首页 > 文章中心 > 人工智能在医疗诊断的应用

人工智能在医疗诊断的应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工智能在医疗诊断的应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工智能在医疗诊断的应用

人工智能在医疗诊断的应用范文第1篇

报告从医疗人工智能的发展角度出发,以商业落地为切入点,总结出中国医疗人工智能发展10大洞察。梳理了国内10项主流的医疗AI产品,医疗人工智能领域中十大主流产品,并从技术成熟度、使用效果、发展情况、企业案例等角度进行分析。

2018中国医疗人工智能十大洞察从人工智能在医疗健康领域的四个核心应用场景——医学影像、虚拟助理、健康管理和药物研发的角度,提出出中国医疗人工智能发展的十大洞察及相关观点。

1. 部分智能影像诊断企业将在2018年获得三类器械证,正式进入商业化阶段。

2. 智能影像诊断竞争格局基本形成,“伪医疗AI企业”基本出局,新入场技术型玩家基本没有获得风投的可能,商业机会已然错过。

3 .语音电子病历:落地医院成本高,产品需进行科室定制化,客单价低,主要用于病理科、影像科等。

4. 智能问诊:知识图谱搭建是关键,目前仅发挥导诊、辅助检索或连接医患的作用。院内场景“预问诊”需求量大,具备落地能力.

5. 国人健康管理意识尚待培育,健康大数据尚待采集与整合。企业以B端为主要切入口。

6. 精神心理治疗师严重缺乏,AI或可成为替代性工具。

7. 药物研发中化合物数据质量对于AI企业是关键。

8. 借助国际力量,中国AI药物研发企业从无到有,预计2018年起将涌现更多玩家,AI药物研发或将是未来的新风口。

9. 产品形态以软件/SaaS为主,收取软件授权费的商业模式存在一定局限性。软硬一体化产品的商业落地更具优势。

10. 中国医疗整体数据量大,但针对细分场景的数据量和质量仍无法满足算法模型的训练需求;随访数据的缺失,使国内在类似“肿瘤患者五年存活率”等领域的研究一片空白。

医疗人工智能应用场景与技术路线人工智能与医疗健康结合点在哪里?下图呈现的是人工智能技术在医疗领域的主流应用场景与技术路线,通过该图能够对中国医疗人工智能的格局有清晰的了解。

中国十大医疗人工智能产品总览为了更深入的解读商业落地的现状,在报告中,亿欧智库主要按照技术成熟度和使用效果两大维度对医疗人工智能十大产品进行了分析与评估。其中,针对技术成熟度和使用效果两大维度,主要通过产品出现时间、落地情况、发展情况、企业数量、行业人士和专家访谈进行判断。另外,还从产品的发展情况、涉足的企业案例等角度更加具体地进行分析。

医疗人工智能六大发展趋势结合政策和商业落地产品的现状,亿欧智库认为市场在今年呈现出六大趋势:

1. 2018年起,AI影像产品落地速度会加快,产品性能成熟度将不断提高。

2. 随着技术成熟度提高,语音电子病历医院普及率加快,头部企业可形成规模效应

3. 智能问诊随着知识图谱的不断完善,预问诊功能可以有效提升医生效率

4. 健康大数据的发展,会使AI在健康管理场景下的应用程度会进一步提高。

5. AI在精神心理健康的的渗透程度会更深,未来可能成为这一领域的核心推动力

6. AI+药物研发领域将会诞生出独角兽。

医疗人工智能发展四大挑战一是数据数量问题:中国医疗整体数据量大,但针对不同病种的数据量和质量参差不齐,有些病种的训练数据缺乏;健康大数据孤岛问题有所缓解,但仍未达到深度学习的阶段。

二是数据质量问题:AI数据处理中标注的准确性关乎结果的准确性,近两年之内还是需要大量医生去标注。药物研发中的数据质量对于研发效率的提升至关重要。

三是人才问题:AI算法人才与医学人才知识体系不同,如何融合各自优势发挥最大价值,值得企业思考。

人工智能在医疗诊断的应用范文第2篇

关键词:人工智能;应用领域;实际应用

1. 人工智能中智能体的功能

1.1人工智能

人工智能是以知识为对象,研究知识表现、知识获取、知识挖掘等的学科。从其功能来看,人工智能即参照人类智能活动的客观规律,借助一定的智能体,模拟人类的思维执行诸如判断、推理、识别、决策、检测等活动。

1.2智能体

人工智能必须借助一定的智能体来实现,也就是说,智能体是人工智能的载体。因此,分析人工智能就要借助智能体来阐述。一个性能良好的智能体,应尽量准确捕捉用户的用意,通过对环境的感知,敏锐地获取相关信息和知识,并根据环境的数据变动适时作出调整,高效执行用户指令,完成用户指定的任务。

1.2.1单智能体的功能

依照智能体的功能,人们通常将智能体划分为思考型、反应型、混合型三种。

图1 思考型智能体的功能示意图

  思考型智能体主要通过用户根据目标或任务,下达行动指令,用知识和计划指导行动,并根据行动的反应,对环境进行感知,智能体感知内部状态等对环境状态,适时对动作进行调整,实现思考型智能体的功能。

图2 反应型智能体的功能示意图

反应型智能体主要通过规则动作指导行动,并利用智能体对环境状态的感知,指导规则动作对环境作出适应性改变,实现反应型智能体的功能。

图3 混合型智能体的功能示意图

混合型智能体的功能较为复杂,它通过智能体对环境的一般、紧急情况作出反应,对环境状况建模,对环境可能发生的情况进行预测,与其它智能体进行交流,共同指导决策,指导行动的准确性。

