首页 > 文章中心 > 高层建筑抗震设计

高层建筑抗震设计

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高层建筑抗震设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高层建筑抗震设计

高层建筑抗震设计范文第1篇

关键词:高层建筑抗震设计

Abstract: The author analyzes the main problems of reinforced concrete high-rise buildings for seismic design, and design countermeasures.Keywords: high-rise buildings; seismic design

中图分类号:TU2文献标识码:A文章编号:2095-2104(2012)

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。随着我国经济的快速发展,高层建筑也越来越多,在这种情况下必须做好抗震设计。设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,为此从结构总体方案设计一开始,就运用人们对建筑结构抗震己有的正确知识去处理好结构设计中遇到的诸如房屋体型、结构体系、刚度分布,构件延性等问题,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施,从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。

1 高层建筑抗震设计存在的问题

1.1 工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

1.2 建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

1.3 建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,加剧了地震的破坏作用,海城地震和唐山地震中有不少类似震害实例。台湾 9.21 地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

1.4 平面布局的刚度不均

抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。 平面形状采用 L、π 形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。 这些都对抗震极为不利。

1.5 防震缝设置不规范

对于高层建筑存在下列三种情况时,宜设防震缝:平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3-91)中表 2.2.3 的限值而无加强措施;房屋有较大错层;各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。

1.6 结构抗震等级掌握不准

结构抗震等级有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。

上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。

2 高层建筑抗震设计对策

2.1 结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,对建筑进行合理的布置,大量地震灾害表明,平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映,易于采取相应的抗震构造措施并且进行细部处理。建筑结构的规则性是指建筑物在平立面外形尺寸、抗侧力构件布置、承载力分布等多方面因素要求。要求建筑物平面对称均匀,体型简单,结构刚度,质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。

2.2 层间位移限制

高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移, 甚至会超过结构的位移限值。而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在 1/400-1/700 范围内)则比钢结构(1/200-1/500 范围内)要求严格 ,风荷载作用下的限值比地震作用下的要求严格。 因此在进行高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。

2.3 控制地震扭转效应

大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。 计算时应主要控制周期比、位移比两个重要指标,即当两个控制参数的计算结果不能满足要求时则必须对其进行调整。当周期比不满足要求时可采用加大抗侧力构件截面或增加抗侧力构件数量的方法,并应将抗侧力构件尽可能的均匀布置在建筑四周,以减小刚度中心与质量中心的相对偏心,若调整构件刚度不能满足效果时则应调整抗侧力构件布置,以增大结构抗扭刚度。

2.4 减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比,然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

2.5 减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应

与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加,因此,为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

2.6 选择合理结构类型

高层建筑的竖向荷载主要使结构产生轴向力,水平荷载主要产生弯矩。其竖向荷载方向不变,但随着建筑高度增加而增加,水平荷载则来自任何方向,因此竖向荷载引起建筑物的侧移量非常小,而水平荷载产生的侧移则与高度成四次方变化,即在高层结构中水平荷载的影响远远大于竖向荷载的影响,因此水平荷载应为设计的主要控制因素,在设计过程中应需在满足建筑功能及抗震性能的前提下选择切实可行的结构类型,使其具有良好的结构性能。

2.7 尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

3 结束语

钢筋混凝土高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们在设计时要选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献:

高层建筑抗震设计范文第2篇

关键词:高层建筑;抗震设计;要点

中图分类号: TU208.3文献标识码:A文章编号:

Abstract: The high-rise buildings aseismic work has been building is the design and construction of the key. This paper introduces the seismic design of high-rise building the basic principle, the detailed analysis of the seismic design of high-rise building points.

