,2012,04:60-62+82.

[23] 李玉岐,周健,谢康和. 软土地区基坑分步开挖的非稳定渗流研究[J]. 同济大学学报(自然科学版),2008,07:900-905.

[24] 刘文添,王祥秋,毛琦. 超大软土深基坑工程变形监测分析[J]. 佛山科学技术学院学报(自然科学版),2012,01:39-44.

[25] 宁连旺. ANSYS有限元分析理论与发展[J]. 山西科技,2008,04:65-66+68.

[26] Shahin, H.M. (Nagoya Institute of Technology, Nagoya, Japan); Nakai, T;Zhang, F; Kikumoto, M; Tabata, Y; Nakahara, E. Ground movement and Earth pressure due to circular tunneling: Model tests and numerical simulations[C].Geotechnical Aspects of Underground Construction in Soft Ground - Proceedings of the 6th International Symposium.2008, p 709-715

[27] 韦立德,陈从新. 三维锚杆数值模拟方法研究[J]. 岩土力学,2007,S1:315-320.

[28] 严德群. 三维锚杆的数值模拟及其相互作用分析[D].河海大学,2001.

[29] 李梅. 三维锚杆的数值模拟方法[J]. 福州大学学报(自然科学版),2003,05:588-592.

[30] 况龙川.深基坑施工对地铁隧道的影响[J ].岩土工程学报, 2000 (5) : 284-288.

[31] 安关峰,宋二祥.广州地铁琶州塔站工程基坑监测分析[J ].岩土工程学报, 2005 (3) : 333-337.

[32] 谭峰屹,汪稔,于基宁.超大型基坑开挖过程中的信息化监测[J ].岩土工程学报, 2006 (S1) : 1834-1837.

[33] Migliazza, M. (Department of Civil Engineering, Engineering of the Environment, of the Territory, and Architecture, Parma University, viale G.P., Usberti 181-a, 43100 Parma, Italy); Chiorboli, M.; Giani, G.P. Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground[J]. Computers and Geotechnics.January 2009/March 2009,v 36, n 1-2, p 113-124.

[34] 王祥秋,刘喜元,张文基.城市下沉式立交深基坑工程信息化施工监测[J ].中外公路, 2009 (1) : 27-30.

[35] 文行武. 深基坑动态施工中的变形及内力预报[J]. 福建建设科技,2010,04:12-14+11.

[36] 丁勇春,王建华,徐斌. 基于FLAC3D的基坑开挖与支护三维数值分析[J]. 上海交通大学学报,2009,06:976-980.

[37] Kasper, Thomas (Institute for Structural Mechanics, Ruhr University Bochum, Universitätsstrae 150, 44780 Bochum, Germany); Meschke, Günther.On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling[J].Tunnelling and Underground Space Technology. 2006,3,v 21, n 2, p 160-171.

[39] 苏志凯. 青岛地铁复杂深基坑开挖支护的FLAC数值分析[D].中南大学,2011.

[38] Kai Zhao,Michele Janutolo,Giovanni Barla. A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation[J]. Rock Mechanics and Rock Engineering,,454:.

[40] 唐剑,付洵,莫阳春. 明月山隧道施工力学响应FLAC~(3D)数值模拟[J]. 路基工程,2008,02:86-88.

[41] 王祥秋,杨林德,高文华. 高速公路偏压隧道施工动态监测与有限元仿真模拟[J]. 岩石力学与工程学报,2005,02:284-289.

[42] Nagel, Felix (Institute for Structural Mechanics, Ruhr-Universität Bochum, Universitätsstrae 150, IA6/125, 44780 Bochum, Germany); Stascheit, Janosch; Meschke, Günther.Process-oriented numerical simulation of shield-supported tunnelling in soft soils[J].Geomechanik und Tunnelbau. 2010,6,v 3, n 3, p 268-282.

[43] Kim, C.Y. (Geotechnical Eng. Research Dept., Korea Institute of Construction Technology, Korea, Republic of); Kim, K.Y.; Baek, S.H.; Hong, S.W.; Bae, G.J.; Lee, S.H.; Schubert, W.; Grossauer, K.; Lee, Y.Z. Tunnel convergence analyses in heterogeneous/anisotropic rock masses[C]. Underground Space Use: Analysis of the Past and Lessons for the Future - Proceedings of the 31st ITA-AITES World Tunnel Congress. 2005,v 2, p 1091-1097.