1.2.2多智能体的功能

多智能体即通过多个智能体间的相互协调,共同配合,构成一个综合智能体,联合达成一个任务。每个成员智能体有着各自的目标和动作,可以不受其他成员的限制,自主执行自身的动作规则,利用各个智能体间的竞争与协调,化解多个智能体间的矛盾与冲突,实现多智能体的任务,体现多智能体的功能。在多智能体的综合功能下,各个智能体作为综合功能的子功能,每个智能体都具有较高的适应性,能够根据问题,进行规划和推理,判断应该采用的策略,对环境施加影响。多智能体基于简单的设计理念,具有有利于建模,可扩展性强,管理方便,能够节省构建成本,明白易懂等特点。通过多智能体,可以面向对象,实现智能体的多元化和多层次性的构架,缓解了综合系统的复杂性,也缓解了各个系统解决问题的复杂性,并通过协调与协作,提高解决问题的效率,提高整个系统行动的效率。

2. 人工智能的主要应用领域

2.1人工智能在教育的应用

2.1.1教师辅导的智能化

人工智能在教育的应用,主要表现在利用Agent技术,实现智能化教学。Agent技术是一种基于分布式的智能技术,通过智能体Agent,可以实现自主学习的功能,并根据感知自身和环境状态,采取相应的行动,达成系统规定的目标或任务。Agent具有多种优势,诸如可以自主完成行动,快速对动作做出反应,协作能力强,系统处于开放状态,通信性能好,能够随时随地进行行动等。多Agent系统由多个成员Agent组成,各个成员Agent都有既定的动作,通过成员hgent间的通信,获知相关信息,共同协调完成整个系统的复杂任务。Agent在智能化教学中的主要功能:对教学过程进行跟踪监控、教学分析、教学信息的整理、辅助学习、学习方法建议等。通过上述功能,能够适时监督学生的自主学习和教师的辅导,并能够结合学生的学习行为、学习效果等,提供有效的学习指导,实现教师辅导工作的智能化。

2.1.2教学资源的智能检索

目前,各种网络教学资源五花八门,信息量非常大且较为分散,并且各种教学资源还在不断的增长,给学生和教师利用教学资源带来相应的困难。智能检索系统的应用,能够帮助学生和教师在海量信息中,快速准确地搜索到所需信息,节省学生或教师的检索时间,提高用户检索效率。

2.1.3智能化评价

随着现代教育的发展,运用专家系统技术,通过网络考试系统,采用智能组卷算法,实现自动组织考卷。通过试题库,依照既定规则,对精选的试题进行筛选,实现自适应的试题测试功能。根据相关需要,设计自动评卷功能,对考试结果进行评价,并可根据需要对考试题型进行评价。

2.2数据挖掘技术

2.2.1数据挖掘技术

数据挖掘技术,就是通过揭示数据间的关系和数据的存在模式,对数据和数据库进行处理的技术。它是人工智能、数据库管理、仿真等多学科交叉的边缘学科。数据挖掘技术的应用,为工商、科研工作的发展提供了较多的新方法,对工商业与科学研究都具有非常重要的意义。由于数据挖掘技术蕴含着知识表现、知识获取和知识挖掘等理念,使得其与人工智能的功能如出一辙,很多人认为数据挖掘技术应该是人工智能的一支。从实际来看,虽然数据挖掘技术与人工智能有相应的交集,但它已经成为一个独立的系统,具有更为丰富的内容体系,与人工智能、机器仿真、OLAP、专家系统等都具有相关性,其规则、分类、算法等都自成体系,体现出数据挖掘技术的博大精深。

2.2.2数据库的知识发现

通过数据挖掘技术,对数据库中的知识存量进行充分的研究,从中找出潜在的规律性,从而利用数据的相关性分析,挖掘出蕴含在数据中的抽象知识,揭示数据所表现的客观世界状况,从中得出相关的本质和规律,从而自动获取知识。知识表现所概括的是数据所揭示内容的概念,比数据本身更有应用价值。

2.3智能检测技术的应用

2.3.1智能机器人研究

在智能机器人的研究中,研究者更加关注对机器人的行动进行智能控制,也就是说,研究者在给定机器人任务后,必定要根据任务设计相关的动作规则来实现任务,然后根据智能控制,使机器人的行动达到研究者的预期目的。

2.3.2对流水线的智能监控

很多工厂的生产流水线,都需要通过过程监控,保障产品质量和系统性能。很多企业已经采用人工智能对流水线进行监控 ,确保流水线的物理参数精度,实现流水线的高效和产品的优质。例如汽车工业的模糊逻辑智能控制,轧钢厂的神经元智能控制,水泥旋窑的模糊智能控制等。

2.3.3故障的智能诊断

一般情况下,智能系统根据检测到的故障状况,对照系统存储的相关诊断数据和信息,判断系统、器官、元件等出现故障的原因,采用系统给定的信息进行故障处理,及时排除故障,提高系统的稳定性和可靠性。故障的智能诊断系统构架主要有:故障信息库、诊断信息、数据接口、数据库等。例如,飞控系统的故障诊断、雷达的专家诊断等。

2.3.4医疗领域的专家系统技术

从上世纪70年代,医疗领域已经开始广泛应用专家系统技术。例如在外科手术中,采用模糊逻辑控制,通过模糊函数与语言,准确把握病人的麻醉深度,实现对病人麻醉深度的智能控制。