Keywords: high building; Seismic design; points

抗震设计是根据地震灾害和工程经验等所形成的基本设计原则和设计思想,进行建筑和结构的总体布置并确定细部构造的过程,是结构工程师运用“概念”进行分析,做出判断,并采取的相应措施,是工程结构设计人员从宏观上、总体上和原则上去决策和确定高层结构设计中的一些最基本、最关键的问题。高层建筑抗震工作一直是建筑设计和施工的重点,应对建筑抗震设计进行必要的分析,探索高层建筑的抗震设计要点,从而采取必须的抗震措施。

一、高层建筑抗设计的基本原则

1、结构构件应具有必要的承载力、 刚度、 稳定性、 延性等方面的性能

(1)结构构件应遵守 “强柱弱梁、 强剪弱弯 、强节点弱构件、 强底层柱(墙)”的原则。

(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力 。

(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

2、尽可能设置多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。 例如框架--剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。 抗震结构体系应有最大可能数量的内部 、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“ 有效屈服” 保持较长阶段,保证结构的延性和抗倒塌能力。

(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

3、对可能出现的薄弱部位,应采取措施提高其抗震能力。

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中 。

(3)要防止在局部上加强而忽视了整个结构各部位刚度、 承载力的协调 。

(4)在抗震设计中有意识、 有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

二、高层建筑抗震设计要点

1、选择良好的抗震结构体系

高层建筑结构在抗震设计时,应选择合理的结构类型,设计的结构既要考虑其抗震安全性,也要尽可能的经济。结构应布置多道抗震防线,避免部分结构或构件失效而导致整个体系丧失抗震能力或丧失对重力的承载能力。此外,结构应拥有良好的整体性和变形能力,使结构的强度、刚度和变形能力三者达到统一。

2、建筑布置宜规则

高层建筑应重视体形和结构的总体布置。由于建筑体形不合理或结构总体布置不合理而造成的地震灾害,在国内外的大地震中都有所见。抗震设计选择的建筑平面和立面布置宜对称、规则,避免采用严重不规则的结构。结构的刚度宜均匀变化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免有刚度和承载力突然变小的楼层,造成薄弱层的出现,地震时该部分容易破坏。

3、选择合理的结构计算简图和地震作用传递途径

目前大多数高层建筑都可以利用计算机进行程序运算,为保证计算结构的可靠性,要求工程设计人员要熟练掌握结构的简化计算方法, 得到结构构件在荷载作用下的计算见图,结构在地震作用下的传力途径要简单、直接,利用合理的力学模型和数学模型获得更为符合实际的抗震验算结果。

4、选择合理的结构类型

高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩 从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化 从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化 由此可以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩 剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

高层建筑有上述的受力特点,因此设计中在满足建筑功能要求和抗震性能的前提下,选择切实可行的结构类型,使之在特定的物资和技术条件下,具有良好的结构性能、 经济效果和建筑速度是非常必要的 。高层建筑上常用的结构类型主要有钢结构和钢筋砼结构 。钢结构具有整体自重轻,强度高、 抗震性能好、施工工期短等优点,并且钢结构构件截面相对较小,具有很好的延性,适合采用柔性方案的结构 。其缺点是造价相对较高,当场地土特征周期较长时,易发生共振 与钢结构相比,现浇钢筋砼结构具有结构刚度大,空间整体性好,造价低及材料来源丰富等优点,可以组成多种结构体系,以适应各类建筑的要求在高层建筑中得到广泛应用,比较适用于提供承载力,控制塑性变形的刚性方案结构。 其突出缺点是结构自重大,抵抗塑性变形能力差,施工工期长,当场地土特征周期较短时易发生共振 。因此,高层建筑采用何种结构形式,应取决于所有结构体系和材料特性,同时取决于场地土的类型,避免场地土和建筑物发生共振,而使震害更加严重。

5、选择有利于抗震的场地和地基

高层建筑设计中要选择对建筑抗震有利的地段,避开对建筑抗震不利的地段。当无法避开时,应当采取适当的抗震措施,不应在危险地段上建造高层建筑。此外,设计前应估算建筑结构的自振周期,并与场地卓越周期错开,防止地震时结构发生类共振现象的破坏。

随着社会的发展、结构设计理念的创新及施工技术的进步,促使高层建筑往更高的方向发展,其在地震作用下的安全性也变的尤为重要。但由于高层建筑抗震设计属于繁重而复杂的过程,设计时一定要从从抗震设计的基本原则、计算方法、理论分析及设计分析四个方向入手,从而获得即经济又安全可靠的设计结果。

6、 提高结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能 通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒 为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁 、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力 为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照 “强柱弱梁”、“ 强剪弱弯”、“ 强节点弱构件” 的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。

参考文献:

[1] 刘华新,孙志屏,孙荣书. 抗震概念设计在高层建筑结构设计中的应用[J]. 辽宁工程技术大学学报, 2007,(02) .