[44] 张玉峰,朱以文,丁宇明. 有限元分析系统ABAQUS中的特征技术[J]. 工程图学学报,2006,05:142-148.

[45] 王春江,唐宏章,陈锋,袁菁颖,于二青. 有限元分析系统中的快速求解技术[A]. 天津大学.第九届全国现代结构工程学术研讨会论文集[C].天津大学:,2009:6.

[46] 徐远杰,王观琪,李健,唐碧华. 在ABAQUS中开发实现Duncan-Chang本构模型[J]. 岩土力学,2004,07:1032-1036.

[47] 贾善坡,陈卫忠,杨建平,陈培帅. 基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施[J]. 岩土力学,2010,07:2051-2058.

[48] Xinzhuang Cui~*, Hua Ding DES, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080, China. A Modified Mohr-Coulomb Constitutive Model and Its Application[A]. 中国力学学会.Abstracts of the Papers Presented at the Minisymposia Sessions of the Sixth World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational MechanicsⅠ[C].中国力学学会:中国力学学会,2004:1.

[49] 史述昭, 杨光华. 岩土常用屈服函数的改进[J]. 岩土工程学报, 1987, 9(4): 60-69.

[50] 潘晓明,孔娟,杨钊,刘成. 统一弹塑性本构模型在ABAQUS中的开发与应用[J]. 岩土力学,2010,04:1092-1098.

[51] 陈卫忠,曹俊杰,于洪丹,贾善坡,伍国军. 特殊地质区域海底隧道长期稳定性研究[J]. 岩石力学与工程学报,2010,10:2017-2026.

岩土工程典型案例范文第5篇

关键词:红黏土;特性;工程问题;处理方式

武汉地区有较多的红黏土地层,通过工程勘察实例资料,对武汉地区红黏土的分布状况、物理性能及复浸水特性的分析研究,提出武汉地区红黏土地层面对的工程问题以及对红黏土的处理方式、措施等。

1 红黏土特性

1.1 红黏土定义

红黏土主要为残积、坡积、冲洪积类型,因而其分布多在山区或丘陵地带。这种受形成条件所控制的土,为一种区域性的特殊性土;为碳酸盐系出露的岩石经过土化作用形成的棕红色、褐黄色高塑性黏土,其裂隙发育,液限一般大于50,具有明显收缩性。

1.2 武汉地区红黏土的分布状况

与云南、贵州、广西等大规模岩溶发育地区红黏土相比,武汉地区红黏土有其特殊性:隐伏于老黏性土层之下,自北向南分布有多条埋藏型可溶性碳酸盐系灰岩条带,呈近东西向,与灰岩条带相对应,其上部多分布有红黏土地层。

1.3 武汉地区红黏土的物理性能分析

1.3.1 通过区内大量钻孔和对灰岩面上覆盖广泛分布的第四系残坡积土层室内实验成果,以武汉江夏区金口某大型厂房项目为例,对其代表性土层自上而下分述如下。

1.3.1.1 红黏土(地层代号⒀1):棕红色,该层呈饱和、硬塑状态。其含水量平均值w=27.4%,饱和重度平均值γ=19.3kN/m3,天然孔隙比平均值e0 =0.818,塑性指数平均值 p=21.1,液性指数平均值 L= 0.16,压缩系数平均值a1-2=0.17MPa-1,压缩模量平均值Es1-2=11.2MPa。

1.3.1.2 红黏土(地层代号⒀2):该层呈饱和、可塑状态。其w =32.9%,γ=18.7kN/m3,e0 =0.956, p =21.4, L=0.39,a1-2=0.29MPa-1, Es1-2=6.9MPa。

1.3.1.3 红黏土(地层代号⒀3):

该层呈饱和、软塑状态。其w=47.9%,γ=17.1kN/m3,e0=1.365, p=25.4, L=0.87,a1-2=0.61MPa-1,Es1-2=4.2MPa。

1.4 红黏土的复浸水特征

区内普遍分布有红黏土(地层代号⒀1、⒀2、⒀3),红黏土(地层代号⒀1),其Ir=1.86,而Ir’=1.70;红黏土(⒀2),其Ir=1.87,而Ir’=1.70;红黏土(⒀3),其Ir=1.90,而Ir’=1.77;Ir均大于Ir’,根据《岩土工程勘察规范》(GB50021-2001)(2009年版)表6.2.2-3判定,区内红黏土的复浸水类别为I类,即收缩后复浸水膨胀,能恢复到原位。