3. 人工智能的实际应用

3.1机器人在教育界的应用

3.1.1模拟教学

根据教材的安排,对某些需要解释的现象进行机器人模拟演示,让学生认真观察,从中发现一定的规律,使学生加深对规律性的认识和理解。如数学教学中的抛物线轨迹演示,物理教学中的阿基米德定理演示等,都能够利用直观的演示,揭示其中的规律,使学生加深对相关知识的理解。

3.1.2人机交互的辅导方式

利用机器人辅导学生学习,可以通过人机交互,为学生提供量身定制的辅导模式,使学生的个性得到充分发展。采用微型机器人与学生的交互辅导,可利用微型机器人其体积小、重量轻,便于携带等优点,随时随地进行学习,随时为学生解决问题,提供学习指导。利用家庭机器人与学生的交互辅导,承担家庭教师的职责,有利于学生问题的适时解决,也有利于学生的学习得到及时的巩固。通过软件机器人与学生的交互辅导,可以对学生的学习情况进行分析,为学生制定专门的指导计划,提高学生的学习质量。

3.1.3仿真训练

在教学中,教师可以利用机器人,将相关内容通过机器人的演示展现给学生,减轻教师的负担,并能够通过规则的动作,使教学更为规范。例如,用机器人示范体育高难动作,可以将动作分解、定格、重复播放等,从多方位展示动作,使学生能够充分掌握动作的规范,比教师的示范更为科学,也更为有效。

3.1.4机器人远程教育

通过机器人,可以通过对学生的特征数据分析,建立学生模型库,根据学生的个性,同时对多名远程教育的学生实施个性化教学和辅导,提高远程教育的效率,实现远程教育的智能化。

3.1.5激发学生的学习兴趣

机器人为学生创设富有情趣的教学环境,根据教学任务,采用与学习相关的游戏,调动学生的学习积极性,使学生在尽可能短时间内,掌握需要了解的知识点,提高学习效率。

3.2数据挖掘技术的实际应用

数据挖掘技术的应用领域较为广泛,主要有:

(1)商业领域

商业领域是最早应用数据挖掘技术的重要领域。通过数据挖掘,对产品销售数据进行分析,对产品进行市场定位;根据消费者需求分析,对产品的销售进行预测,调整产品营销策略;根据市场销售情况,制定合理的库存,减少资金的占用;对顾客的购买行为模式进行识别,据此布置货架,适应顾客的购买习惯;通过食品的滞销、畅销分析,制定相应的促销手段和促销时间,避免商品过期积压等等,使数据挖掘技术在商业领域得到极为广泛的应用。

(2)金融业

利用金融服务的各种卡品信息,分析客户的需求,了解客户的存款和贷款信息,对存、贷款趋势作出科学预测,从而制定合理的存、贷款优惠策略;对金融交易活动进行监控,从中提取有用信息。例如,有信用卡客户对私家车感兴趣,金融机构就可以将信息告知汽车销售部门,并为客户提供量身定制的贷款服务。

(3)工业生产

在产品销售环节,工业生产企业对数据挖掘技术的应用与商业领域的应用大致无异。随着市场竞争的激烈,很多工业生产厂家已经通过数据挖掘技术对生产过程进行动态监控。

(4)网络应用

随着信息流量的增大,简单的索引与搜索系统已经很难满足网络用户的需要,有待开发高层次的搜索引擎来适应网络不断的发展,智能化的搜索引擎带给用户的是快捷、高效与易用,使其成为今后搜索引擎的应用趋势。

(5)其它方面的应用

通讯公司利用远程通信,及时了解客户信息,创新客户服务,拓展新的业务,扩大市场影响力,赢得最佳效益。高校利用数据挖掘技术,了解生源信息,将学校的专业信息发送给目标生源;对教师的情况进行分析,从中找出关联性,有针对地制定教学方案,有效提高高校的教学质量。医药公司通过对医生处方分析,了解医生的用药情况,可以制定合理的供货计划和营销策略。旅游机构对旅游团体进行分析,可以采用有效的旅游模式,吸引更多的旅游团体。利用卫星遥感技术获取的数据,提高天气预报的准确度。

3.3人工智能在检测系统的应用

人工智能在检测领域的应用非常广泛,如前面介绍流水线的监控、智能故障诊断、专家技术系统等,现对网络入侵的智能检测系统加以简要说明。

3.3.1网络入侵专家检测系统

该系统的智能化程度高,用户不用干预专家系统的推理。然而,其系统信息是建立在专家知识的基础上,必然受专家认知网络攻击模式的限制。该系统的构建基于以下几点:首先,采用安全入侵规则的描述方式,如判断树描述、图形描述等。其次,通过合理推理,参照专家库的规则,判断网络安全状况,检测是否有入侵行为发生。最后,更新专家库,调整专家规则,结合神经网络技术,利用神经网络技术的敏感性与快速反应能力,不断增强系统的自适应功能,提高系统检测能力。

3.3.2入侵统计智能检测系统

该系统主要对异常的安全问题进行检测。它通过建立正常行为模型,对照进行网络入侵检测,检测出正常行为有较大偏离,则视为异常。首先,确立门限值,统计某一事件在特定时间出现的频率,检测是否超出门限值,判断系统是否异常。其次,设定事件度量均值、度量标准偏差的置信区间,统计系统的两个参数值,判断系统是否偏离区间,检测系统异常与否。最后,根据事件的矩阵数据,对事件转移的概率进行统计分析,结果小则预示存在异常。