高层建筑抗震设计范文第3篇

关键词:高层建筑;结构;抗震设计

高层建筑在地震中一旦受到损害,其损害往往要比多层建筑严重得多,所以经过对历次地震中高层建筑的抗震性能分析,对工程结构抗震性能来讲,概念设计更重于数值设计,需要从设计开始就要对结构抗震设计中的问题进行处理,同时还要对其进行必要的计算和构造措施,这样就会在很大程度上会将建筑物抗震上的薄弱环节进行降低,从而达到更好的抗震性能。利用概念设计对工程师的思维和判断力都有较高的要求,需要工程师更好的结构抗震特点进行了解,从而更好的对结构的受力特征进行掌握,从而在设计中更好的设置受力点,达到合理抗震设计的目的。

1 我国高层建筑抗震设计中存在的问题

1.1目前高层建筑超出了最佳抗震的限高

在当前我国现有的科研水平、技术水平和施工水平下,对我国高层建筑在设防烈度和结构形式下都有一个适宜的高度规定,这个高度对于高层的抗震性能是最为稳妥的,而且也与土建规范体系相互协调。但在实际建设当中,许多混凝土结构往往都超过了这个高度限制,所以对于这些超高限的建筑,在进行抗震设计时一定要谨慎。需要在有抗震设计和模型振动台试验的基础上进行抗震设计。因为超高限的建筑物,其高度的增加,会导致对建筑结构影响的许多因素发生变化,特别是安全参数、延性、材料性能等都会超出现有高层建筑规范规定的范围。

1.2注意高层建筑材料和结构体系的选用

目前在超过一百五十米以上的建筑中,通常会选择框―筒、筒中筒和框架三种支撑体系来作为建筑结构。目前我国钢材生产量较大,而且类型和品种也不断的增加,而随着钢结构加工制造能力的增加,在高层建筑中尽可能的选择钢骨混凝土结构、钢管混凝土结构和钢结构,这样不仅可以有效的使柱断面的尺寸能够减小,同时也可以对结构的抗震性能有较大的改善。而当高层建筑超过一定的高度后,单凭钢结构是不行的,而且钢结构自身质量较轻,不利于抵抗风振所带来的损害,所以需要将混凝土材料利用上,形成钢骨混凝土结构来作为超高层建筑物的材料和结构。

1.3现在抗震设计标准较低

目前我国高层建筑结构设计的抗震标准基本上属于世界安全度最低的水平,已不适应当前我国的基本国情,而且现在依据的抗震设计原则在新形势下也需要对其进行重新审视。由于我国抗震设计标准较低,所以在具体抗震计算方法和构造上的规定也不高,而在一些抗震延性的要求上更无法与国外相关。由于在当前高层建筑结构设计中,其造价比例呈下降趋势,所以在设防烈度的设计上还有人主张利用弹性设计。不管何种设计,保证结构的抗震性能良好是至关重要的,当前由于社会财富的不断增加,如果由于结构抗震性能较低而导致失效,则会带来不可估量的损失发生。

2 高层建筑抗震设计的方法

2.1采用位移的结构抗震方法进行设计

当高层建筑结构在地震作用下时,则会发生变形,所以在结构设计方法选择时,要使其能够满足结构弹性变形的需求,所以在设计中通常都会得利用基于位移的结构抗震方法来进行设计。而构件的变形则需要通过控制地震的层间位移限值、构件变形和结构位移之间的关系来进行确定变形值。而建筑构件的构造需求则需要根据界面的应变分布大小来进行确定。另外在进行高层建筑选址时,通常选择坚固的场地来进行施工,可以有效的控制地震发生时能量的输入,减弱地震所带来的破坏作用。