2 红黏土面对的工程问题

红黏土作为一类典型的特殊土,其工程性质独特,一方面具有高含水量,高塑性,高空隙比,密度低,压实性差等不良物理性质。另一方面却具有高强度(红黏土的CBR值(强度)较高,超过8%,甚至能达到30%),中低压缩性的力学特性,在被普遍认为是比较好的天然地基和较好的天然材料的同时,却因膨胀性,裂隙性与分布不均匀不宜作为填料,但大量废弃带来的浪费资源。废弃红黏土换填其它好的填料需要新征弃土场与取土场,在当前环保要求不断加强和用地日趋紧张的状况下,废弃换填的简单办法将越来越不可行,充分利用红黏土是发展的方向与必然趋势。

3 红黏土地基处理方法和工程措施

3.1 天然地基

对于基础埋深较浅的,满足强度和变形要求,适宜做建筑物的天然地基的红黏土层,在施工时,应考虑地下水活动对红黏土的水稳性和工程性能的影响,应采取防水保湿措施,防止浸水软化、膨胀或失水干缩产生变形。

3.2 地基处理

红黏土作为一种在武汉地区分布较广泛的特殊土,一般情况下,上部红黏土呈坚硬至硬塑状态,下部红黏土呈可塑、软塑、流塑状态,形成软弱下卧层,在很多情况下无法作为天然地基,需要做地基处理,结合场地地层特点及武汉地区建筑经验,红黏土地层可以选用以下几种处理的方法。

3.3 CFG桩

红黏土地基处理的方法可选用CFG桩,CFG桩建议以长螺旋钻孔压灌桩为首选施工工艺,因为长螺旋钻孔压灌桩施工工艺有如下优点:(1)该桩型适用于红黏土土质,能在有缩径的软塑的红黏土条件下成桩。(2)由于混凝土是长螺旋钻杆中心压入孔中,压灌混凝土具有密实、无断桩、无缩颈等特点(3)由于该桩型是连续压灌混凝土护壁成孔,对桩孔周围的土有渗透、挤密作用,提高了桩周土的侧摩阻力,使桩基具有较强的承载力、抗拨力、抗水平力,变形小,稳定性好。

3.4 红黏土注浆施工工法

注浆法是指利用液压、气压或电化学原理,通过注浆管把浆液均匀地注入地层中,浆液以填充、渗透和挤密等方式迫使土体颗粒间或岩隙中的水份和空气排出,经人工控制一定时间后,浆液将原来松散的土粒或裂隙胶结成一整体,形成一个结构新、强度大、防水性能好和化学稳定性能好的结合体。对于红黏土,地层从地表向下由硬变软,相应地土体强度及压缩模量逐渐降低,压缩性逐渐增大,靠近基岩 0.5~3.5m 范围内基本为软、流塑土,其基本承载力不足 100kpa,须对软塑红黏土进行注浆加固。通过注浆填充液凝固后,具有的刚性和强度而改变岩层及土体的性状,使岩土的变形受到约束,强度得到提高,从而达到控制地基整体沉降、减少变形的效果。

3.5 深层搅拌法

深层搅拌水泥土处理是利用深层搅拌机械在软弱地基内,边钻进边往软土中喷射浆液或雾状粉体,同时,借助于搅拌轴旋转搅拌,使喷入软土中的浆液或粉体与软土充分拌合在一起,形成抗压强度比天然土高很多并具有整体性、水稳性的桩柱体。该加固方法具有施工无振动、无噪声、无排污、成桩快、成本低等优点。采用水泥土搅拌桩法加固红黏土将是一种不错的选择,并在红黏土地区采用深层搅拌桩加固地基是可行的。在降低地基处理费用、缩短工期的同时,还可以得到良好的加固效果。

4 结语

红黏土是武汉地区分布比较广泛的特殊土。随着交通、能源等建设的发展,这种特殊土已被越来越多的工程所遇到,并成为控制工程质量的关键问题之一,根据红黏土的特殊性,参照现有的红黏土地基处理方法和经验,结合实际工程,采用合理、安全、经济的地基处理方法,为设计理论提供依据和经验。

参考文献

[1] 张友福.论长螺旋钻孔压灌砼桩施工技术及质量控制措施[J].中国科技财富,2010(8).