参考文献:

[1] 于大方.浅析人工智能及其应用领域[J].科技信息.2008(23)

[2] 张鹏.智能机器人辅助教育及其应用[J].中国电化教育2009(2)

[3] 龚成清.基于人工智能的网络入侵检测系统设计[J].南宁职业技术学院学报.2009(5)

[4] 张睿.浅论数据挖掘技术及其应用[J].成功(教育版). 2009(10)

人工智能在医疗诊断的应用范文第3篇

一、芯片

据人工智能协会的《中国AI创新应用白皮书》显示,从1986年到2007年,全球单日信息存储能力增加了约120倍,在数据生成量方面,预计到2020年,将达到44ZB,是2009年的44倍。数据量的成倍增长,伴随的是芯片行业的蓬勃发展。

在这条赛道上,有智能设备厂商、云计算厂商、传统芯片厂商。苹果、微软和谷歌都在开发自己的处理器,应用于人工智能和其他的工作负载,其目标是实现在没有云处理的情况下压缩算法。大数据、人工智能以及高性能计算和分析越来越趋向于利用GPU。这一趋势使英伟达成为重要玩家,同时,也为AMD注入了新的活力。英特尔将其布局从个人电脑转向数据中心和物联网。

此外,一些更加垂直细分的初创公司的表现同样不容小觑。近期,寒武纪、地平线、深鉴、Kneron、鲲云科技等人工智能芯片公司相继获得融资,新一代计算芯片可以提供更强大的计算力,同时在集群上实现的分布式计算能够帮助人工智能模型在更大的数据集上运行。

二、智能音箱

相对于传统音箱而言,智能音箱不仅是音响产品,同时是涵盖了内容服务、互联网服务及语音交互功能的智能化产品,不仅具备WiFi连接功能,提供音乐、有声读物等内容服务及信息查询、网购等互联网服务,还能与智能家居连接,实现场景化智能家居控制。

也因此,2017年成为了“百箱大战”的一年,智能音箱的炙热战火从国外烧到了国内。目前国内切入音箱市场的公司主要有三类:

一是以喜马拉雅“小雅”为代表的内容基因的公司,他们和“传统音箱”最为接近,但内容的智能播放提升了用户在聆听场景下的交互体验。二是包括Rokid、出门问问、Broadlink等在内的“智能公司”,在他们的产品里,音乐内容只是众多功能之一,更多的亮点在语音交互、连接智能家居上。而第三种则是小米、阿里、京东、联想等“大公司”,他们背后是有庞大的商业生态。

三、医疗影像

今年11月15日,科技部公布了首批国家新一代人工智能开放创新平台名单,其中,就包括依托腾讯建设的医疗影像诊断平台觅影。

AI+医疗是近年来资本投资和企业拓展新业务的热点,这其中又以医疗影像为甚原因有两点:医疗影像是所有大病诊疗的入口和基础,放射科医生是医疗行业最短缺的人员之一;人工智能技术爆发的核心——深度学习,正好最擅长分析影像类数据。如此,使得影像识别技术成了最有可能在医疗领域率先落地的技术。

短期来看,目前AI+医疗影像的商业模式一定是To B,并且在竞争初期,渠道为王;从长期来看,To C也有很大的商业机会,随着技术的成熟,未来病人可以自由选择AI医疗商的产品进行服务。

四、安防

就目前来说,安防本身具有两大特性,第一、在传统的以视频为主的安防行业中,经过多年的发展,已经积累了大量的数据资源,满足了人工智能基于大数据为基础的算法模型训练的要求;第二、安防行业中事前预防、事中响应、事后追查的特性刚好吻合了人工智能的算法和技术。

也就是说,目前AI在安防领域的应用主要通过图像识别、大数据及视频结构化等技术进行作用的。而从行业角度来看,主要在公安、交通、楼宇、金融、工业、民用等领域应用较广,其中以公安应用最为核心。另外,AI+安防在提前预防犯罪,和保障社会安全方面也起到了非常重要作用。

目前来说,虽然AI在安防领域的应用有着很好的前景,但还没有达到真正实用的阶段,应用中存在诸多的问题需要不断完善和解决,比如环境适应性差、场景理解受限、人脸识别准确率等等问题。

五、语音交互

2017年,很多业内专家都认为,“语音”将会成为下一代人机交互的主要方式。其原因有三:

首先,语音交互更为自然和方便;其次,语音交互相对于文字交互模式而言,能够解放人们更多的感官;第三,基于智能语音交互,不需要对APP、浏览器进行点击操作,而是直接通过语音操作的特质,使其能够凌驾于浏览器、APP等其他应用的入口之上,成为一个新入口,而这个入口,将会变革更多的产业,诸如信息搜索、分发。

涉及语音交互的公司包括人工智能机器人厂商、人机交互技术和渠道提供商,以及基础平台支撑和关联技术提供商:



1、人工智能机器人厂商
主要包括小i机器人等智能机器人厂商,同时还有清华、中科院等人工智能技术研究院校和科研院所。

2、人机交互技术或渠道提供商
包括科大讯飞、捷通华声、车音网、思必驰等语音技术提供商,以及短信(移动、电信、联通)、QQ等服务提供商。

3、基础平台支撑和关联技术提供商
包括IDC、云计算平台、数据挖掘等技术提供商。


六、融资/收购

大势所趋下,无论是国内还是海外市场,科技巨头正在以内生式AI领域的研发,和外延式的直接投资、或收购AI领域的创业团队等方式在AI领域进行积极部署。而巨头们收购企业的原因,不外乎争夺团队、专利、人才,同时,也是对自身业务的补充,以及为了公司在今后技术生态里的布局和站位考虑。