2.2运用高延性结构来进行消震和隔震

目前在我国的高层建筑抗震设计中,都会通过对建筑结构的刚度进行控制,即利用延性结构来使地震发生时,确保其结构构件进入到一个具有较大延性的塑性状态下,以此来减弱地震作用时的能量,降低地震的反应,从而降低地震所带来的破坏作用。即使高层建筑承载力较小时,如果具有较高的延性,其在地震中延性构件也会吸收较多的能量,从而承受较大的结构变形,不容易发生倒塌事故。通过对延性结构的运用,有效的减轻了地震所带来的反应,降低了结构物倒塌的机率,而且随着科学的发展,对建筑物抗震设计水平的提高,设计者们通过使用阻尼器来有效的吸收地震所产生的能量,从而有效的减弱了地震所给高层建筑带来的破坏性。

2.3注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150米以上的建筑,采用的三种主要结构体系(框―筒、筒中筒和框架―支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量较大,钢结构的加工制造能力已有了很大提高,因此建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,改善结构的抗震性能。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济的目的,有效地减弱地震作用过程中释放的冲击力。

2.4建立多层地震防线

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线,也是主要的抗侧力构件。所以为保证它的承受能力较高,剪力墙要足够多。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍中两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙)使其具有多道抗震防线性能。

3 结束语

目前高层建筑结构抗震也发生了较大的变化。高层建筑的抗震结构体系将从硬性为主向柔性为主的结构转变,通过“以柔克刚”的方式调整建筑结构构件的隔震、减震和消震,从而实现抗震目的。建筑材料对结构抗震的影响越来越受到重视。建筑材料各个抗震指标的提升可以提高高层建筑的抗震能力,研制新的建筑材料可推动高层建筑结构抗震技术的发展。通过优化的抗震方法设计来实现高层建筑的抗震要求。计算机模拟抗震试验得到广泛应用。将制作好的模型或结构构件放在模拟地震振动台上,台面输人某一确定性的地震记录,能够较好地反映该次确定性地震作用的效果。计算机模拟环境可以拟真抗震效果,帮助科学改进各因素,有效抗震。■

参考文献

[1]李志.高层建筑抗震设计分析[J].中外建筑,2010(01).

高层建筑抗震设计范文第4篇

建筑物的层高一定时,为提升其延性,通常会选择减少其轴压比,轴压比的减小又会增加柱截面,进而减小了柱的剪跨比,使其延性受到影响。因而,在高层建筑中,为使轴压比的限值满足相关要求,通常柱的截面都较大,而使建筑结构的底部出现短柱问题。另一方面,荷载大而楼层低的建筑物设计中也会产生短柱问题。而短柱其延性较差超短柱更甚,一旦地震发生,很容易形成剪切破坏,而使得结构出现破坏甚至坍塌,建筑物的使用功能满足不了实际需求。基于此,对高层建筑抗震设计中的短柱问题进行分析,并探讨解决短柱问题的相应对策,便具有十分重要的现实意义,本文对此展开介绍,以期能够为相关人员提供有参考价值的建议。