除了收购,2017年形成的另一个热浪是融资。我们来看今年发生的融资大事件:

2017年2月,三星、英伟达联手投资了AI智能语音助手公司SoundHound,这家公司以语音识别与搜索技术获得了7500万美元的投资;2017年3月,蔚来汽车以自动驾驶、辅助驾驶获得了来自IDG资本、高瓴资本等投资方6亿美元投资;2017年3月,Geek+科技以智能机器人技术获得了火山石资本等投资方1.5亿美元投资;2017年4月商汤科技以计算机视觉技术获得了赛领资本6千万美元投资;2017年5月,深鉴科技以处理器/芯片获得了高榕资本等投资方数千万美元的投资;2017年10月,地平线机器人获得由英特尔投资、嘉实投资等资本方近亿美元A+轮融资。

七、人才流动

请戳图!

八、政策

自今年7月国务院《新一代人工智能发展规划》后,各地区都在从不同层面加强人工智能相关政策的部署。今年10月,北京市正式印发《中关村国家自主创新示范区人工智能产业培育行动计划(2017—2020年)》;11月14日,上海市《关于本市推动新一代人工智能发展的实施意见》,提出到2020年,重点产业规模将超过1000亿元。11月18日,有“中国光谷”之称的武汉东湖高新区,出台全国首个区域性《促进人工智能产业发展的若干政策》,并《东湖高新区人工智能产业规划》,提出未来三年将每年设立不低于2亿元的人工智能产业发展专项资金。

同时,也了“国字号”的人工智能开放创新平台。11月15日,科技部宣布成立新一代人工智能发展规划推进办公室,并公布首批国家新一代人工智能开放创新平台名单:依托百度公司建设自动驾驶国家新一代人工智能开放创新平台,依托阿里云公司建设城市大脑国家新一代人工智能开放创新平台,依托腾讯公司建设医疗影像国家新一代人工智能开放创新平台,依托科大讯飞公司建设智能语音国家新一代人工智能开放创新平台位列其中。

迹象表明,人工智能政策正在从中央传导至地方,AI政策自上而下开始发酵,我国已经进入AI产业的“黄金窗口期”,预计未来将有更多地方的政策文件出台,从而形成多点齐放的局面。

九、智能制造

波士顿咨询在一份名为《工业4.0——未来生产力和制造业发展前景》的报告中明确指出,以云计算、大数据分析为代表的新技术将为中国制造业的生产效率带来15%—25%的提升,

智能制造,是在基于互联网的物联网意义上实现的包括企业与社会在内的全过程的制造,把工业4.0的“智能工厂”、“智能生产”、“智能物流”进一步扩展到“智能消费”、“智能服务”等全过程的智能化中去,只在这些意义上,才能真正地认识到我们所面临的前所未有的形势。

这一年来,各大制造企业为了重塑自身在制造业的全球竞争优势,在各层面高度重视智能制造,并相应启动了一系列针对基于模型的企业、网络物理系统、工业机器人、先进测量与分析、智能制造系统集成等智能制造关键要素的计划和项目,以对“AI+制造”的新竞争力形成进行系统支持。

十、场景创新

人工智能在医疗诊断的应用范文第4篇

在3月10日的比赛中再次落败后,0:2的压力让李世石急于找到应敌之策——据韩国媒体报道,李世石与棋界好友经过通宵复盘研究后认为,“对AlphaGo,必须靠打劫等复杂下法才有机会获胜”。可惜,今天棋盘左下角出现的劫争并未能挽回败局。

“AlphaGo可能唯一存在的潜在弱点就是连环劫,在均衡的状态下才能看得更透。”北京邮电大学教授、计算机围棋研究所所长刘知青说。在他看来,即便发现AlphaGo存在弱点,它也能迅速修复,“我们真正看不见的是人工智能的极限”。

AlphaGo影响的不仅是围棋界,更与未来人类的生活相关。前沿科技媒体机器之心创始人赵云峰认为,谷歌的目的并非要专门做一台下围棋的机器去战胜职业选手,而是把围棋看作一个标尺来参照,“围棋只是测试人工智能技术的试金石,体现的是技术的进展和突破,还能延伸很多领域”。

在赵云峰看来,AlphaGo致胜的诀窍在于其深度学习的能力,其“最大的优点是输入数据让它通过分析给出结果,而人们可以由此作出决策”。这个应用方向目前已经开始在现实生活中运用。据报道,“生”出AlphaGo的DeepMind已经和英国国家医疗服务体系建立合作,正尝试用智能算法协助医生诊断。

然而,科技给人类带来惊叹的同时不免让人惊愕,未来人工智能是否会像很多科幻电影中那样,威胁人类生存?