1短柱的判断方法

根据我国相关规范指出,短柱为柱净髙和截面高度的比值不大与4的柱,技术人员也多以此来判断是否为短柱。然而,值得注意的是,由于柱剪跨比才是判定短柱的具体参数,只有当剪跨比不大于2时,才为短柱,而当柱净髙和截面髙度的比值满足要求时,剪跨比也不一定不大于2,也即不能肯定一定是短柱,而按照柱净髙和截面高度的比值不大于4进行短柱的判定时,其依据主要有两个方面,一是剪跨比不大于2,二是由于框架柱的反弯点通常距离柱中点较近,但,髙层建筑其梁柱的通常较小,尤其是对于底部来说,柱底嵌固对其造成了一定的影响,同时梁对柱所形成的约束弯距也不大,反弯点其髙度要远远髙出柱髙的一半,某些情况下,甚至不存在反弯点,对于这种情形,用柱净髙和截面髙度的比值不大于4进行短柱的判定,就不再适合,此时,应以剪跨比作为短柱的判定依据。当框架柱其反弯点没有位于柱中点时,柱子上下截面就具有不一样的弯矩值,因而,框架柱其上下截面也就具有不同的剪跨比。对于该种情况,该如何进行短柱的判定呢?笔者认为,框架柱上下截面的剪跨比最大的应作为短柱的判定依据,这是由于,框架柱其受力特性可等同于轴压力一定的连续梁,柱高等同子连续梁剪跨。根据相关研究成果表明,当连续梁的剪跨不变时,且其上下截面的钢筋配置也相一致时,弯矩大的区域发生剪切破坏的可能性也大,对于框架柱来说,其弯矩大的区域也较容易出现临界斜裂缝。实际上,在柱髙或是连续梁的剪跨区间内,弯矩大的区域通常其剪跨比也最大。而钢筋混凝土其抗剪力随着剪跨比的增大而减小,在承受荷载时,一旦出现剪切破坏,其发生的区域一定是弯矩大的地方。而可能出现剪切破坏的截面剪跨比自然应是作为短柱判定依据的剪跨比。一般来说,对于髙层建筑其底部楼层而言,框架柱其反弯点相对偏上,也即柱上截面的弯矩值小于下截面的弯矩值,对于该种情况,短柱的判定可以下截面的剪跨比不大于2或是n层柱其净高和截面高度的比值不大于2与n层柱其反弯点高度比的比值为依据,而后者具有通用性。当进行框架柱是否属于短柱的初步判定时,可先通过D值法将柱的反弯点髙度比确定下来,然后再根据短后者短柱判定依据进行判断,对于施工图纸的设计阶段而言,可结合验算结果进一步的进行判定。

2解决高层建筑抗震设计中短柱问题的几点建议

在根据剪跨比对框架柱是否属于短柱进行判定后,根据普通框架柱其相关抗震要求,只需采取一定的构造措施。而当确定框架柱为短柱后,应尽可能的使短柱具有较好的承载力,减小其截面尺寸,并采取一定的措施使短柱具有较好的延展性,进而提髙短柱的抗震能力。

2.1复合螺旋箍筋

对于高层建筑而言,其框架柱抗剪力应符合弱弯强剪以及剪压比的限值要求,而柱端其抗弯力应符合弱梁强柱的要求,短柱在满足弱弯强剪和弱梁强柱的双重要求下,是可以避免剪切破坏的发生的。因而,复合螺旋箍筋能够使柱的抗剪力得到提升,并使对混凝土的制约作用得到改善,以增强短柱的抗震能力。

2.2分体柱

相交于短柱的抗剪力而言,其抗弯性能更好。然而,地震所造成的破坏多是剪切破坏,因而,短柱的抗弯性能也就无法充分的得到发挥。基于此,可适当的将短柱其抗弯强度人为的加以削弱,使短柱的抗弯强度比其抗剪强度略低些,当地震发生时,柱子的抗弯强度首先达到,从而表现为延性破坏。.在进行短柱抗弯强度的削弱时,可采取的人为方法有,沿竖向在柱中设缝,将短柱分成分体柱,分体柱可由2个或是4个柱肢组成,并分别进行分体柱柱肢的配筋,还可将部分连接键设置于柱肢间,以使其初期刚度得以增强,并增大其后期的耗能力。一般来说,连接键的形式包括通缝、素砼连接键、预制分割板等。由分体柱的相关理论和试验结果表明,分体柱方法虽然并没有怎么改变柱的抗剪力,只是稍微降低了柱的抗弯力,然而,柱的延展性和变形力均有明显的提升,柱的破坏也由剪切破坏转变为弯曲破坏,实现了短柱变“长”的构想,使短柱的抗震性能得到提升,尤其是剪跨比不大于1.5的超短柱,且该种方法在工程的实际建设中也己经在应用。