北京大学心理学系教授魏坤琳担心更多的是现实可能。他认为,人工智能可能会引起新的资源争夺战,建议从现在起就制定规范,对人工智能给予一些限定,“大家都在争夺资源,无论个人、企业和国家,谁掌握了更强大的人工智能为你所用,就能占得先机,就像核武器一样,可以不去作恶,也会有反面用途”。

人工智能在医疗诊断的应用范文第5篇

一、“区块链+AI”行业概述:

1、“区块链+AI”行业简介

人工智能(ArtificialIntelligence)英文缩写为“AI”,主要研究如何使计算机去做更多过去只有人类才能完成的智能工作。AI一词最早是在1956年Dartmouth学会上提出,2015年美国伊利诺伊小组研究中表明,现阶段AI智力已可达4岁孩童智力水平。随着人工智能技术不断成熟应用,围绕着“AI+”的技术理念创新也在不断提出,其中“区块链+AI”的技术理念尤为突出。

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。其本身作为比特币的底层技术,拥有去中心化、开放性、自治性、信息难篡改、匿名性等特征,可有效弥补人工智能应用中存在的数据共享、数据安全等问题。区块链可以为人工智能提供“链”的功能,让人工智能的“自主”运行中需要的数据信息都得到可信记录并具备可溯源的特点,使得AI更可信、更安全。可以说“区块链+AI”是新型技术之间的通力合作,若两者可有机结合,将会创造更大的价值。

从金融、消费、医疗服务到政府服务,区块链和人工智能的结合正在逐步渗透各个行业和领域。人工智能和区块链的协作将会解决诸多的问题,在人工智能提供数据分析和匹配的同时,区块链将提供一个更加安全和可信任的网络。

2、人工智能和区块链行业现状概述

人工智能被誉为引领未来的战略性技术,是提升国家竞争力、维护国家安全的核心技术之一,也将成为经济发展中新一轮产业变革的核心驱动力。在我国,人工智能的发展受到高度重视,2017年7月8日国务院了《新一代人工智能发展规划》的战略部署,明确我国新一代人工智能发展的三大战略目标:至2020年人工智能总体技术和应用与世界先进水平同步,成为重要经济增长点,全面支持建设小康社会;至2025年人工智能基础理论实现重大突破,成为我国产业升级和经济转型的主要动力,向智能社会建设迈进;至2030年人工智能理论、技术和应用总体达到世界领先水平,成为世界主要人工智能创新中心,为经济强国奠基。根据中国互联网络信息中心(CNNIC)2017年的《中国互联网络发展状况统计报告》显示,2016年中国人工智能相关专利年申请数量达30115项,产业规模突破百亿,2017年中国人工智能产业规模达152.1亿元,该行业每年以40%~50%增长率进行增长,预估2019年将突破300亿元,截止2017年6月我国人工智能企业总数已达592家,仅次于美国。2017年9月,华为公司推出的芯片麒麟970及苹果公司推出的芯片A11SOC均具备机器学习处理单元,为人工智能硬件打下坚实的基础。人工智能行业目前已走过技术蛮荒期,处于通用技术与行业结合形成商业化场景应用阶段。根据目前沪深两市板块分类统计,涉及人工智能概念的上市公司共104家,基本涵盖了人工智能基础层、技术层、应用层各相关领域。

相比于人工智能技术已经经历了60多年的长足发展而言,区块链技术目前起步不到10年,且刚刚经历了三个初级的阶段,分别为:

起步期:2009年-2012年,以比特币为代表的加密数字货币使得区块链技术开始走进部分极客和新兴技术爱好者的视野当中,并开始在世界范围内形成一定程度的关注和研究。

雏形期:2013年-2017年,以太坊在比特币的基础技术架构之上引入了智能合约,使得区块链的可拓展性得到极大的提升,区块链技术开始延展到更多行业和领域。

发展期:2018年-,区块链技术开始迭展,行业发展聚焦于更为安全的技术架构的搭建与更加良好基础性能的提升,区块链安全、区块链与人工智能等方向开始受到行业重视,一些应用逐步在全球各个行业领域开始试点。

目前区块链技术发展总体阶段处于类似于互联网发展的初期阶段,距离大规模的应用落地仍然需要时间积累。“区块链+AI”是新兴技术相互赋能的良好应用结合,区块链技术在人工智能这一垂直领域的探索,有助于加速新兴技术的落地,并在实践过程中不断完善。目前大部分“区块链+AI”项目仍处于概念验证阶段或早期应用阶段。

二、“区块链+AI”具有的优势与挑战

在人工智能为区块链提供更强大拓展场景与数据分析能力的同时,区块链技术可为人工智能提供高度可信的原始数据以支持其持续的“深度学习”。在未来人工智能高度发展的同时,也可通过区块链的分布式、透明、可溯源的特点,来保障人工智能始终处于人类可控的范围之内。这对两者的技术发展进程都提出了更高的要求,总体而言,区块链技术本身处于早期阶段,与人工智能相结合需要持续迭代以满足人工智能对性能和稳定性的要求。

1、“区块链+AI”两项尖端科技的相互赋能

区块链与人工智能两项技术的结合,有以下七个方面的优势:一是区块链可以提高人工智能的数据安全性;二是区块链可以加速数据的累积,给人工智能提供更强大的数据支持,解决AI的数据供应问题;三是区块链可以解决数据收集时的数据隐私问题;四是人工智能可以减少区块链的电力消耗;五是区块链使得人工智能更加的可信任;六是区块链帮助人工智能缩短训练时间;七是区块链有助于打造一个更加开放与公平化的人工智能市场。双方结合的优势具体说明如下:

(1)提高数据安全性

区块链可以帮助人工智能避免因数据存储问题导致的故障。区块链中每个节点都按照链式结构存储完整的数据,每个存储节点都是独立的、地位等同的。区块链的高冗余特性,分布式数据存储,可避免系统级别风险的发生。理论上看除非所有节点全部出现风险,否则数据就是安全的。

此外,考虑到人工智能诊断的“黑箱”问题,清晰谁建立了人工智能,使用什么数据进行训练,以及谁部署了最终的,是我们应对人工智能可能出现的问题的最佳防控手段。目前使用的大多数人工智能程序都是“深度学习”算法的变体。不良的数据内容将给人工智能带来相应的安全隐患,区块链则通过记录哪些核心算法是使用哪组训练数据开发的,避免了这一问题。更宽泛地说,区块链可以记录谁编写了原始的人工智能算法以及用什么数据来训练算法。

(2)大量且丰富的数据支持

一些企业为了自身发展会进行海量数据收集,同时因为市场竞争而拒绝进行数据共享。由此造成这些公司接触到的数据有限,缺少完整的数据集做支撑,使得人工智能产品质量较差。采用区块链技术,可以利用数据分类帐进行部分数据的购买销售。可靠性强、可用性高的数据将会使得企业生产出高质量的计算机识别,语音识别和其他数据密集型应用。

当收集了大量同类型数据用于训练AI模型时,数据会受到偏差或“过度拟合”的影响。数据样本将不具备典型的随机性来代表总体的特性。使用此类型数据训练的模型比使用更多不同样本进行训练的模型表现能力要差很多。通过引入区块链技术,让不同的人和公司来提供可信的不同数据,可以获得更多样化的数据样本,帮助AI完成“自主性”决策。

(3)隐私保护

人工智能的高速发展需建立在大量的数据基础上,不可避免地涉及到个人隐私数据合理使用的问题,例如从公共数据库中推导出私人隐私信息,通过这些信息又推导到其他相关人员的信息,这已经超出大部分人同意披露的信息范围。区块链采用非对称加密和授权技术,交易信息公开透明,但对于账户身份信息是高度加密的,只有经过数据拥有者授权才可访问该数据,即使遭到入侵,也仅是一小部分信息内容,无法获取用户完整的个人身份信息,此技术在AI大数据运行环境下,个人的隐私免于被侵犯,不法企业难以利用用户数据来牟取不正当利益。同时,区块链与加密算法相结合可以在数据分享过程中分离数据所有权和使用权,让数据使用方可以利用密文进行模型训练和使用,彻底杜绝原始数据泄露的风险,从而打通企业和政府中的数据孤岛。

(4)能源消耗减少

采用POW共识机制的区块链项目需要消耗大量的电力资源,人工智能可以通过学习算法,提升数据中心的负载,操控计算机服务器和相关的散热系统,优化冷却,有效地进行设备管理,从而减少电力的消耗。对于AI可以优化能源消耗已被谷歌和百度等公司证实,2017年6月百度的智能楼宇项目一个月内为百度省下了25万度用电量,谷歌旗下AI实验室DeepMind利用人工智能技术帮助谷歌削减了15%的用电量。

(5)可信任度的提升

一个人工智能管理的区块链可以为独立于人工智能运行的底层平台的人工智能提供一个分散的标识。每一个主要的人工智能都可以注册成为被普遍认同的节点,这将为AI识别提供一个解决方案,类似于今天的网站证书,以验证网站所有权。

一个人工智能管理的区块链还可以允许每个人工智能将其活动的常规哈希函数写入区块链分类,以便具有加密密钥的可以对其进行不可篡改的检查。区块链搭载的人工智能分布式账本记录了人工智能做了什么,确保人工智能的错误行为被及时的发现、分析和纠正。而区块链的不可篡改性使得人工智能几乎不可能“掩盖它的踪迹”和删除犯罪活动数据。

最后,区块链的共识机制可以确保人工智能处于控制之下。通过人工智能执行任务的公共记录(必须由多个区块链节点进行验证),我们可以确保人工智能的运行不会超出界限。

(6)更短的AI训练时间

在使用区块链技术保障训练数据的真实可靠性的前提之下,可以通过区块链的分布式数据存储的方式将一台人工智能的深度学习训练时间大幅度的减少。例如一个人工智能的训练可以采用模型并行或者数据并行的方式,将单个的模型或者数据分布在不同的机器之上,从而减少训练时间。人工智能也可以在同步数据并行中删除同步约束限制,而采用异步并行模式——人工智能在每一步的信息处理中不必等待数据的相互确认,可以直接进行下一步的操作,从而进一步减少人工智能的深度学习训练时间。

(7)开放公平性

区块链提供的核心价值是“去信任中介化”。如果想要创建一个自组织和自我调节的人工智能网络——那么分布式记账技术是最好的途径。谷歌、腾讯、IBM、Facebook和其他大型科技公司已经彻底改变了分布式计算——将计算任务分散在多台虚拟机之间,以实现高效的可伸缩任务处理。但是他们的布式处理工具仍然是非常集中的,并且专注于由中心化的控制器统一调度特定任务,以实现非常特定的目标。

而基于区块链技术的智能合约将使“去信任中介”的网络得以实现,在这种可信网络中,两个人工智能系统可以安全可靠地进行交互,而无需任何中心化的中介。区块链还可为人工智能提供声誉系统,这样每个人工智能都可以在选择与其他人工智能进行交易之前检查其声誉。另外,区块链的无中介、高透明度将鼓励这些人工智能开发人员共享他们的数据和他们的产品,而不必担心出现某些偏袒竞争对手或窃取其知识产权的情况,并确保所有相关方为他们的工作获得适当的报酬。