2.3钢骨砼柱

钢骨及外包砼一起构成钢骨砼柱,钢骨截面通常为焊接拼制钢板而成的或是直接扎成的十字形、口字形、工字形等。相较于钢结构而言,钢骨砼柱其外包轮能够起到避免钢构件出现局部扭曲变形的问题,使柱的刚度得到提升,钢构件平面的扭转弯曲力得到明显的改善,充分发挥出钢材强度的作用。钢骨砼结构的有效利用,相较于普通钢结构而言,其节约了将近一半以上的钢材。另外,外包轮还使结构具有更好的耐久耐火能力。相较于钢筋砼结构来说,因钢骨轮有钢骨的作用,其承载力得到了极大的提升,柱的截面尺寸被有效地降低,钢骨的边缘和箍筋很好的约束了砼,增强了其延展性,且由于钢骨塑性较好,柱子的延性和耗能力得到了有效的提髙。因钢骨轮柱兼具钢和砼的特性,其截面尺寸较小,重量轻,延展性好,技术指标和经济指标优越等,若能将钢骨砼柱应用于高层或超高层其钢筋砼下方一定位置处,将会使柱截面尺寸大大的被减小,而使高层建筑的抗震性能得到显著的提升。

3结语

高层建筑抗震设计范文第5篇

【关键词】高层建筑;结构工程;抗震设计

一、结构抗震设计的重要性

地震是一种随机振动,有难于把握的复杂性和不确定性,要准确预测建筑物所遭遇地震的特性和参数,目前尚难做到。在结构分析方面,由于未能充分考虑结构的空间作用、结构材料的非弹性性质、材料时效、阻尼变化等多种因素,同时也存在着不准确性。因此,工程抗震问题不能完全依赖“计算设计”解决,而必须立足于“概念设计”。概念设计是指设计人员从结构的宏观整体出发,用结构系统的观点,着眼于结构整体反应,正确地解决总体方案、材料使用、分析计算、截面设计和细部构造等问题,力求得到最为经济、合理的结构设计方案以达到合理抗震设计的目的。结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位。地震能量的聚散,如果仅集中在少数薄弱部位,必会导致结构过早破坏,目前各种抗震设计方法的前提之一就是假定整个结构能发挥耗散地震能量的作用,在此前提下才能以多遇地震作用进行结构计算、构件截面设计并辅以相应的构造措施,必要时采用弹性时程分析法进行补充计算,试图达到罕遇地震作用下结构不倒塌的目标。

二、高层混凝土建筑结构抗震设计策略

1、从建筑的全局出发

高层混凝土建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破会,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。

2、地基选址

地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。

3、高度的确定

按我国现行高层建筑混凝土结构技术规程(JGJ3-2002)规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。这个高度是我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土建规范体系相协调的。可实际上,已有许多混凝土结构高层建筑的高度超过了这个限制。对于超高限建筑物,应当采取科学谨慎的态度:一要有专家论证,二要有模型振动台试验。在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化。因为随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。

4、材料的选用和结构体系

在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框—筒、筒中筒和框架—支撑体系),都是其他国家高层建筑采用的主要体系。但国外,特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。在高层建筑中采用框架———核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内简往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。

在高层建筑中,应注意结构体系及材料的优选。现在我国钢材生产数量已较大,建筑钢材的类型及品种也在逐步增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。在超过一定高度后,由于钢结构质量较小而且较柔,为减小风振而需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。

另外,许多高层建筑底部几层柱虽然长细比小于4,但并不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比≤2的柱才是短柱。有专家学者提出现行抗震规范应采用较高轴压比。但是即使能调整轴压比限值,柱断面并不能由于略微增大轴压比限值而显著减小。因此在抗震的超高层建筑中采用钢筋混凝土是否合理值得商榷。

总之,钢筋混凝土框架结构是我国大量存在的建筑结构形式之一,钢筋混凝土框架结构的柱端与节点的破坏较为严重,其抗震设计中应该钢筋混凝土高层建筑结构抗震关键设计,另外,必须满足“强柱弱梁”“、强剪弱弯”“、强节点”“、强底层柱底”等延性设计原则和有关规定。

5、运用延性设计

结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。

三、结语

总之,高层建筑结构的抗震设计方法和技术是不断变化和进步的,需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献:

[1]计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.

[2]蒋新梅.高层建筑结构的抗震设计[J].广东科技.2009(08)