2、“区块链+AI”面临的挑战

“区块链+AI”的面临的问题主要包括两方面:一方面是AI和区块链自身的缺点,在结合后仍无法有效解决;另一方面是AI和区块链结合过程中可能造成原有优势被破坏。例如:

(1)政策性风险

区块链目前部分的衍生应用在世界各地存在着一定的政策风险——例如未来是否采用区块链技术伴生的通证来激励人工智能开发或节点管理,但无论是在经济上还是在政策上如何定义通证仍有很大的不确定性。

(2)技术融合的不确定性

作为两个前沿的新兴技术,且都处于尚未完全成熟的阶段。无论是从当前区块链的技术指标,还是从人工智能的实际落地性来讲,距离两者真正的结合并实现落地,需要面对的不确定性因素仍然存在。目前区块链的主要问题为扩容、隐私、和计算能力,主流的公有链难以支撑人工智能的链上实现。

(3)大规模的社会应用面临挑战

数据共享威胁大型企业利益。通过弱化数据的中心化,降低了大型企业相对小公司的竞争优势。如果任何人都可以访问这些数据集和计算,那么任何人都有机会与世界上最大的公司竞争。从技术领域中去除这些障碍将会改善社会,但共享市场的尝试可能会让大公司感到不安。如果任何人都有能力在世界上制造出最好的人工智能,那么市场将与许多正在争夺一部分市场的初创企业和小企业共同分享。之前使用用户数据来制定广告或业务策略的公司和政府组织将再次被迫以较不直接的方式获取其数据。因此,大公司可能会反对数据去中心化,并可能游说维持AI模型开发方面集中式数据集的现状。

(4)不可控性

当使用了“一旦运行不可停止”的智能合约时,如果合约代码存在漏洞被黑客利用,黑客将通过智能合约漏洞牟利,因在区块链上运行的事务和交易不可撤销,可能会给企业和个人造成不可挽回的损失。

三、AI与区块链结合的应用场景

结合两者技术优势,通过AI让区块链更智能,区块链让AI更“自主”,更可信。目前对于AI和区块链的结合应用,市场上已经涌现出很多相关项目和理论创新,描述了不同场景下结合,比如:

(1)区块链+AI在医疗方面进行结合

相关的结合领域有医疗数据加密和医疗计算分析。关于医疗数据方面,据统计,大部分的医生会直接将病人的病情、个人信息等信息发给同事,这涉及侵犯病人隐私的问题。应用区块链的非对称加密和授权等技术,对关键信息进行加密,只有经过数据拥有者授权才可访问该数据,将大大的提高医疗数据的隐私性。关于医疗计算分析方面,AI在医疗机构提供数据错误率小于2%,利用区块链的技术,可以对于医疗数据进行信息交换,相比传统AI,数据可更好地进行共享。谷歌旗下DeepMindHealth正在开发区块链医疗数据审计系统,利用“区块链+AI”技术让医院、NHS、病人自身都能实时跟踪其个人健康数据。

(2)区块链+AI在数据市场进行结合

利用区块链集合群体的力量,进行数据上的共享、AI模型的训练等。AI的发展离不开庞大的数据集,区块链可以利用数据分类帐进行高质量数据的购买销售,当收集了大量的、多样化的数据样本后,可用于训练AI模型,这些数据及AI模型将会解决信任的数据孤岛问题,使得人工智能机器人可以进行共享学习,自我成长,产出高质量的计算机识别,语音识别和其他数据密集型应用。目前SingularityNet、DeepBrainChain、Bottos、OceanProtocol、Indorse、ARPAChain等项目涉及该领域。

(3)区块链+AI在金融领域进行结合

相关的结合领域有市场情绪分析、去中介交易商经纪人(IDB)和检测金融欺诈行为等。关于市场情绪分析及去IDB方面,利用AI进行深度学习和时序分析,再结合区块链技术保护下的个人数据相整合,为个人提供更精准的交易服务。具体来说,就是从用户面板上进行大数据采集及处理,通过人工智能分析用户情绪数据,对市场波动进行预算,最后自动化下单。利用机器人取代人工,提升效率,降低了IDB佣金。在检测金融欺诈行为方面,使用交易机器人,高频加密交易,弱中心化减少人为操控的可能性,降低金融欺诈风险,此外,AI监控加密市场,让恶意攻击变得更难。目前有Autonio、Aigang、Numeraire、Endor等项目涉及该领域。

(4)区块链+AI在云计算方面进行结合

当前AI云计算方面面临计算资源昂贵、训练时间长、训练数据多、开发去中心应用困难等问题,结合区块链技术后能较好地解决以上问题。把区块链中挖矿及电力消耗过程中过剩的资源转换为AI云算力,资源上进行整合,降低计算成本。目前有NebulaAI项目涉及该领域。

(5)区块链+AI在物联网方面进行延展

首先,区块链技术可以帮助解决“如何证明自己是自己”的问题,用户可通过区块链+AI技术完成生物身份识别和身份认证,将个人身份与物联网联系在一起。其次,解决了更新的问题,所有物联网设备在区块链+AI的加持下,数据共享,设备可智能化更新。具体的垂直应用包括:应用在工业制造上,制造生产的设备在区块链中传递信息,更智能化地成长,提高效率、增加产能;应用在交通上,更好地铺开无人驾驶应用,解放人们的时间,智能化管理交通,有利于减少交通堵塞、交通事故的发生;应用在监控等公共基础设备上,身份认证能快速的识别出罪犯,有利于维护社会稳定。目前有智行者、美图等项目涉及该领域。

四、“区块链+AI”行业展望